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Prologue: Sumsets and Difference Sets

Let A be a finite set of nonnegative integers, with |A| its size.

Definition

The sumset A+ A and difference set A− A of A are

A+ A = {ai + aj : ai , aj ∈ A},
A− A = {ai − aj : ai , aj ∈ A}.

Expect a generic A has |A− A| ≥ |A+ A|, as addition commutes
while subtraction doesn’t.

Definition

Say A is sum-dominated if |A+ A| > |A− A|,
difference-dominated if |A− A| > |A+ A| and balanced
otherwise.
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Existence of Sum-Dominated Sets

Question

Do there exist sum-dominated sets?

Conway: {0, 2, 3, 4, 7, 11, 12, 14} is sum-dominated.
Hegarty, Nathanson...: Infinite families of sum-dominated sets.

“Even though there exist sets A that have more sums than
differences, such sets should be rare, and it must be true with the
right way of counting that the vast majority of sets satisfies
|A− A| > |A+ A|.” - Melvyn B. Nathanson, 2006.

Question

What is the “right way of counting”?
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Uniform Subset Model on IN := {0, 1, . . . ,N − 1}
Interpretation: Find a natural family of probability measures
{PN}∞N=1 on 2IN where

lim
N→∞

PN

(
{A ⊆ IN : A is MSTD}

)
= 0.

First try: Pick A uniformly at random from 2IN

(i.e., independently k ∈ IN in A with probability 1/2).

Theorem (Martin and O’Bryant, 2006)

lim
N→∞

#{A ⊆ IN : A is MSTD}
2N+1

> c1/2 > 0.

Intuition:

With high probability, A+ A and A− A hits everything in the
middle of [0, 2N] and [−N,N], respectively.

“Rig” fringes of A+A and A−A by selecting the fringes of A.

Uniform subset model might not be the “right way of counting.”
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Binomial Model: Phase Transition

Second try: Similar, but the inclusion probability for taking k is
p(N) = o(1) and N · p(N) ≫ 1. Assume this from now on.

Inclusion probability to 0, while |A+ A|, |A− A| grow.

Conjecture (Martin and O’Bryant, 2006)

Under the binomial model, A is not MSTD with high probability.

Theorem (Hegarty and Miller, 2008)

Let 1/N ≪ p(N) = 0(1).

If p(N) = o(N−1/2): |A− A| ∼ 2|A+ A| ∼ (N · p(N))2.

If p(N) = cN−1/2: |A+ A| ∼ g(c2/2)N and
|A− A| ∼ g(c2)N with g(c) = 2(e−x − 1− x)/x .

If p(N) ≫ N−1/2: |(A+ A)c | ∼ 2|(A− A)c | ∼ 4
p(N)2

.
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Extension: Binomial Sets Under Linear Forms

Beyond sums and differences: What about an arbitrary fixed linear
combination of h elements?

Definition

A Z-linear form in h variables L : Zh → Z is a map given via

L(x1, . . . , xh) := u1x1 + · · ·+ uhxh, ui ∈ Z ̸=0 for all i ∈ [h].

The set L(A) is a generalized sumset if |ui | = 1 for all i ∈ [h]. The h = 2
case corresponds to the Hegarty-Miller model.

Natural setup to probe the additive structure of A.

Core problem: Fix a Z-linear form in h variables L : Zh → Z, and study

L(A) := {u1a1 + · · ·+ uhah : ai ∈ A}

and how its asymptotic behavior depends on the randomness of A.

How sharp is the threshold, and what happens in the critical window?

How does the macroscopic behavior depend on the structure of L?
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Some Key Challenges

1 No obvious candidates for an extension of the Hegarty-Miller result to
this setting, especially in the latter two regimes.

Can capture the amount of redundancy in L via the constant

θL :=
∣∣∣{σ ∈ Sh : (uσ(1), . . . , uσ(h)) = (u1, . . . , uh)

}∣∣∣ .
Expect to see that

∣∣L(A)∣∣ ∼ (Np)h/θL in the subcritical regime. What
should we expect to see at or beyond the critical window?

2 Significant dependency arises when computing exclusion probabilities for
the h ≥ 3 regime.

Simple illustrative example: k /∈ A+ A is the union of the mutually
independent events

{0, k} ̸⊆ A, {1, k − 1} ̸⊆ A, . . . , {⌊k/2⌋, ⌈k/2⌉} ̸⊆ A.

Harder to compute exclusion probabilities for three or more summands.

3 Lower bounds: We show a Poisson convergence result at a local scale.
How to show some sort of separation from the weak limit?
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Main Result 1: Global Phase Transition

Theorem (Jeong, Miller, 2023+)

(i) (subcritical) If p(N) ≪ N− h−1
h , then

|L(A)| ∼
(
N · p(N)

)h
θL

.

(ii) (critical) If p(N) = cN− h−1
h for fixed c > 0, then there exists a rational function

R(x0, . . . , xh) and an increasing function gu1,...,uh such that

|L(A)| ∼ gu1,...,uh
(
R(c, . . . , xh)

)
· N.

(iii) (supercritical) If p(N) ≫ N− h−1
h , then

|L(A)c | ∼
2 · Γ

(
1

h−1

)
h−1
√

(h − 1)! · θL ·
∏h

i=1 |ui |

(h − 1) · p(N)
h

h−1

.

Upshot: Universal threshold for random additive combinatorial structures, pinpointing
when random sets achieve additive completeness and when multiplicities proliferate.

Settles a conjecture of Hegarty and Miller (Random Structures & Algorithms, 2009).
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Main Result 2: Local Phase Transition

Key Tool: Stein’s method based on dependency graphs to estimate zero probabilities
of the number of distinct ways that a value under L(A) is achieved.

Follow-Up Question: Say that L takes values in [−dLN, sLN]. Is there something
more interesting to be said about weak Poisson convergence?

Theorem (Jeong, Miller, 2023+)

Fix a candidate value k ∈ [−dLN, sLN] of L(A). Let Wk denote the number of distinct
ways to represent k in L(A). Let µk = E[Wk ]. Let C > 0 be a constant.

(i) If p(N) ≪ N
− h−2

h−1 , then uniformly over k ∈ [−dLN, sLN],
dTV

(
L(Wk ),Pois(µk )

)
≪ 1.

(ii) If p(N) ≳ N
− h−2

h−1 , then uniformly over k ∈
[
(−dL + C)N, (sL − C)N

]
,

dTV
(
L(Wk ),Pois(µk )

)
= Ω(1).

Upshot: This threshold N
− h−2

h−1 here dominates the previous threshold N− h−1
h . Thus,

“de-Poissonization” does not explain the global phase transition of L(A).

Aside: In MSTD literature, number of representations of k captured by graphs on
vertices [N] and edges corresponding to representations. Can express the above
theorem as a threshold result on a certain random h-regular hypergraph.
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Main Ingredients in the Proof

1 Asymptotic enumeration: Derive asymptotic formulae for
the number of distinct representations for a candidate value
k ∈ [−dLN, sLN] in L(A).

With some work, this can be reduced to computing the
number of partitions of k into h parts, for which the
generating function is well-known to be the Gaussian binomial
coefficient

(k+h
h

)
q
.

Recent analytic result on partition enumeration from Stanley
and Zanello gives uniform asymptotics on the coefficients of(k+h

h

)
q
for fixed h (previous known results held for h ↗ ∞).

2 Stein’s method and Janson inequalities

3 Kim–Vu martingale machinery
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Main Ingredients in the Proof

1 Asymptotic enumeration

2 Stein’s method and Janson inequalities: The possible ways
in which a candidate sum −dLN + k may be generated in
L(A) correspond to a collection of rare and weakly dependent
events.

Critical window: Use the Stein-Chen method based on
dependency graphs to get sharp estimates for zero
probabilities for the number of representations in L(A).

Supercritical regime: Use Janson’s inequalities to get
vanishing bounds on zero probabilities for the number of
representations in L(A). Aggregate these approximations to
argue that most everything is hit.

3 Kim–Vu martingale machinery
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Main Ingredients in the Proof

1 Asymptotic enumeration

2 Stein’s method and Janson inequalities

3 Kim–Vu martingale machinery: The second moment
method fails to guarantee strong concentration bounds.
We instead use Kim–Vu martingales to promote moment

estimates to high-probability results.
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Future Work

1 Generalizations
Integer lattice: Can we extend this to the integer lattice Zd

on d dimensions, or to other lattices?
Other groups: What if we change the ambient group that we
work on?
Nonlinearity: What happens if L is a higher-degree
polynomial (e.g., L(x1, x2) = x21 + x2)? Our work settles the
degree-1 regime. Do phase transitions persist?
Additional dependency: What changes if we introduce
dependencies into the binomial model itself, rather than
modifying the context under which it operates?

2 Extending weak convergence results
Joint Poisson limit: Can one describe the joint distribution of
L(A) candidate values, not just marginals?
Point processes: Is there a local point process limit of some
sort?
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