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Introduction
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Why study zeros of L-functions?

Infinitude of primes, primes in arithmetic progression.

Chebyshev’s bias: π3,4(x) ≥ π1,4(x) ‘most’ of the time.

Birch and Swinnerton-Dyer conjecture.

Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

Even better estimates for h(D) if a positive
percentage of zeros of ζ(s) are at most 1/2− ϵ of the
average spacing to the next zero.
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Distribution of zeros

ζ(s) ̸= 0 for Re(s) = 1: π(x), πa,q(x).

GRH: error terms.

GSH: Chebyshev’s bias.

Analytic rank, adjacent spacings: h(D).
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Goals

See similar behavior in different systems (random
matrix theory).

Discuss the tools and techniques needed to prove the
results.

Group Theory and Compound Families of
L-Functions.

Open Problems.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t1, t2, t3, . . . .

Question: What rules govern the spacings between the ti?

Examples:
Spacings b/w Energy Levels of Nuclei.
Spacings b/w Eigenvalues of Matrices.
Spacings b/w Primes.
Spacings b/w nkα mod 1.
Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
1 Determine correct scale for events.

2 Develop an explicit formula relating what we want to
study to something we understand.

3 Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Classical
Random Matrix Theory
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

Hψn = Enψn

H : matrix, entries depend on system
En : energy levels
ψn : energy eigenfunctions
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Origins of Random Matrix Theory

Statistical Mechanics: for each configuration,
calculate quantity (say pressure).
Average over all configurations – most configurations
close to system average.
Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric
A = AT , complex Hermitian A

T
= A).
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Classical Random Matrix Ensembles

A =


a11 a12 a13 · · · a1N
a12 a22 a23 · · · a2N
...

...
... . . . ...

a1N a2N a3N · · · aNN

 = AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij .

Want to understand eigenvalues of A.
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Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:∫
f (x)δ(x − x0)dx = f (x0).

To each A, attach a probability measure:

µA,N(x) =
1
N

N∑
i=1

δ

(
x − λi(A)

2
√

N

)
∫ b

a
µA,N(x)dx =

#
{
λi :

λi (A)
2
√

N
∈ [a,b]

}
N

kth moment =

∑N
i=1 λi(A)k

2kN
k
2+1

=
Trace(Ak)

2kN
k
2+1

.
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Wigner’s Semi-Circle Law

Not most general case, gives flavor.

Wigner’s Semi-Circle Law
N × N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N →∞

µA,N(x) −→

{
2
π

√
1− x2 if |x | ≤ 1

0 otherwise.
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N × N matrix with eigenvalues λi(A). Then

Trace(Ak) =
N∑

n=1

λi(A)k ,

where

Trace(Ak) =
N∑

i1=1

· · ·
N∑

ik=1

ai1i2ai2i3 · · · aiN i1 .
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SKETCH OF PROOF: Correct Scale

Trace(A2) =
N∑

i=1

λi(A)2.

By the Central Limit Theorem:

Trace(A2) =
N∑

i=1

N∑
j=1

aijaji =
N∑

i=1

N∑
j=1

a2
ij ∼ N2

N∑
i=1

λi(A)2 ∼ N2

Gives NAve(λi(A)2) ∼ N2 or Ave(λi(A)) ∼
√

N.
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SKETCH OF PROOF: Averaging Formula

Recall k -th moment of µA,N(x) is Trace(Ak)/2kNk/2+1.

Average k -th moment is∫
· · ·
∫

Trace(Ak)

2kNk/2+1

∏
i≤j

p(aij)daij .

Proof by method of moments: Two steps
Show average of k -th moments converge to moments
of semi-circle as N →∞;
Control variance (show it tends to zero as N →∞).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

1
22N2

∫ ∞

−∞
· · ·
∫ ∞

−∞

N∑
i=1

N∑
j=1

a2
ij · p(a11)da11 · · · p(aNN)daNN

Integration factors as∫ ∞

aij=−∞
a2

ij p(aij)daij ·
∏

(k,l )̸=(i,j)
k<l

∫ ∞

akl=−∞
p(akl)dakl = 1.

Higher moments involve more advanced combinatorics
(Catalan numbers).
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

1
2kNk/2+1

∫ ∞

−∞
· · ·
∫ ∞

−∞

N∑
i1=1

· · ·
N∑

ik=1

ai1i2 · · · aik i1 ·
∏
i≤j

p(aij)daij .

Main term aiℓiℓ+1 ’s matched in pairs, not all matchings
contribute equally (if did have Gaussian, see in Real
Symmetric Palindromic Toeplitz matrices; interesting
results for circulant ensembles (joint with Gene Kopp,
Murat Kologlu).
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Numerical examples

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

0.025
Distribution of eigenvalues−−Gaussian, N=400, 500 matrices

500 Matrices: Gaussian 400× 400
p(x) = 1√

2π
e−x2/2

22



Introduction Classical RMT Intro to L-Functions Compound Families Future Work

Numerical examples

−300 −200 −100 0 100 200 300
0

500

1000

1500

2000

2500

 
The eigenvalues of the Cauchy
distribution are NOT semicirular. 

Cauchy Distribution: p(x) = 1
π(1+x2)
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Introduction
to L-Functions
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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Zeros of ζ(s) vs GUE

70 million spacings b/w adjacent zeros of ζ(s), starting at
the 1020th zero (from Odlyzko).

27



Introduction Classical RMT Intro to L-Functions Compound Families Future Work

Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑
p

log
(
1− p−s)

=
∑

p

log p · p−s

1− p−s =
∑

p

log p
ps + Good(s).

Contour Integration:∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p
∫
ϕ(s)p−sds.

Knowledge of Zeros⇔ Knowledge of Coefficients.28
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑
p

log
(
1− p−s)

=
∑

p

log p · p−s

1− p−s =
∑

p

log p
ps + Good(s).

Contour Integration (see Fourier Transform arising):∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p
∫
ϕ(s)e−σ log pe−it log pds.

Knowledge of Zeros⇔ Knowledge of Coefficients.
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, χ) =

∑
n χ(n)/n

s a Dirichlet L-function from a
non-trivial character χ with conductor m and zeros
ρ = 1

2 + iγχ; if the Generalized Riemann Hypothesis is
true then γ ∈ R. Then∑

ρ

h
(
γρ

log(m/π)
2π

)
=

∫ ∞

−∞
h(y)dy

−2
∑

p

log p
log(m/π)

ĥ
(

log p
log(m/π)

)
χ(p)
p1/2

−2
∑

p

log p
log(m/π)

ĥ
(

2
log p

log(m/π)

)
χ2(p)

p
+ O

( 1
logm

)
.
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k , prime level N and possibly split
by sign) L(s, f ) =

∑
n λf (n)/ns. Then

1
|F|

∑
f∈F

∑
γf

ϕ

(
logR
2π

γf

)
= ϕ̂(0) +

1
2
ϕ(0)− 1

|F|
∑
f∈F

P(f ;ϕ)

+ O
(
log logR
logR

)
P(f ;ϕ) =

∑
p∤N

λf (p)ϕ̂
(
log p
logR

)
2 log p
√

p logR
.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

n-level correlation

lim
N→∞

#

{
(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji ̸= jk

}
N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.
1 Normalized spacings of ζ(s) starting at 1020

(Odlyzko).
2 2 and 3-correlations of ζ(s) (Montgomery, Hejhal).
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak).
4 n-level correlations for the classical compact groups

(Katz-Sarnak).
5 Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

ϕ(x) :=
∏

i ϕi(xi), ϕi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (ϕ) =
∑

j1,...,jn
distinct

ϕ1

(
Lfγ

(j1)
f

)
· · ·ϕn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use logC =
|FN |−1∑

f∈FN
logCf ). Hope: ϕ a good even test function

with compact support, as |F| → ∞,

1
|FN |

∑
f∈FN

Dn,f (ϕ) =
1
|FN |

∑
f∈FN

∑
j1,...,jn
ji ̸=±jk

∏
i

ϕi

(
logCf

2π
γ
(ji )
E

)

→
∫
· · ·
∫
ϕ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture
As Cf →∞ the behavior of zeros near 1/2 agrees with
N →∞ limit of eigenvalues of a classical compact group.

38



Introduction Classical RMT Intro to L-Functions Compound Families Future Work

1-Level Densities

The Fourier Transforms for the 1-level densities are

̂W1,SO(even)(u) = δ0(u) +
1
2
η(u)

Ŵ1,SO(u) = δ0(u) +
1
2

̂W1,SO(odd)(u) = δ0(u)−
1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1
2
η(u)

Ŵ1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function −→ Neutron

Support of test function ←→ Neutron Energy.
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Compound Families
Dueñez-Miller
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Identifying the Symmetry Groups

Often an analysis of the monodromy group in the
function field case suggests the answer.
All simple families studied to date are built from GL1
or GL2 L-functions.
Tools: Explicit Formula, Orthogonality of Characters /
Petersson Formula.
How to identify symmetry group in general? One
possibility is by the signs of the functional equation:
Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)
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Explicit Formula

π: cuspidal automorphic representation on GLn.
Qπ > 0: analytic conductor of L(s, π) =

∑
λπ(n)/ns.

By GRH the non-trivial zeros are 1
2 + iγπ,j .

Satake parameters {απ,i(p)}n
i=1;

λπ(pν) =
∑n

i=1 απ,i(p)ν .

L(s, π) =
∑

n
λπ(n)

ns =
∏

p

∏n
i=1 (1− απ,i(p)p−s)−1.

∑
j

g
(
γπ,j

logQπ

2π

)
= ĝ(0)− 2

∑
p,ν

ĝ
(
ν log p
logQπ

)
λπ(pν) log p
pν/2 logQπ
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: cL = 0 (resp, 1 or -1) if family L has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for
π1,p × π2,p are

{απ1×π2(k)}
nm
k=1 = {απ1(i) · απ2(j)} 1≤i≤n

1≤j≤m
.

Theorem (Dueñez-Miller)
If F and G are nice families of L-functions, then
cF×G = cF · cG.
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1-Level Density

Assuming conductors constant in family F , have to study

λf (pν) = αf ,1(p)ν + · · ·+ αf ,n(p)ν

S1(F) = −2
∑

p

ĝ
(

log p
logR

)
log p
√

p logR

[
1
|F|

∑
f∈F

λf (p)

]

S2(F) = −2
∑

p

ĝ
(

2
log p
logR

)
log p

p logR

[
1
|F|

∑
f∈F

λf (p2)

]

The corresponding classical compact group is determined
by

1
|F|

∑
f∈F

λf (p2) = cF =


0 Unitary
1 Symplectic
−1 Orthogonal.
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1-Level Density for Rankin-Selberg Convolution of Families

Families F and G.
Satake parameters {αf ,i(p)}n

i=1 and {βg,j(p)}m
j=1.

Family F × G, L(s, f × g) has parameters
{αf ,i(p)βg,j(p)}i=1...n,j=1...m.

af×g(pν) =
n∑

i=1

m∑
j=1

αf ,i(p)νβg,j(p)ν

=
n∑

i=1

αf ,i(p)ν
m∑

j=1

βg,j(p)ν

= λf (pν) · λg(pν).

Technical restriction: need f and g unrelated (i.e., g is not
the contragredient of f ) for our applications.
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1-Level Density for Rankin-Selberg Convolution of Families (cont)

To analyze Sν(F × G) we must study

1
|F × G|

∑
f×g∈F×G

λf (pν) · λg(pν) =

[
1
|F|

∑
f∈F

λf (pν)

]
·

 1
|G|
∑
g∈G

λg(pν)


ν = 1: If one of the families is rank zero, so is F × G;
S1(F × G) will not contribute.
ν = 2: cF×G = cF · cG .

Proves if each family is of rank 0, the symmetry type of the
convolution is the product of the symmetry types. □

Symplectic leaves alone, Orthogonal flips symmetry.

47



Introduction Classical RMT Intro to L-Functions Compound Families Future Work

Future Work
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RMT Ensembles and Convolution

Is there a procedure to combine two RMT ensembles
similar to convolution?

Ralph Morrison’s Williams Senior Thesis: Tried
Hadamard, Kronecker products, no luck.

Hadamard: A,B 7→ A
⊙

B, (A
⊙

B)ij = AijBij .
Kronecker: A,B 7→ A⊗ B,

A⊗ B =

 a11B · · · an1B
... . . . ...

a1nB · · · annB

 .
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Disco

Keller Blackwell, Neelima Borade, Arup Bose, Charles
Devlin Vi, Noah Luntzlara, Renyuan Ma, Steven J. Miller,
Soumendu Sundar Mukherjee, Mengxi Wang, Wanqiao
Xu.

Consider the “disco” concatenation:

D1 (A,B) =

[
A B
B A

]
.
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Disco

d-Disco of A and B = {Bk}, denoted Dd(A,B), is the
2dN × 2dN matrix

A B1
B1 A B2

B2
A B1
B1 A

· · · Bd
... . . . ...

Bd · · ·

A B1
B1 A B2

B2
A B1
B1 A


.
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