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Random Matrix Ensembles

A =


a11 a12 a13 · · · a1N
a21 a22 a23 · · · a2N
...

...
... . . . ...

aN1 aN2 aN3 · · · aNN


aij are functions of independent identically distributed
random variables b1, ...,bkN .
Fix p, define

Prob(A) =
∏

1≤i≤kN

p(bi).

Example: Real symmetric ensemble. Pick entries of the
matrix, up to equivalence of aij = aji , independently from
p. We have kN = N(N+1)

2 degrees of freedom.
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Eigenvalue Trace Formula

We want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N × N matrix with eigenvalues λi(A). Then

Trace(Ak) =
N∑

n=1

λi(A)k ,

where

Trace(Ak) =
N∑

i1=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · · aik i1 .
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Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:∫
R f (x)δ(x − x0)dx = f (x0).

To each matrix A, attach a probability measure:

µA,N(x) :=
1
N

N∑
i=1

δ

(
x − λi(A)√

N

)
∫

R
xnµAN (x)dx =

N∑
i=1

(
λi(A)√

N

)n

Mn(A,N) := nth moment =
1

N
n
2 +1

N∑
i=1

λi(A)n =
Trace(An)

N
n
2 +1

.
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Averaging

Look at the expected value for the moments:

Mn(N) := E(Mn(A,N))

=
1

N
n
2 +1

E(Trace(An))

=
1

N
n
2 +1

∑
1≤i1,...,in≤N

E(ai1i2ai2i3 · · · ain i1).

If moments converge as N →∞, they define a
probability density called the limiting spectral density.

For nice ensembles, typical large matrices approach
this density.
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Linked Ensembles

Some of the entries of our matrices are always the
same.

Equivalence classes of entries are chosen i.i.d.r.v.
from p with mean 0, variance 1, and finite higher
moments.

{1,2, ...,N}2 � {1,2, ...,N}2/ '
R{1,2,...,N}2/' ↪→ RN2
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Matchings for a Linked Ensemble

We rewrite our formula for the moments as

Mn(N) =
1

N
n
2 +1

∑
∼

η(∼)md1(∼) · · ·mdl (∼),

where the sum is over equivalence relations on
{(1,2), (2,3), ..., (n,1)}.

dj(∼): sizes of equivalence classes.

md : moments of p.

η(∼): number of {(i1, i2), (i2, i3), ..., (in, i1)} on which '
induces ∼.
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Matchings for a Linked Ensemble

Equivalence relations on {(1,2), (2,3), ..., (n,1)} are
equivalence relations on the sides of an n-gon.
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Matchings for a Linked Ensemble

Mn(N) =
1

N
n
2 +1

∑
∼

η(∼)md1(∼) · · ·mdl (∼).

Relations with singletons vanish because the mean
m1 = 0.

For ensembles that are nice enough, higher order
pairings are lower order terms.

If ensemble is real symmetric, non-crossing pairings
(Catalan words) always contribute at least 1.
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Non-Crossing Pairings
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Non-Crossing Pairings

The number of non-crossing pairings is equal to the
Catalan number Cn/2.
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Non-Crossing Pairings

The Catalan numbers are the moments of the semi-circle
density. This is the limiting spectral density for the full
ensemble of real symmetric matrices.
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Figure: Plot for the density of the Wigner semi-circle distribution.
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Our ensemble:
Period m–Circulant Matrices
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Toeplitz Matrices

Toeplitz matrices are constant along diagonals.


c0 c1 c2 c3 c4 c5
c−1 c0 c1 c2 c3 c4
c−2 c−1 c0 c1 c2 c3
c−3 c−2 c−1 c0 c1 c2
c−4 c−3 c−2 c−1 c0 c1
c−5 c−4 c−3 c−2 c−1 c0

 .
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If we think of the indices of our basis elements
modulo N, diagonals wrap around.

Circulant matrices are constant along these “toroidal
diagonals.” More “fair.”


c0 c1 c2 c3 c4 c5
c5 c0 c1 c2 c3 c4
c4 c5 c0 c1 c2 c3
c3 c4 c5 c0 c1 c2
c2 c3 c4 c5 c0 c1
c1 c2 c3 c4 c5 c0

 .
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The Ensemble of Real Symmetric Circulant Matrices

Linked ensemble. Pick the first half of the first row
i.i.d.r.v., and the rest of the matrix is determined.

The limiting eigenvalue density is Gaussian.


c0 c1 c2 c3 c2 c1
c1 c0 c1 c2 c3 c2
c2 c1 c0 c1 c2 c3
c3 c2 c1 c0 c1 c2
c2 c3 c2 c1 c0 c1
c1 c2 c3 c2 c1 c0

 .
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The Ensemble of Real Symmetric Period m–Circulant Matrices

Rather than constant, we impose the weaker
condition that diagonals are periodic of period m.

For our purposes, they provide an opportunity to see
a transition between the ensemble of real symmetric
circulant matrices and that of all real symmetric
matrices. 

c0 c1 c2 c3 c2 d1
c1 d0 d1 d2 c3 d2
c2 d1 c0 c1 c2 c3
c3 d2 c1 d0 d1 d2
c2 c3 c2 d1 c0 c1
d1 d2 c3 d2 c1 d0

 .
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Matchings

Recall our formula for the moments of a linked ensemble.

Mn(N) =
1

N
n
2 +1

∑
∼

η(∼)md1(∼) · · ·mdl (∼).

where the sum is over equivalence relations on
{(1,2), (2,3), ..., (n,1)}.

For the ensemble of symmetric period m–circulant
matrices, the coefficient η(∼) is the number of solutions to
the system of Diophantine equations:
Whenever (s, s + 1) ∼ (t , t + 1),

is+1 − is ≡ it+1 − it (mod N) and is ≡ it (mod m), or
is+1 − is ≡ −(it+1 − it) (mod N) and is ≡ it+1 (mod m).
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Whenever (s, s + 1) ∼ (t , t + 1),
is+1 − is ≡ it+1 − it (mod N) and is ≡ it (mod m), or
is+1 − is ≡ −(it+1 − it) (mod N) and is ≡ it+1 (mod m).

Split up sum further, based on if the first or second set of
equations holds for each pair of equivalent edges.

When the first holds, edges are matched with the same
orientation, and when the second holds, edges are
matched with opposite orientation.
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Contributing Terms

As N →∞, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.

Therefore, the odd moments go to zero as N−1/2.
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Algebraic Topology

If we think of these pairings as topological identifications,
the contributing ones are precisely those that give rise to
orientable surfaces.

It turns out that the contribution from such a pairing is
m−2g, where g is the genus (number of holes) of the
surface. The proof is a combinatorial argument involving
Euler characteristic.
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Computing the Even Moments

Our formula for the even moments becomes

M2k(N) =

bk/2c∑
g=0

εg(k)m−2g + Ok

(
1
N

)
,

with εg(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

But J. Harer and D. Zagier (1986) gave generating
functions for the εg(k)...
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Harer and Zagier say:

bk/2c∑
g=0

εg(k)mk+1−2g = (2k − 1)!! c(k ,m)

where

1 + 2
∞∑

k=0

c(k ,m)xk+1 =

(
1 + x
1− x

)m

.

Thus, we write

M2k = m−(k+1)(2k − 1)!! c(k ,m).
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We can then use a multiplicative convolution and
Cauchy’s residue formula to find the characteristic
function of the distribution (inverse Fourier transform of
the density).

φ(t) =
∞∑

k=0

M2k

2k !
(it)2k =

1
m

∞∑
k=0

c(k ,m)
1
k !

(
−t2

2m

)k

=
1

2πim

∮
|z|=2

1
2z−1

((
1 + z−1

1− z−1

)m

− 1

)
e−t2z/2m dz

z

=
1
m

e
−t2
2m

m∑
l=1

(
m
l

)
1

(l − 1)!

(
−t2

m

)l−1
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Results

Taking a Fourier transform and doing a bit of
manipulation, we obtain our explicit formulas.

Theorem
The limiting spectral density function fm(x) of the real
symmetric period m–circulant ensemble is given by the
formula

fm(x) =
e−

mx2
2

√
2πm

m∑
r=0

1
(2r)!

m−r∑
s=0

(
m

r + s + 1

)
(2r + 2s)!

(r + s)!s!

(
−1

2

)s

(mx2)r .
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Results (continued)

Theorem
As m→∞, the limiting spectral densities approach the
semicircle distribution.
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Results (continued)
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Figure: Plot for f1 and histogram of eigenvalues of 100 circulant
matrices of size 400× 400.
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Results (continued)
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Figure: Plot for f2 and histogram of eigenvalues of 100 period
2–circulant matrices of size 400× 400.
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Results (continued)
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Figure: Plot for f3 and histogram of eigenvalues of 100 period
3–circulant matrices of size 402× 402.
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Results (continued)
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Figure: Plot for f4 and histogram of eigenvalues of 100 period
4–circulant matrices of size 400× 400.
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Results (continued)

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

Figure: Plot for f8 and histogram of eigenvalues of 100 period
8–circulant matrices of size 400× 400.
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Results (continued)
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Figure: Plot for f20 and histogram of eigenvalues of 100 period
20–circulant matrices of size 400× 400.
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Results (continued)
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Figure: Plot for the density of the Wigner semi-circle distribution
(“m =∞”).
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