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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t1, t2, t3, . . . .

Question: What rules govern the spacings between the ti?

Examples: Spacings between

⋄ Energy Levels of Nuclei.

⋄ Eigenvalues of Matrices.

⋄ Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:

⋄ Determine the correct scale for events.

⋄ Develop an explicit formula relating what want to study to what can study.

⋄ Use an averaging formula to analyze the quantities above.

It is not always trivial to figure out what is the correct statistic to study!
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Riemann Zeta Function

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s
2

)
π− s

2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1

2
; can write zeros as

1

2
+ iγ.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian

matrices A
T
= A.
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General L-functions

L(s, f) =

∞∑
n=1

af (n)

ns
=

∏
p prime

Lp (s, f)
−1
, Re(s) > 1.

Functional Equation:

Λ(s, f) = Λ∞(s, f)L(s, f) = Λ(1− s, f).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1

2
; can write zeros as

1

2
+ iγ.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian

matrices A
T
= A.
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Distribution of zeros

⋄ ζ(s) ̸= 0 for ℜ(s) = 1: π(x), πa,q(x).

⋄ GRH: error terms.

⋄ GSH: Chebyshev’s bias.

⋄ Analytic rank, adjacent spacings: h(D).
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Explicit Formula (Contour Integration)

−ζ
′(s)

ζ(s)
= − d

ds
log ζ(s) = − d

ds
log
∏
p

(
1− p−s

)−1

=
d

ds

∑
p

log
(
1− p−s

)
=

∑
p

log p · p−s

1− p−s
=
∑
p

log p

ps
+ Good(s).
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log
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1− p−s
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=

∑
p

log p · p−s

1− p−s
=
∑
p

log p

ps
+ Good(s).

Contour Integration: ∫
− ζ ′(s)

ζ(s)

xs

s
ds vs

∑
p

log p

∫ (
x

p

)s
ds

s
.
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+ Good(s).

Contour Integration: ∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p

∫
ϕ(s)p−sds.
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Explicit Formula (Contour Integration)

−ζ
′(s)

ζ(s)
= − d

ds
log ζ(s) = − d

ds
log
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p

(
1− p−s

)−1

=
d

ds

∑
p

log
(
1− p−s

)
=

∑
p

log p · p−s

1− p−s
=
∑
p

log p

ps
+ Good(s).

Contour Integration (see Fourier Transform arising):∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p

∫
ϕ(s)e−σ log pe−it log pds.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal newforms (say weight k, prime level N and
possibly split by sign) L(s, f) =

∑
n λf (n)/n

s. Then

1

|F|
∑
f∈F

∑
γf

ϕ

(
logR

2π
γf

)
= ϕ̂(0) +

1

2
ϕ(0)− 1

|F|
∑
f∈F

P (f ;ϕ)

+ O

(
log logR

logR

)
P (f ;ϕ) =

∑
p∤N

λf (p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

n-level correlation

lim
N→∞

#

{
(
αj1 − αj2 , . . . , αjn−1

− αjn

)
∈ B, ji ̸= jk

}
N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

⋄ Normalized spacings of ζ(s) starting at 1020 (Odlyzko).

⋄ 2 and 3-correlations of ζ(s) (Montgomery, Hejhal).

⋄ n-level correlations for all automorphic cupsidal L-functions (Rudnick-Sarnak).

⋄ n-level correlations for the classical compact groups (Katz-Sarnak).

⋄ Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

ϕ(x) :=
∏

i ϕi(xi), ϕi even Schwartz functions whose Fourier Transforms are compactly
supported.

n-level density

Dn,f (ϕ) =
∑

j1,...,jn
ji ̸=±jk

ϕ1

(
Lfγ

(j1)
f

)
· · ·ϕn

(
Lfγ

(jn)
f

)

⋄ Individual zeros contribute in limit.

⋄ Most of contribution is from low zeros.

⋄ Average over similar curves (family).
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use logC = |FN |−1
∑

f∈FN
logCf ). Hope: ϕ a good

even test function with compact support, as |F| → ∞,

1

|FN |
∑

f∈FN

Dn,f (ϕ) =
1

|FN |
∑

f∈FN

∑
j1,...,jn
ji ̸=±jk

∏
i

ϕi

(
logCf

2π
γ
(ji)
E

)

→
∫

· · ·
∫
ϕ(x)Wn,G(F)(x)dx.

Katz-Sarnak Conjecture

As Cf → ∞ the behavior of zeros near 1/2 agrees with N → ∞ limit of eigenvalues of a
classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are

̂W1,SO(even)(u) = δ0(u) +
1

2
η(u)

Ŵ1,SO(u) = δ0(u) +
1

2

̂W1,SO(odd)(u) = δ0(u)−
1

2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1

2
η(u)

Ŵ1,U (u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1.
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Density of low-lying zeros (Slight Notational Change)

Definition (1-level density)

Let Φ be a Schwartz function with supp(Φ̂) ⊂ (−σ, σ). Assume GRH and write
ρf = 1/2 + iγf for the non-trivial zeros of L(s, f) counted with multiplicity. Then

OD(f ; Φ) :=
∑
γf

Φ
(γf
2π

log cf

)
,

is the 1-level density, where cf is the analytic conductor of f .

� 1-level density captures density of the zeros within height O(1/ log cf ) of s = 1/2; since
gaps between zeros are approximately cf , this is counting (morally) a small number of
zeros.

� Cannot asymptotically evaluate OD(f ; Φ) for a single f , must perform averaging over the
family ordered by analytic conductor.
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Extending the Support

Taking the support of Φ̂ (purple) to be bounded yet arbitrarily large corresponds to taking
Φ (red) close to a Dirac delta function at s = 1/2.

Smaller support = less precise information Larger support = more precise information

As the support of Φ̂ gets larger, this approaches a delta spike, and thus (morally) allows us to
measure the zeros near s = 1/2. Hence, larger support allows finer measurement of zeros.
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n-level density

Definition

In the setting as before, define the n-level density as

Dn(f ; Φ) :=
∑

j1,...,jn
ji ̸=±jk

n∏
i=1

Φi

(
γf (ji)

2π
log cf

)
.

� Computing n-level density for n > 2 requires knowledge of distribution of signs of the
functional equation of each L(s, f), which is beyond current theory.

� Hughes-Rudnick (2003): introduced n-th centered moments.

◦ Similar combiniatorially, but often easier to analyze
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Modular Forms

Definition (Modular form of trivial nebentypus)

We write f ∈Mk(q) and say f is a modular form of level q, even weight k, and trivial
nebentypus if f : H → C is holomorphic and

1. for each τ ∈ Γ0(q) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
we have

f(τz) := f

(
az + b

cz + d

)
= (cz + d)kf(z).

2. for τ ∈ SL2(Z), as ℑ(z) → +∞ we have (cz + d)−kf(τz) ≪ 1.

With τ = ( 1 1
0 1 ) , f(z) = f(z + 1) so f is 1-periodic and thus has a Fourier expansion at ∞:

f(z) =

∞∑
n=0

af (n)q
n, q = e2πiz.
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Holomorphic Cuspforms

Definition (Cuspform)

If f ∈Mk(q) vanishes at all cusps of Γ0(q) we say f is a cuspform and denote by
Sk(q) ⊂Mk(q) the space of holomorphic cuspforms.

� By Atkin-Lehner Theory, we have the orthogonal decomposition

Sk(q) = Sold
k (q)⊕Snew

k (q).

� A cuspform f ∈ Sk(q) is an eigenfunction of the Hecke operators Tn for (n, q) = 1 and
Tnf = λf (n)f .
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The Space of Cuspidal Newforms

Definition (Newform)

If f is an eigenform of all the Hecke operators and the Atkin-Lehner involutions |kW (q) and
|kW (Qp) for all the primes p | q, then we say that f is a newform and if, in addition, f is
normalized so that ψf (1) = 1 we say that f is primitive.

� The space Snew
k (q) of newforms has an orthogonal basis Hk(q) of primitive newforms.

� Trivial nebentypus =⇒ Tn’s are self-adjoint =⇒ λf (n) ∈ R for all n.
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L-functions Attached to Cuspidal Newforms

Fix f ∈ Snew
k (q). Then for ℜ(s) > 1, we define

L(s, f) =

∞∑
n=1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
χ0(p)

p2s

)−1

=
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1

,

where χ0 is the principal character mod q. Note, L(s, f) can be analytically continued to an
entire function on C. Moreover, L(s, f) = L(s, f).
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Katz-Sarnak Density Conjecture for Orthogonal Symmetry

The symmetry type of the family of automorphic L-functions attached to holomorphic cuspidal
newforms is orthogonal. Thus, the Katz-Sarnak density conjecture predicts that for test
functions Φ whose Fourier transform has arbitrary compact support,

1

|Hk(Q)|
∑

f∈Hk(Q)

OD(f ; Φ) −→
∫ ∞

−∞
Φ(x)W (O)(x) dx as Q→ ∞,

where O is the scaling limit of the group of square orthogonal matrices. It has density

W (O)(x) = 1 +
1

2
δ0(x),

where δ0(x) denotes the Dirac delta function at x = 0.
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Extending the Support

Theorem (Iwaniec-Luo-Sarnak ’00)

Assume GRH. Then for Φ any even Schwartz function with supp(Φ̂) ⊂ (−2, 2), we have that

lim
q→∞
□−free

1

|Hk(q)|
∑

f∈Hk(q)

OD(f ; Φ) =

∫ ∞

−∞
Φ(x)W (O)(x) dx,

where O denotes the orthogonal type, showing agreement with the Katz-Sarnak philosophy
predictions.
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Recent Breakthrough

Theorem (Baluyot-Chandee-Li ’23)

Assume GRH. Let Φ be an even Schwartz function such that supp(Φ̂) ⊂ (−4, 4), and let Ψ be

any smooth function compactly supported on R+ with Ψ̂(0) ̸= 0. Then we have that

⟨OD(f ; Φ)⟩∗ := lim
Q→∞

1

N(Q)

∑
q

Ψ

(
q

Q

) ∑
f∈Hk(q)

h OD(f ; Φ) =

∫ ∞

−∞
Φ(x)W (O)(x)dx,

where N(Q) is a normalizing factor, showing agreement with the Katz-Sarnak philosophy
predictions.

This doubling of support uses averaging over the level (q) to double the support, but many of
the necessary manipulations rely on this being the 1-level density.
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The n-th Centered Moments of the 1-level Density

We study the n-th centered moments of the 1-level density averaged over levels q ≍ Q.

Definition (n-th centered moments of the 1-level density)

In the setting as above, define the n-th centered moment of the 1-level density to be〈 n∏
i=1

[OD(f ; Φi)− ⟨OD(f ; Φi)⟩∗]
〉

∗
,

where ⟨f⟩∗ means averaging f over q as described previously.

Remark

Previous work occassionally split forms based on their sign, ϵ(f) ∈ {1,−1}; we do not.
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Main Results

Theorem (Cheek-Gilman-Jaber-Miller-Tomé ’24)

Assume GRH. For Ψ non-negative and Φi even Schwartz functions with supp(Φ̂) ⊂ (−σ, σ)
and σ ≤ min

{
3

2(n−1) ,
4

2n−12∤n

}
we have that〈 n∏

i=1

(OD(f ; Φi)− ⟨OD(f ; Φi)⟩∗)
〉

∗
=

12|n

(n/2)!

∑
τ∈Sn

n/2∏
i=1

∫ ∞

−∞
|u|Φ̂τ(2i−1)(u)Φ̂τ(2i)(u) du.

As such, our work is a generalization of the BCL ’23 n = 1, σ = 4 result.

Remark

Notably, for n = 3, we achieve σ = σi = 3/4, greater than previous best σ = σi = 2/3.

Pico Gilman, Steven J. Miller International Conference on Number Theory and Related Topics (ICNTRT)

On the density of low-lying zeros of a large family of automorphic L-functions 27 / 38



Introduction Automorphic L-functions Prior Work Main Results Proof Sketch

Main Results
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4
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Main results (n = 2)

Corollary (Cheek-Gilman-Jaber-Miller-Tomé ’24)

Let σ1 = 3/2 and σ2 = 5/6. Then the two-level density〈∑∑
j1 ̸=±j2

Φ1

(
γf (j1)

)
Φ2

(
γf (j2)

)〉
∗

= 2

∫ ∞

−∞
|u|Φ̂1(u)Φ̂2(u) du+

2∏
i=1

(
1

2
Φi(0) + Φ̂i(0)

)
− Φ1Φ2(0)− 2Φ̂1Φ2(0) +ODD Φ1Φ2(0),

where ODD := ⟨(1− ϵf )/2⟩∗ denotes the proportion of forms with odd functional equation.
This agrees with the predictions from random matrix theory.
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Main results (n = 2)

This is the first evidence of an interesting new phenomenon: only by taking different test
functions are we able to extend the range in which the Katz-Sarnak density predictions hold. In
particular, σ1 + σ2 = 7/3 > 2, where σ1 + σ2 = 2 was the previously best known.

Remark

More generally, one can use σ1 ≥ σ2 such that σ1 ≤ 3/2 and σ1 + 3σ2 ≤ 4. The above choice
maximizes σ1 + σ2.
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Duality Between Primes and Zeros of L-functions

Using an explicit formula relating sums over zeros to sums of prime power coefficients of
L(s, f), we deduce that∑

γf

Φ
(γf
2π

log q
)

= Φ̂(0) +
1

2
Φ(0)− 2

log q

∑
p∤q

λf (p) log p√
p

Φ̂

(
log p

log q

)
+O

(
log log q

log q

)
.

We use a combinatorial argument together with GRH for L(s, sym2f) to reduce our task to
bounding sums over distinct primes:

∑
p1,...,pn∤q
pi ̸=pj

n∏
i=1

λf (pi) log pi√
pi

Φ̂i

(
log pi
log q

)
.
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Averaging Over the Extended Orthogonal Family

We average over f ∈ Hk(q) with q ≍ Q and study

1

N(Q)

∑
q

Ψ

(
q

Q

)
1

(log q)n

∑
f∈Hk(q)

h
∑

p1,...,pn∤q
pi ̸=pj

n∏
i=1

λf (pi) log pi√
pi

Φ̂i

(
log pi
log q

)

=
1

N(Q)

∑
q

Ψ

(
q

Q

)
1

(log q)n

∑
p1,...,pn∤q
pi ̸=pj

n∏
i=1

log pi√
pi

Φ̂i

(
log pi
log q

) ∑
f∈Hk(q)

hλf (1)λf

(
n∏

i=1

pi

)
.
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Trace formulae

� Ng’s work allows us to convert sums over Hk(q) to a linear combination of sums over an
orthogonal basis Bk(d) for the space Sk(d), d | q: Morally, if (m,n, q) = 1 and for A a
specific arithmetic function, then∑

f∈Hk(q)

hλf (m)λf (n) =
∑

q=L1L2d
L1|q1
L2|q2

q2 □−free

A(L1, L2, d)
∑
e|L∞

2

1

e

∑
f∈Bk(d)

hλf (e
2m)λf (n).

� Petersson trace formula, a quasi-orthogonality relation for GL2∑
f∈Bk(d)

hλf (m)λf (n) = δ(m,n) +
∑
c≥1

S(m,n; cq)

cq
Jk−1

(
4π

√
mn

cq

)
.
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The Kuznetsov Trace Formula

Let x :=
∏
pi. We are essentially left to analyze

∑
c≥1

∑
p1,...,pn∤q
pi ̸=pj

n∏
i=1

log pi√
pi
V

(
pi
Pi

)
e

(
vi
pi
Pi

)∑
s

S(e2, x; cL1rds)

cL1rds
h

(
4π

√
e2x

cL1rds

)

where V is smooth and compactly supported and h is essentially a smooth truncation of Jk−1.
We use the Kuznetsov trace formula to convert an average over f ∈ Bk(d) into spectral terms:

Holomorphic cuspforms + Maass cuspforms + Eisenstein series.
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Origin of restirction on σ

To preform the above manipulations, we technically need to sum over primes p1, . . . , pn
without restriction (i.e. not dividing q). For n = 1, this is only adding back when p1 | q, which
is O(logQ), but when n > 1, we need to add back p1 | q, p2, . . . , pn ∤ q, so this is adding back
more than Qn−1−ϵ many terms. This results in the σ ≤ 3

2(n−1) restriction.

To analyze the terms from Holomorphic and Maass cuspforms, similar techniques require
σ ≤ 4

n (the expected bound; the sum of supports is 4). On the other hand, a contour shift for
the Eisenstein series term no longer in general achieves any cancellation with n even and only
minimal cancellation with n odd. Thus, we need σ ≤ 4

2n−12∤n
.
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