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Why study zeros of L-functions?

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > 71 .4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

e Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.




Distribution of zeros

@ ((s) # 0 for Re(s) = 1: 7(x), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).




@ Determine correct scale and statistics to study zeros
of L-functions.

@ See similar behavior in different systems (random
matrix theory).

@ Discuss the tools and techniques needed.

e Explain the repulsion of zeros / lower order terms
near the central point.

e Bound order of vanishing at the central point.
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Sketch of proofs

In studying many statistics, often three key steps:
@ Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Introduction
to L-Functions
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Riemann Zeta Function

n=1 p prime

Functional Equation:
&(s) = r(3)mic(s) = €1 - ).
Riemann Hypothesis (RH):
All non-trivial zeros have Re(s) = %; can write zeros as %—H'v.

Observation: Spacings b/w zeros appear same as b/w

_ eigenvalues of Complex Hermitian matrices A — A
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General L-functions

L(s,f) = f:afrff) — I Lo(s.f)™", Re(s)>1.
n=1 p prime

Functional Equation:
A(s, f) = No(s,f)L(s,f) = N1 —s,f).

Generalized Riemann Hypothesis (RH):

- 1 : 1.
All non-trivial zeros have Re(s) = 5 can write zeros as >t

Observation: Spacings b/w zeros appear same as b/w
: . =T
eigenvalues of Complex Hermitian matrices A = A.
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Zeros of ((s) vs GUE

0.0

0.0 0.5 10 15 2.0 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 102°" zero (from Odlyzko).
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Explicit Formula (Contour Integration)

= —dilogg = ——IogH 1— -

d _
— £;|og(1 - p~°)

_ logp - p~° log p
— %:—1_'05 = zp: e + Good(s).

Contour Integration:

_¢(s) o s
) $(s)ds vs ;I gp/¢(s)p ds.
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Explicit Formula (Contour Integration)

- logp - p~° log p
- ;—1_'05 = zp: e + Good(s).

Contour Integration (see Fourier Transform arising):

C s)ds Vs Zlogp/qﬁ e~ loePgitloer g

Knowledge of zeros glves info on coefficients.
1
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Explicit Formula: Examples

Riemann Zeta Function: Let 3 denote the sum over the
zeros of ((s) in the critical strip, g an even Schwartz

function of compact support and ¢(r f g(u)e™du.
Then
i > 2logp
Z o(7,) = 2¢ <§) - Z ; Wg (klogp)
P p k=
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, x) = >_,x(n)/n® a Dirichlet L-function from a
non-trivial character y with conductor m and zeros

p= % + Iivy; if the Generalized Riemann Hypothesis is

true then v € R. Then

Zh( log m/w)) _ /_Zh(y)dy

logp [ logp "\ x(p)
22 iogmm) (igtm) o

> st 1" (Ziagmr) -+ Oliogm)
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Explicit Formula: Examples

Cuspidal Newforms: Let .# be a family of cupsidal
newforms (say weight k, prime level N and possibly split
by sign) L(s,f) =>_,A«(n)/n°. Then

1 log R - 1 1 _
@fzzcb(% W) = )+ o0) B
log log R
+O< log R )

_ B ~(logp\ Z2logp
P(t.0) = %ijf(pw(logﬁ,) et
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B c R".

n-level correlation

# (ozh = @y ooy @y q = Oéjn) € B,j,' 7§ jk

[im
N—oco N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{a;} increasing sequence, box B c R".

© Normalized spacings of ¢(s) starting at 102°
(Odlyzko).

@ 2 and 3-correlations of ((s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

©Q n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compacitly supported.

n-level density

distinct
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compacitly supported.

n-level density

distinct

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).
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Measures of Spacings: n-Level Density and Families

o(x) =11, ¢i(x;), ¢i even Schwartz functions whose
Fourier Transforms are compacitly supported.

n-level density

distinct

@ Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cy) vs Global (easier, use log C =
v > _tez, log Cr). Hope: ¢ a good even test function
with compact support, as |.7| — oo,

1 1 log Cr
BN Z Dni(o) = % Z Z Hﬁb/( ogﬂ ng,))

feZn fEFPN Jtrin i

— /---/qzﬁ(j;)i;k/Vn,%(f)(X)dx

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are

— 1
W1 ,SO(even)(U) = 50(“) + EU(U)
— 1
VV1,50(U) = (50(U) + E
— 1
Wi so(eday(U) = do(U) — §TI(U) +1
1

Wisp(u) = do(u) — 5n(u)

Wi(u) = do(u)
where do(u) is the Dirac Delta functional and

1 if|u) <1
n(u) = {% if |u] =1
0 iflul>1
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Some Number Theory Results

@ Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer:
1-level density for holomorphic even weight k
cuspidal newforms of square-free level N (SO(even)
and SO(odd) if split by sign).

@ Symplectic: Rubinstein, Gao, Levinson-Miller, and
Entin, Roddity-Gershon and Rudnick: n-level
densities for twists L(s, yq) of the zeta-function.

@ Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of
Primitive Dirichlet Characters.

@ Orthogonal: Miller, Young: One and two-parameter
families of elliptic curves.
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Some Results lI: Rankin-Selberg Convolution of Families

Symmetry constant: ¢ = 0 (resp, 1 or -1) if family .Z has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for
T1,p X T2 p are

{omm(HE) = {om (1) - an ()} ysizn

Theorem (Duenez-Miller)

If .# and ¢ are nice families of L-functions, then
Czxy = Cz - Cg.
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1-Level Density

Assuming conductors constant in family .%, have to study

A(PY) = ari(P)” + -+ arn(P)”
log p log p 1
f -
5(#) = 22 (logFf’> VPlog R IfIZMp)]
log p log p B 2
7Y —
(7 = -2320(255) piogr |ﬁ|zw’)]

The corresponding classical compact group is determined
by

0 Unitary

’J\| Z)\f = Cy = 1 Symplectic
fes —1  Orthogonal.
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1-Level Density for Rankin-Selberg Convolution of Families

Families .# and ¢.
Satake parameters {ay;(p)}Ly and {Bg,(pP)};-
Family .7 x ¢, L(s,f x g) has parameters

{ari(p)Bg.j(P)}i=t..nj=1..m-

arxg(p”) = ZZO‘M " Baj(P

i=1 j=1
= ) _ani(p)”> Bei(p)
i=1 j=1

= ME) AP,

Technical restriction: need f and g unrelated (i.e., g is not
the contragredient of f) for our applications.
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1-Level Density for Rankin-Selberg Convolution of Families (cont)

To analyze S, (. x ¢¥) we must study

1 v vy 1 v
7 x| Z A(P”) - Ag(P”) = l%z)\f(p )]

fxgeF x4 feF gey

@ 3 Ag(m]

@ v = 1: If one of the families is rank zero, so is % x ¥¢;
S1(F x ¢) will not contribute.

@ v=2:Cgxy = CzCy.
Proves if each family is of rank 0, the symmetry type of the
convolution is the product of the symmetry types. O
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Average rank - p(0) < [ ¢(x)Wg#)(x)dx if ¢ non-negative.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.

Average rank - p(0) < [ ¢(x)Wg#)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
order r for any r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a ¢, such that probability of at least r
zeros at the central point is at most c,r=".

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r > 5.
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels
Schwartz test function ——  Neutron

Support of test function <+— Neutron Energy.

Similar to Central Limit Theorem: Main term from first and
second moment, higher moments rate of convergence /
lower order terms.
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Example:
Dirichlet L-functions
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Dirichlet Characters (m prime)

(Z/mZ)* is cyclic of order m — 1 with generator g. Let
(m_q1 = €2™/(m=1)_ The principal character y, is given by

The m — 2 primitive characters are determined (by
multiplicativity) by action on g.

As each x : (Z/mZ)* — C*, for each y there exists an /
such that x(g) = ¢, ;. Hence foreach /,1 </ < m—-2we

have
la k=9g%(m
X/(k) — { m—1 g( )
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Dirichlet L-Functions

Let x be a primitive character mod m. Let
m—1 ‘
c(m, X) — Z X(k)e&r/k/m'
k=0

c(m, x) is a Gauss sum of modulus /m.

L(s,x) = JJ(1 = x(p)p~5)™

o

A(s,x) = m2HIr (STJFE) mz9IL (s, x),

Y
CT O (=) =1
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Explicit Formula

Let ¢ be an even Schwartz function with compact support
(—o,0), let x be a non-trivial primitive Dirichlet character
of conductor m.

(%)

- Z st (o ) Lx(p) + ()l

> (2 egrens )U¥(P) + (PNl
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Expansion

{x0} U{xi}1<i<m-2 are all the characters mod m.
Consider the family of primitive characters mod a prime m
(m — 2 characters):

/ " o(y)ay

lo ~ lo _ 1
- — 2 > o iﬁw cb(log(iﬁﬂ))[x(l?) + ¥(p)p

X#Xo P

lo ~ lo 5 5 _1
- 2 2 ol ,fj/’w ¢(2log(§7’jw))[x (p) + (P)Ip

+ O<Iog1m)'

-~ Note can pass Character Sum through Test Function.
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Character Sums

x(k otherwise.
For any prime p # m

ZX(P): {:;I+m—1 pz1(m)

otherwise.
XFX0

Substitute into

lo 3 lo _ _
m—2 Z Z log( il/jﬂ (Iog(i?l/)ﬂ)ﬁX(p) +x(p)lp

X#Xo P

=




e
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First Sum: no contribution if 0 < 2

e
m_—22 Z Iogl?i‘lljﬂ)g(bgl?lgnl/)ﬂ»p_;
L oom-1 o~ logp A( log p >p_%
m-—2 ey log(m/7) " \log(m/x)
< ;—7m R i: p2<<—Zk‘*+ Zk—*
’ PSi(m B

1 1 17 A
— Nk 2+ —N k< —nrl2,
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Second Sum

logp  ~/, logp \x*(P)+ X*(P)
2);0; log(m/) ( Iog(m/ﬁ)) p '

> DE(p) + FP(P)] = {Z(m ~2) p=+i(m)

XFX0 —2 p §_,£ :|:1 (m)
Up to O(,ogm> we find that
me/2 o2
2m 2
P—ﬁ:1(m)
m0/2 me /2 /2

m— 22k1+2k‘+ Zk1

k=—1(m
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Summary

Agrees with Unitary for o < 2 for square-free m € [N, 2N]
(larger support related to distribution of primes congruent
to 1).

@ m square-free odd integer with r = r(m) factors;

r

Then family .7, of primitive characters mod m has

1
First Sum < —2'mz°
M.
1

Second Sum < —3'ms.
M,
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Cuspidal Newforms

Joint with Chris Hughes, several Williams College SMALL
REUs (ongoing); removing square-free with Owen Barrett,
Paula Burkhardt, Jon DeWitt and Robert Dorward)




Cuspidal Newforms
[ ]

Results from lwaniec-Luo-Sarnak

@ Orthogonal: lwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by
sign) in (—2,2).

@ Symplectic: lwaniec-Luo-Sarnak: 1-level density for
sym?(f), f holomorphic cuspidal newform.

Will review Orthogonal case and talk about extensions
(joint with Chris Hughes, SMALL REUSs).
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Modular Form Preliminaries

_ a b\ ad—-bc =1
Fo(N) = {( c d) " c=0(N) }
f is a weight k holomorphic cuspform of level N if

vy € To(N), f(72) = (cz+ d)f(2).

e Fourier Expansion: f(z) = .o, a;(n)e*™=,

Ls.f) = Yr, ann—s
@ Petersson Norm: = Jrovnn f 9(z)y*2dxdy.
e Normalized coeff|0|ents

Ye(n) = %ﬁaf(m
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Modular Form Preliminaries: Petersson Formula

Bi(N) an orthonormal basis for weight k level N. Define

Agn(m, n) = Z Vi(m)ve(n).

feB(N)

Petersson Formula
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Modular Form Preliminaries: Explicit Formula

Let .# be a family of cupsidal newforms (say weight k,
prime level N and possibly split by sign)
L(s,f)=>_,A(n)/n°. Then

S 0(E) = 60+ o) - 5 S P(e)

feZ ¢




Cuspidal Newforms
L ]

Modular Form Preliminaries:Fourier Coefficient Review

Af(n) = ai(n)n->
Mma(n) = % Af(?)
d|(m,n)
(d,M)=1

For a newform of level N, X\¢(N) is trivially related to the
sign of the form:

e = *u(N)A(N)VN.

The above will allow us to split into even and odd families:
1+ €f.

A
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:
R(n.q) = > elan/a) = Y ulq/d)d,
amod g dl(n,q)

where x restricts the summation to be over all a relatively
prime to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(V) C (—2,2). Then

R(m?, b)R(1,b) oo — byv/'N
1 5 (m?, b)R(1 )/y:oJk71(y)w<2log(y /47Tm)> dy

m<Ne m2 (b,N)=1 w(b) log R log R

1 o sin 27X 1
S / i) X g — Lw)| + 0
2 — oo 2wX 2

( k log log kN)
log kN ’

where R = kN and ¢ is Euler’s totient function. y

AR
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Limited Support (o < 1): Sketch of proof

e Estimate Kloosterman-Bessel terms trivially.
o Kloosterman sum: dd = 1 mod q, 7(q) is the
number of divisors of g,

g (ma
S(mnq) = ) e<q +q)

d mod g

S(m.maq) < (m.nq) \/m;n{i, 9 }T(q).

o Bessel function: integer k > 2,
Ji—1(X) < min (x, =1, x71/2).

e Use Fourier Coefficients to split by sign: N fixed:

£ Ar(N) * ().
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2-Level Density

/Ro / |Og X1 |Og Xo J 4 \/ m2X1 X2N dX1 ng
X Xo= |Og R |Og R =t " C v X1 X2
Change of variables and Jacobian:

u

U = XiXo Xo = m
u = X1 X1 = U
ox| _ 100 1
ou| —5—13 B
Left with
/ / |Og U4 |Og (%) 1 J A \/ m2u2N dU1 dU2
log R log R VU2 i c U
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2-Level Density

Changing variables, u;-integral is

7 ~ ~ (log U
/W_|ogu2_a¢(w1)¢ (IogR a W1) aw.

1= Tog R

Support conditions imply
logu\ [~ ~ (log U>
Ve <|0g5’) - /W1—_oo¢(w1)¢ ('ogR N W1) .
Substituting gives

00 2
/ s 47rx/m uN v, (Iog Ug) duy
U2:0 C |Og R \/u_2
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3-Level Density

AR rRT og xq | ~ |OgX2)A(
/)(1—2/)(2—2/)(3—2¢(|0g/:1)>¢(|OgR ¢

s« Jos (47‘(‘ \/ m2X1 X2X3N> adx; dxodxs

(o v X1 X2 X3

Change variables as below and get Jacobian:

U3 = Xi1XoX3 X3 = Z—z

U = XiXo Xo = Z—f

b = X4 X1 = U

5 1 0 O 1

X Up 1
‘_ N Ui U 0= —
ou 0 _u 1 Uy Up
w2 U

R B RS EEESSEEEEEEDBS——..
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n-Level Density: Determinant Expansions from RMT

o U(N), U(N): et (Kot )

1<jk<n
@ USp(N): det <K1(Xj>xk))1<j <n
@ SO(even): det <K1 (Xj,Xk)>1<j i

@ SO(odd): det (K_1(x;, Xk))1§j,k§n +
5201 3(%,) det (K 10, %))

where

1<) kAv<n

K(x,y) =

;
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

J 2log(bxv/N/4rm)\ dx
/ el log R log R

27Tm

with ®,(x) = ¢(x)".

Main Idea

Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of ¢1(x1) - - - on(Xn) We
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from ILS.
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Support for n-Level Density

Careful book-keeping gives o, < 1.

n-Level Density is trivial for o, < 1, non-trivial up to 1.

Expected 2. Obstruction from partial summation on
primes.

:
New terms emerge at ——.

eSS -
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Elliptic Curves: First Zero Above Central Point J

Eduardo Duenez, Duc Khim Huynh, Jon P. Keating and
Nina Snaith, extending with Owen Barrett.

;
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Theoretical results: y2 = x® + A(T)x + B(T)

Theorem: M-"04

For small support, one-param family of rank r over Q(T):

s |le DR (logCEr Eu/‘) = /@(X)pg(x)dx+r<p(o)

EicFn |

SO(odd) if half odd
where ¢ = < SO(even) if all even

weighted average otherwise.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
Independent Model:

SoNor = {(lmzr g) :g € SO(2N — 2r)} )
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Interesting Families

Let & : y? = x3 + A(T)x + B(T) be a one-parameter
family of elliptic curves of rank r over Q(T).
Natural sub-families:

@ Curves of rank r.
@ Curves of rank r + 2.

R
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Interesting Families

Let & : y? = x3 + A(T)x + B(T) be a one-parameter
family of elliptic curves of rank r over Q(T).
Natural sub-families:

@ Curves of rank r.
@ Curves of rank r + 2.

Question: Does the sub-family of rank r + 2 curves in a
rank r family behave like the sub-family of rank r + 2
curves in arank r + 2 family?

Equivalently, does it matter how one conditions on a curve
being rank r + 2?

L
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Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

@ Excess Rank: Rank r one-parameter family over
Q(T): observed percentages with rank > r + 2.

© First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.

;



;
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Excess Rank

One-parameter family, rank r over Q(T).
Density Conjecture (Generic Family) = 50% rank r, r+1.

For many families, observe

Percent with rankr =~ 32%
Percent with rank r+1 ~ 48%
Percent with rank r+2 ~ 18%
Percent with rank r+3 ~ 2%

Problem: small data sets, sub-families, convergence rate
log(conductor).
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Excess Rank

y2+y = x34 Tx

Each set is 2000 curves, last has conductors of size 107,
(small on logarithmic scale).

t-Start RkO Rk1 Rk2 Rk3 Time (hrs)

-1000 394 478 123 0.6 <1
1000 384 473 136 0.6 <1
4000 37.4 478 137 1.1 1
8000 37.3 488 129 1.0 2.5

24000 35.1 50.1 139 0.8 6.8

50000 36.7 483 138 1.2 51.8

A0
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RMT: Theoretical Results (N — o0)

1.5

0.5 1 1.5 2
1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results (N — o0)

© © o o
N B O o

0.5 1 1.5 2 2.5
1st normalized evalue above 1: SO(odd)
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Rank 2 Curves: 1st Norm. Zero above the Central Point

1.5 2 2.5 3 3.5
665 rank 2 curves from
VY2 + aiXy + asy = X3 + @x? + asx + as.
log(cond) € [10,10.3125], median = 2.29, mean = 2.30
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Rank 2 Curves: 1st Norm. Zero above the Central Point

1.5 2 2.5 3 3.5

665 rank 2 curves from
VY2 + aiXy + asy = X3 + @x? + asx + as.
log(cond) € [16,16.5], median = 1.81, mean = 1.82
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

© o o o
N A O O B N

1 1.5 2 2.5

209 rank 0 curves from 14 rank 0 families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

P

© o oo

0.5 1 1.5 2 2.5

996 rank 0 curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.
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Rank 2 Curves from y? = x3 — T2x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 15 2 25 3 3.5

35 curves, log(cond) € [7.8,16.1], n = 1.85, n = 1.92,
o, = .41
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Rank 2 Curves from y? = x3 — T2x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 15 2 25 3 3.5

34 curves, log(cond) € [16.2,23.3], u = 1.37, p = 1.47,
o, = .34
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Summary of Data

@ The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

@ As the conductors increased, the repulsion
decreased.

e Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i.e., shifted by the same amount).
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ All curves have log(cond) € [15,16];

@ z = imaginary part of /" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);
@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves || t-Statistic
Median 2z, — z 1.28 1.30
Mean 2z — z 1.30 1.34 -1.60
StDev 2z, — z 0.49 0.51
Median z; — 2 1.22 1.19
Mean 23— 2 1.24 1.22 0.80
StDev z3 — 2 0.52 0.47
Median z3 — z 2.54 2.56
Mean 2z; — z 2.55 2.56 -0.38
StDev z3 — z 0.52 0.52

T0)
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T)

@ All curves have log(cond) € [15, 16];

@ z = imaginary part of the /" norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);
@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves || t-Statistic
Median z; — z; 1.26 1.27
Mean 2z — z 1.36 1.29 0.59
StDev 2z — z 0.50 0.42
Median z3 — z» 1.22 1.08
Mean 2z — 2 1.29 1.14 1.35
StDev 2z — 2z 0.49 0.35
Median z; — z 2.66 2.46
Mean 2z — z 2.65 2.43 2.05
StDev z3 — z 0.44 0.42

2 TTTTSLSSSSSSSSSSSEEESEESSSSSSEEEEE
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(7)

@ All curves have log(cond) € [15,16];

@ z = imaginary part of the /" norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);
@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves | t-Statistic
Median 2z, — z 1.30 1.26
Mean 2z — z 1.34 1.36 0.69
StDev 2z, — z 0.51 0.50
Median z3 — 2 1.19 1.22
Mean 23— 2 1.22 1.29 1.39
StDev z3 — 2 0.47 0.49
Median z; — z 2.56 2.66
Mean 2z; — z 2.56 2.65 1.93
StDev z3 — z 0.52 0.44

/7 TS -
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New Model for Finite Conductors

@ Replace conductor N with Negrecive-
o Arithmetic info, predict with L-function Ratios Con;.
o Do the number theory computation.

@ Excised Orthogonal Ensembles.
o L(1/2, E) discretized.
o Char. polys Aa(6) = det(/ — e®A=") model L(1/2 + it, E).
o Study matrices in SO(2Ney) with [A4(0)| > ce.

@ Painlevé VI differential equation solver.
o Use explicit formulas for densities of Jacobi ensembles.

o Key input: Selberg-Aomoto integral for initial conditions.

Generalizing with Owen Barrett.

y
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Modeling lowest zero of Lg,, (s, x4) with 0 < d < 400,000

EEN AN

\
16k
14

12+ |

04t M
02 \
0.5 15

Lowest zero for Lg,, (S, xq) (bér chart), lowest eigenvalue
of SO(2N) with N, (solid), standard N, (dashed).
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Modeling lowest zero of Lg,, (s, x4) with 0 < d < 400,000

18 T T T
16|
14
12+

1k
08
06

04

uz«‘r
o e
0.5 1 15 2

Lowest zero for Lg,, (S, xq) (bar chart); lowest eigenvalue of SO(2N): N.s; = 2 (solid)
with discretisation, and N = 2.32 (dashed) without discretisation.

The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with E. Duefiez, D. K. Huynh, J.
Keating and N. Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp).
http://arxiv.org/pdf/1005.1298.

Models for zeros at the central point in families of elliptic curves (with E. Duefez, D. K. Huynh, J. Keating and N.

: Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp). http://arxiv.org/pdf/1107.4426.
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Bias Conjecture for Moments of Fourier Coefficients of
Elliptic Curve L-functions

Joint with Megumi Asada, Ryan Chen, Eva Fourakis,
Yujin Kim, Andrew Kwon, Jared Lichtman, Blake Mackall,
Eric Winsor, Karl Winsor, Roger Weng, Michelle Wu,
Jianing Yang and Kevin Yang

TR
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Families and Moments

A one-parameter family of elliptic curves is given by
&y = x>+ A(T)x +B(T)
where A(T), B(T) are polynomials in Z[T].

e Each specialization of T to an integer t gives an
elliptic curve &(t) over Q.

e The r'" moment of the Fourier coefficients is

Ars(p) = Z asw(p)"-

t modp

y
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let £/Q be an elliptic surface and L»(&, s) be the L-series attached
to Hgt(éo/(@, Qy)- Then Lx(&, s) has a meromorphic continuation to C
and satisfies

—ords_pLp(&,s) = rank NS(&/Q),

where NS(&/Q) is the Q-rational part of the Néron-Severi group of &
Further, L»(&, s) does not vanish on the line Re(s) = 2.

V.

Tate’s conjecture is known for rational surfaces: An elliptic surface
y? = x3 + A(T)x + B(T) is rational iff one of the following is true:

@ 0 < max{3degA,2degB} < 12;
@ 3degA = 2degB = 12 and ordr—o T'2A(T~') = 0.

v/ EEEEEEEOOSOSGSSSSSSS
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Negative Bias in the First Moment

Ai +(p) and Family Rank (Rosen-Silverman)
If Tate’s Conjecture holds for & then

.1 Ais(p)I
lim Y,KZXM = —rank(&/Q).

X—o0

p

@ By the Prime Number Theorem,
A1 £(p) = —rp+ O(1) implies rank(&/Q) = r.

y
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families & with j( T) non-constant, the second moment
iS

@ The lower order terms are of sizes p®/2, p, p'/?, and 1.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families & with j( T) non-constant, the second moment
iS

@ The lower order terms are of sizes p®/2, p, p'/?, and 1.
In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion
which does not average to 0 is on average negative.
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Preliminary Evidence and Patterns

Let n3 >, equal the number of cube roots of 2 modulo p,
and set c(p) = [(‘—3) O] . c1(5) = [Srmea» (5]
C3/2(P) = P Xy (U5 o)

Famlly A17g(p) Ag (@(p)
Y2P=x34+Sx+T 0 p° —
y2=x3+24(=8)%(9T + 1) 0 2 —2P i
y2=x®+4(4T +2)x 0 2" -2 ‘;_; mod ¢
y2 =x +(T+1)x + Tx 0 p 2p —
y2—x +x%+2T +1 0 p 2p — ( %)

y? = x + Tx%+1 -p P% — Ma2pp — 1+ C32(P)
yP=x>-T?x+T¢ —2p p? —p - ci(p) — co(p)
yP=x"-Tx+T* —2p p? —p - ci(p) — co(p)
y2P=x34+Tx® — (T+3)x+1 —2Cp 1.4P p? —4cp1.6p — 1

where Cp am = 1 if p = @ mod m and otherwise is 0.
[+ 1 I
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Lower order terms and average rank

The main term of the first and second moments of the a;(p) give
r¢(0) and —3¢(0).

Assume the second moment of a;(p)? is p?> — mgp + O(1), mg > 0.

We have already handled the contribution from p?, and —msp
contributes

logp~ /. logp\ 1 N
%2 IogR ( IogR> P2 p~mep)

. 2mg ~( logp\ logp
- IogRZp:¢(2logR) p?

Thus there is a contribution of size ﬁ
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Lower order terms and average rank

Let r; denote the number of zeros of E; at the central point (i.e., the analytic
rank). Then up to our O (M) errors (which we think should be smaller),

log R
we have
l%"ﬁb(o) < 9O (1Y o)y (98 2966 ) ms
N — ! - o 2 o o2logR /) log R
1 1 .986 2.966 Mme
Ave Rankivzm(6) - < e e 2 + (T ~ o2log Ff) log R’

o =1, me = 1: for conductors of size 10'2, the average rank is bounded by
14+r+ % +.03=r+ % + 1.03. This is significantly higher than Fermigier’s
observed r + 1 + .40.

o = 2: lower order correction contributes .02 for conductors of size 10'2, the
average rank bounded by % +r+ % +.02=r+ % +.52. Now in the ballpark
of Fermigier’s bound (already there without the potential correction term!).

QA
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Recent Results

@ Proved for many small rank families where can
compute closed form expressions (linear / quadratic
Legendre sums).

@ Recent work of M. Kazalicki and B. Naskrecki:
© Second moments and the bias conjecture for the
family of cubic pencils (2020), preprint,
https://arxiv.org/pdf/2012.11306.
oDiophantine triples and K3 surfaces (2021),
preprint, https://arxiv.org/pdf/2101.11705.

@ Numerics for moderate rank families indicate might be
a positive bias.

@ Interpretation similar to Berry-Essen theorem.



https://arxiv.org/pdf/2012.11306
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Optimal Test Functions

Joint with Elzbieta Botdyriew, Fangu Chen, Charles
Devlin VI, Jason Zhao




Optimal Test Fns
[ ]

The Problem

The optimization problem

Quantities of interest

@ AveRank(.Z(Q)), the average order of vanishing at the
central point s = } for Z(Q).

@ WeightedAveRank(.#(Q)), the weighted average order
of vanishing at the central point for .7 (Q).
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The Problem

The optimization problem

Quantities of interest
@ AveRank(.#(Q)), the average order of vanishing at the
central point s = } for Z(Q).
@ WeightedAveRank(.7 (Q)), the weighted average order
of vanishing at the central point for .7 (Q).

Bounds and an optimization problem

Jim AveRank(7(Q)) < Ju ';‘?Oc)s X) DX

Jan P(X)W,.6(x) Zix
®(0)

Qlim WeightedAveRank(.Z (Q)) <
— 00

We want to minimize the right hand sides.
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Old results: 1-level densities

Main Idea

Reduce the optimization problem to a differential
equations problem via functional analysis.

1-level results: Iwaniec-Luo-Sarnak, Freeman-Miller.
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New results: 2-level densities

Main Idea

Restrict domain to only those test functions which are
products of single variable test functions
d(x,y) = d1(x)p2(y) for fixed admissible ¢1(x).

Can view the problem as a one-variable integration of ¢»
against a function of the form ¢ + m, i.e., analogous to
1-level case.
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Fixed test function and resulting estimates

Let

br(x) = (sin(27rx)>2.

21X

Obtain naive estimates choosing

(X, y) = 1(X)1(¥)-
Family Naive Optimal
SO(even) | 5 ~ 04166 | & (54\/5 cot ( ) _ 5) ~ 0.3784
SO(odd) | 1 ~1.0833 | 35 (38 +2vBcot () ~1.079
0 2075 | 4 (13 +6v3cot (Z)) ~ 0733
U 1~05 (4 +3cot(1)) ~ 0.4939
Sp 100833 (37 2cot(2)) ~ 0.06515
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Applications to Order of Vanishing

Pr(N) := probability that L(s, f) has zero of order N at

s=1/2.
. . _ L @0 W x,y) 757
2Pr(N) < S N(N—1 =
> "2Pr(N) <Y N(N-1)Pr (0, 0)
N=2 N=0
( 13+6v/3 cot (2
g relerl) 0633493 Wao
CO 2 )_
1_ W ~ 0.810776  W: so(Even)
Pr(0)+Pr(1) > cot( 5
(0) (1) = 1 _ w ~ 0.460457 W s0(0dq)
1 _ %‘?(1) ~ 0.753072 Wy
|1 32 0 967427 Was,
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1-level Case

Key observations

Observation 1

Ahiezer's Theorem and the Paley-Wiener theorem give a
correspondence between test functions and L?

~

¢ test function with supp(¢) C [—20, 20]

3
(&) =(g*g)() for g € L?[—0,0]
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1-level Case

Key observations

Observation 2
By Plancharel’s theorem

Jz O(X) Wi 6(x) Zrx _ fR W1 (&) 2+
»(0) fR e

Observation 3

The Fourier transforms of the 1-level distributions W; g
take the form

Wia(€) = 6(€) + ma(€)

where mg is a real-valued even step function.

A
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1-level Case

Step 1: Convert to minimization over L2

Define compact, self-adjoint linear operator
K : L?[-0,0] — L?|—0,0]

= /_ ’ m(x — y)a(y) Zry.

Let supp ¢ C [—20,20], then

A

fR¢(§)W a(§) 2 fR )(6(¢
Jo 0(&) ¢ f( * 9)(¢ )%‘f




Optimal Test Fns
[e]e]e] lele)

1-level Case

Step 1: Convert to minimization over L2

{9902+ [7, J7, mE — y)a(y) Ziy9(€) Zs

(1,927
_(9:9)i2+ (K9, 9)12
(1,9)127
_ (U+K)g.9)2
’<1’g>L2’2 ‘

Equivalent optimization problem

Minimize the functional R : L?[-1, 1] — R given by

(4 K)g.g)e
RO = "Ta 9P
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1-level Case

Step 2: Fredholm theory

Some observations:
e R(g) > C!im AveRank(.7(Q)) > 0.
— 00
@ Spectral Theorem — orthonormal basis of
eigenvectors of K, eigenvalues );.
o )‘j 2 —-1.

Case 1: Eigenvalue (—1)
Let fy € L?[—1, 1] not orthogonal to 1 and (/ + K)fy = 0,

272

(1 + K)fy, )12
(1, fo) 12>

R(f) = —0.
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1-level Case

Step 2: Minimization

Case 2: \; > —1forall j

More functional analysis!
@ ker(/+ K) = {0} (all eigenvalues > —1).
@ By Fredholm Theory, exists unique f, € L?[—1,1
satisfying (/+ K)fy = 1.
e A= <1 fo> = <(/—|— K)fo, fo)Lz > 0.
For g =fy + he L2[-1 1] with (1,9),» # 0, WLOG

272

(1,9);2 = A. Then (1,h)> = 0, so

1, f) 2 + (I + K)h, )z + (1, h) 2 + (h, 1) 2
A2

_ A+ {(I+K)h e +0+0 _

_ e = 2

R(g) =

= R(%)
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Challenges

Larger support and higher level densities give better
estimates on the average order of vanishing. Two main
obstructions:

@ Small support does not detect non-constant kernels,
e.g. Wisy(x) = d(x) — 3121 1y(x).
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Challenges

Larger support and higher level densities give better
estimates on the average order of vanishing. Two main
obstructions:

@ Small support does not detect non-constant kernels,
e.g. Wisy(x) = d(x) — 3121 1y(x).

(2 V/Vn\G more complicated and higher dimensional
integral operators not as well-understood.
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Optimal Test Function Details
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Simplifications

A restricted optimization problem

Fix a test function ¢ with suppga C [-1,1], we want to
minimize

f[_m]z H1 (&5 )cgz(fz)Wz,\G(f) Di&1 Diéo
$1(0)2(0)

over test functions ¢, with supp(¢2) C [-1, 1].
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Example: Unitary

The 2-level distributions:

sin2(7r(X1 — Xg))
7T2(X1 — X2)2

Wau(€) = 6(61)5(&2) + (&1 + &)([&| — 1)

W27U(X) =1-—

b
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Example: Unitary

The 2-level distributions:

sin2(7r(X1 — Xg))
7T2(X1 — X2)2 ’

Wau(€) = 6(61)5(&2) + (&1 + &)([&| — 1)
For ¢4 arbitrary,

W27U(X) =1-—

Vs u(2) = 11(0) / 61(&2) War (€) 71t
41(0) bi(~&)
()5(52) ()

= Cy,, 5(52)+m¢1 u(&2)

—==(|&2| = 1)1(&)
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Recovering the 1-level set-up

For each classical compact group G,

m¢1 ,G (§2)

Voa(62) :== 0(&2) + My, a(&2), My, 6(&2) == Co o
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Recovering the 1-level set-up

For each classical compact group G,

m¢1 (§2)

Ce1,G

Optimization problem rehashed

Minimize A
f[—1,1] 92(E2) Vs, 6(E2) Z1S2
¢2(0)

over test functions ¢, with supp ¢, C [—1, 1].

Vi,.a(&2) := 6(&2) + my, 6(&2), my, 6(&2) =
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Collect the 1-level goodies

There exists a unique gy, ¢ € L?[—1/2,1/2] satisfying

1

1= g¢17G(X) + . m¢17G(X - y)g¢1,G(}/) @fy

Nl
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Collect the 1-level goodies

There exists a unique gy, ¢ € L?[—1/2,1/2] satisfying

1

1= g¢17G(X) + . m¢17G(X - y)g¢1,G(}/) @fy

Nl

Moreover,

IR SR R G
(1,962 ¢2 $2(0)
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Choosing ¢1

Natural choice of test function is the Fourier pair

¢1(x>=(M) RO = — ()

27X

Key observation

Kernels take the form of quadratic polynomials in |x| on
[—1,1],i.e.

My, 6(x) = (@+ bIx| + clx|*) 111 (x).
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Differentiation under the integral

Exercise for the reader, order one term:

d [1/2 X 1/2
S wviawzy = [ anmy- [ ez

1/2 —1/2 X

—1

2 1/2
a2 / B X = y19(y)Zry = 29(x)
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Differentiation under the integral

Exercise for the reader, order one term:

d [1/2 X 1/2
S wviawzy = [ anmy- [ ez

—1/2 —-1/2 X
d 1/2
a2 /_ o X = y19(y)Zry = 29(x)

Order two term:

d /2 1/2
dx / (x — Y)Dry = / (2x —2y)a(y) %y,

—1/2 1/2

2 /2 1/2
o | -yranay =2 [ gz

—-1/2 —-1/2
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Example: W>y

We want to find g € L?[—1/2,1/2] obeying

1=g0)~ [ (1= Ix-yPe()21y.
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We want to find g € L?[—1/2,1/2] obeying

1=g0)~ [ (1= Ix-yPe()21y.

1

0=g'(x) - 49(x)+2 [ gly) 71y
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We want to find g € L?[—1/2,1/2] obeying

1=g0)~ [ (1= Ix-yPe()21y.

1

0=g'(x) - 49(x)+2 [ gly) 71y

Nl

0=9g"(x) —49'(x)
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Example: W>y

We want to find g € L?[—1/2,1/2] obeying

1=g0)~ [ (1= Ix-yPe()21y.

1

0=g'(x) - 49(x)+2 [ gly) 71y

Nl

0= g"(x) - 4g'(x)
Assuming evenness, solutions take the form

g(x) = Acos(2x) + C.
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Optimal g, ¢ for supp a,supp@ C[-1,1]

_ 216cos(4x/V/3) + 36v/3sin(2/V/3)
Gor soevn) (X) = 162 cos(2/v/3) — 5v/3sin(2/v/3)
8 cos(4x/v/3) + 121/3sin(2/+/3)
11v/3sin(2/v/3) + 2cos(2//3)

6 cos(2x) + 65sin(1)
901 00X) = Zeos(d) + dsin(1)
_ 36cos(4x/V/3) + 18V/3sin(2/V3)
Gro(X) = 18 cos(2/+/3) + 13v/3sin(2//3)

8 cos(4x) + 12sin(2)

Gor.5p(X) = 2 cos(2) + 3sin(2)

951,50(0da)(X) =
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