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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t1, t2, t3, . . . .

Question: What rules govern the spacings between the ti?

Examples: Spacings between
⋄ Energy Levels of Nuclei.
⋄ Eigenvalues of Matrices.
⋄ Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
⋄ Determine the correct scale for events.

⋄ Develop an explicit formula relating what want to study to what can
study.

⋄ Use an averaging formula to analyze the quantities above.

It is not always trivial to figure out what is the correct statistic to study!
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1 − 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ iγ.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of
Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ iγ.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of
Complex Hermitian matrices A

T
= A.
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Distribution of zeros

⋄ ζ(s) ̸= 0 for Re(s) = 1: π(x), πa,q(x).

⋄ GRH: error terms.

⋄ GSH: Chebyshev’s bias.

⋄ Analytic rank, adjacent spacings: h(D).
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1

=
d
ds

∑
p

log
(
1 − p−s)

=
∑

p

log p · p−s

1 − p−s =
∑

p

log p
ps + Good(s).
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1

=
d
ds

∑
p

log
(
1 − p−s)

=
∑

p

log p · p−s

1 − p−s =
∑

p

log p
ps + Good(s).

Contour Integration:∫
− ζ ′(s)

ζ(s)
xs

s
ds vs

∑
p

log p
∫ (

x
p

)s ds
s
.
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Explicit Formula (Contour Integration)

−ζ
′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1

=
d
ds

∑
p

log
(
1 − p−s)

=
∑

p

log p · p−s

1 − p−s =
∑

p

log p
ps + Good(s).

Contour Integration (see Fourier Transform arising):∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p
∫
ϕ(s)e−σ log pe−it log pds.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal newforms (say weight k ,
prime level N and possibly split by sign) L(s, f ) =

∑
n λf (n)/ns. Then

1
|F|

∑
f∈F

∑
γf

ϕ

(
logR
2π

γf

)
= ϕ̂(0) +

1
2
ϕ(0)− 1

|F|
∑
f∈F

P(f ;ϕ)

+ O
(
log logR
logR

)
P(f ;ϕ) =

∑
p∤N

λf (p)ϕ̂
(
log p
logR

)
2 log p

√
p logR

.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

n-level correlation

lim
N→∞

#

{
(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji ̸= jk

}
N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.
⋄ Normalized spacings of ζ(s) starting at 1020 (Odlyzko).
⋄ 2 and 3-correlations of ζ(s) (Montgomery, Hejhal).
⋄ n-level correlations for all automorphic cupsidal L-functions
(Rudnick-Sarnak).
⋄ n-level correlations for the classical compact groups (Katz-Sarnak).
⋄ Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

ϕ(x) :=
∏

i ϕi(xi), ϕi even Schwartz functions whose Fourier Transforms are
compactly supported.

n-level density

Dn,f (ϕ) =
∑

j1,...,jn
ji ̸=±jk

ϕ1

(
Lfγ

(j1)
f

)
· · ·ϕn

(
Lfγ

(jn)
f

)

⋄ Individual zeros contribute in limit.
⋄ Most of contribution is from low zeros.
⋄ Average over similar curves (family).
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use logC = |FN |−1∑
f∈FN

logCf ).
Hope: ϕ a good even test function with compact support, as |F| → ∞,

1
|FN |

∑
f∈FN

Dn,f (ϕ) =
1

|FN |
∑
f∈FN

∑
j1,...,jn
ji ̸=±jk

∏
i

ϕi

(
logCf

2π
γ
(ji )
E

)

→
∫

· · ·
∫
ϕ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture
As Cf → ∞ the behavior of zeros near 1/2 agrees with N → ∞ limit of
eigenvalues of a classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are
̂W1,SO(even)(u) = δ0(u) +

1
2
η(u)

Ŵ1,SO(u) = δ0(u) +
1
2

̂W1,SO(odd)(u) = δ0(u)−
1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1
2
η(u)

Ŵ1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1.
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Density of low-lying zeros (Slight Notational Change)

Definition (1-level density)

Let Φ be a Schwartz function with supp(Φ̂) ⊂ (−σ, σ). Assume GRH and
write ρf = 1/2 + iγf for the non-trivial zeros of L(s, f ) counted with
multiplicity. Then

OD(f ; Φ) :=
∑
γf

Φ
( γf

2π
log cf

)
,

is the 1-level density, where cf is the analytic conductor of f .

• 1-level density captures density of the zeros within height O(1/ log cf ) of s = 1/2;
since gaps between zeros are approximately cf , this is counting (morally) a small
number of zeros.

• Cannot asymptotically evaluate OD(f ; Φ) for a single f , must perform averaging over
the family ordered by analytic conductor.
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n-level density

Definition
In the setting as before, define the n-level density as

Dn(f ; Φ) :=
∑

j1,...,jn
ji ̸=±jk

n∏
i=1

Φi

(
γf (ji)
2π

log cf

)
.

• Computing n-level density for n > 2 requires knowledge of distribution
of signs of the functional equation of each L(s, f ), which is beyond
current theory.

• Hughes-Rudnick (2003): introduced n-th centered moments.
◦ Similar combiniatorially, but often easier to analyze
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Modular Forms

Definition (Modular form of trivial nebentypus)
We write f ∈ Mk (q) and say f is a modular form of level q, even weight k , and trivial
nebentypus if f : H → C is holomorphic and

1. for each τ ∈ Γ0(q) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod q)

}
we have

f (τz) := f
(

az + b
cz + d

)
= (cz + d)k f (z).

2. for τ ∈ SL2(Z), as Im(z) → +∞ we have (cz + d)−k f (τz) ≪ 1.

With τ = ( 1 1
0 1 ) , f (z) = f (z + 1) so f is 1-periodic and thus has a Fourier

expansion at ∞:

f (z) =
∞∑

n=0

af (n)qn, q = e2πiz .
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Holomorphic Cuspforms

Definition (Cuspform)
If f ∈ Mk(q) vanishes at all cusps of Γ0(q) we say f is a cuspform and
denote by Sk(q) ⊂ Mk(q) the space of holomorphic cuspforms.

• By Atkin-Lehner Theory, we have the orthogonal decomposition

Sk(q) = Sold
k (q)⊕Snew

k (q).

• A cuspform f ∈ Sk(q) is an eigenfunction of the Hecke operators Tn for
(n,q) = 1 and Tnf = λf (n)f .
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The Space of Cuspidal Newforms

Definition (Newform)
If f is an eigenform of all the Hecke operators and the Atkin-Lehner
involutions |kW (q) and |kW (Qp) for all the primes p | q, then we say that f
is a newform and if, in addition, f is normalized so that ψf (1) = 1 we say
that f is primitive.

• The space Snew
k (q) of newforms has an orthogonal basis Hk(q) of

primitive newforms.
• Trivial nebentypus =⇒ Tn’s are self-adjoint =⇒ λf (n) ∈ R for all n.
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L-functions Attached to Cuspidal Newforms

Fix f ∈ Snew
k (q). Then for Re(s) > 1, we define

L(s, f ) =
∞∑

n=1

λf (n)
ns =

∏
p

(
1 − λf (p)

ps +
χ0(p)
p2s

)−1

=
∏

p

(
1 − αf (p)

ps

)−1(
1 − βf (p)

ps

)−1

,

where χ0 is the principal character mod q. Note, L(s, f ) can be analytically
continued to an entire function on C. Moreover, L(s, f ) = L(s, f ).
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Katz-Sarnak Density Conjecture for Orthogonal Symmetry

The symmetry type of the family of automorphic L-functions attached to
holomorphic cuspidal newforms is orthogonal. Thus, the Katz-Sarnak
density conjecture predicts that for test functions Φ whose Fourier
transform has arbitrary compact support, as Q → ∞

1
|Hk(Q)|

∑
f∈Hk (Q)

OD(f ; Φ) −→
∫ ∞

−∞
Φ(x)W (O)(x)dx

where O is the scaling limit of the group of square orthogonal matrices. It
has density

W (O)(x) = 1 +
1
2
δ0(x),

where δ0(x) denotes the Dirac delta function at x = 0.
28
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Extending the Support

Theorem (Iwaniec-Luo-Sarnak ’00)
Assume GRH. Then for Φ any even Schwartz function with
supp(Φ̂) ⊂ (−2,2), we have that

lim
q→∞
2−free

1
|Hk(q)|

∑
f∈Hk (q)

OD(f ; Φ) =

∫ ∞

−∞
Φ(x)W (O)(x)dx ,

where O denotes the orthogonal type, showing agreement with the
Katz-Sarnak philosophy predictions.
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Recent Breakthrough

Theorem (Baluyot-Chandee-Li ’23)
Assume GRH. Let Φ be an even Schwartz function such that
supp(Φ̂) ⊂ (−4,4), and let Ψ be any smooth function compactly supported
on R+ with Ψ̂(0) ̸= 0. Then we have that

⟨OD(f ; Φ)⟩∗ := lim
Q→∞

1
N(Q)

∑
q

Ψ
( q

Q

) ∑
f∈Hk (q)

h OD(f ; Φ) =

∫ ∞

−∞
Φ(x)W (O)(x)dx ,

where N(Q) is a normalizing factor, showing agreement with the Katz-Sarnak
philosophy predictions.

This doubling of support uses averaging over the level q to double the
support, but many of the necessary manipulations rely on this being the
1-level density.
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The n-th Centered Moments of the 1-level Density

We study the n-th centered moments of the 1-level density averaged over
levels q ≍ Q.

Definition (n-th centered moments of the 1-level density)
In the setting as above, define the n-th centered moment of the 1-level
density to be 〈 n∏

i=1

[OD(f ; Φi)− ⟨OD(f ; Φi)⟩∗]
〉

∗
,

where ⟨f ⟩∗ means averaging f over q as described previously.

Previous work occasionally split forms based on their sign ϵ(f ) ∈ {1,−1};
we do not.
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Main Results

Theorem (Cheek-Gilman-Jaber-Miller-Tomé ’24)
Assume GRH. For Ψ non-negative and Φi even Schwartz functions with
supp(Φ̂) ⊂ (−σ, σ) and σ ≤ min

{
3

2(n−1) ,
4

2n−12∤n

}
we have that〈 n∏

i=1

(OD(f ; Φi)− ⟨OD(f ; Φi)⟩∗)
〉

∗
=

12|n

(n/2)!

∑
τ∈Sn

n/2∏
i=1

∫ ∞

−∞
|u|Φ̂τ(2i−1)(u)Φ̂τ(2i)(u)du.

As such, our work is a generalization of the BCL ’23 n = 1, σ = 4 result.

Notably, for n = 3 obtain σ = σi = 3/4, greater than previous best
σ = σi = 2/3.
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Main results (n = 2)

Corollary (Cheek-Gilman-Jaber-Miller-Tomé ’24)
Let σ1 = 3/2 and σ2 = 5/6. Then the two-level density〈∑∑

j1 ̸=±j2

Φ1

(
γf (j1)

)
Φ2

(
γf (j2)

)〉
∗

= 2
∫ ∞

−∞
|u|Φ̂1(u)Φ̂2(u)du +

2∏
i=1

(
1
2
Φi(0) + Φ̂i(0)

)
− Φ1Φ2(0)− 2Φ̂1Φ2(0) +ODD Φ1Φ2(0),

where ODD := ⟨(1 − ϵf )/2⟩∗ denotes the proportion of forms with odd functional
equation. This agrees with the predictions from random matrix theory.
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Main results (n = 2)

This is the first evidence of an interesting new phenomenon: only by taking
different test functions are we able to extend the range in which the
Katz-Sarnak density predictions hold. In particular, σ1 + σ2 = 7/3 > 2,
where σ1 + σ2 = 2 was the previously best known.

Can use σ1 ≥ σ2 such that σ1 ≤ 3/2 and σ1 + 3σ2 ≤ 4; above choice
maximizes σ1 + σ2.
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Duality Between Primes and Zeros of L-functions

Using an explicit formula relating sums over zeros to sums of prime power
coefficients of L(s, f ), we deduce that

∑
γf

Φ
( γf

2π
log q

)
= Φ̂(0) +

1
2
Φ(0)− 2

log q

∑
p∤q

λf (p) log p
√

p
Φ̂

(
log p
log q

)
+ O

(
log log q
log q

)
.

We use a combinatorial argument together with GRH for L(s, sym2f ) to reduce our
task to bounding sums over distinct primes:

∑
p1,...,pn∤q

pi ̸=pj

n∏
i=1

λf (pi) log pi√
pi

Φ̂i

(
log pi

log q

)
.
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Averaging Over the Extended Orthogonal Family

We average over f ∈ Hk(q) with q ≍ Q and study

1
N(Q)

∑
q

Ψ
( q

Q

) 1
(log q)n

∑
f∈Hk (q)

h
∑

p1,...,pn∤q
pi ̸=pj

n∏
i=1

λf (pi) log pi√
pi

Φ̂i

(
log pi

log q

)

=
1

N(Q)

∑
q

Ψ
( q

Q

) 1
(log q)n

∑
p1,...,pn∤q

pi ̸=pj

n∏
i=1

log pi√
pi

Φ̂i

(
log pi

log q

) ∑
f∈Hk (q)

hλf (1)λf

(
n∏

i=1

pi

)
.
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Trace formulae

• Ng’s work allows us to convert sums over Hk(q) to a linear combination
of sums over an orthogonal basis Bk(d) for the space Sk(d), d | q:
Morally, if (m,n,q) = 1 and for A a specific arithmetic function, then∑

f∈Hk (q)

hλf (m)λf (n) =
∑

q=L1L2d
L1|q1
L2|q2

q2 □−free

A(L1,L2,d)
∑
e|L∞

2

1
e

∑
f∈Bk (d)

hλf (e2m)λf (n).

• Petersson trace formula, a quasi-orthogonality relation for GL2∑
f∈Bk (d)

hλf (m)λf (n) = δ(m,n) +
∑
c≥1

S(m,n; cq)
cq

Jk−1

(
4π

√
mn

cq

)
.
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∑
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2

1
e

∑
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cq

Jk−1

(
4π

√
mn

cq

)
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The Kuznetsov Trace Formula

Let x :=
∏

pi . We are essentially left to analyze

∑
c≥1

∑
p1,...,pn∤q

pi ̸=pj

n∏
i=1

log pi√
pi

V
(

pi

Pi

)
e
(

vi
pi

Pi

)∑
s

S(e2, x ; cL1rds)
cL1rds

h

(
4π

√
e2x

cL1rds

)

where V is smooth and compactly supported and h is essentially a smooth
truncation of Jk−1.
We use the Kuznetsov trace formula to convert an average over f ∈ Bk(d)
into spectral terms:

Holomorphic cuspforms + Maass cuspforms + Eisenstein series.
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Origin of restirction on σ

To preform the above manipulations, we technically need to sum over
primes p1, . . . ,pn without restriction (i.e. not dividing q). For n = 1, this is
only adding back when p1 | q, which is O(logQ), but when n > 1, we need
to add back p1 | q,p2, . . . ,pn ∤ q, so this is adding back more than Qn−1−ϵ

many terms. This results in the σ ≤ 3
2(n−1) restriction.

To analyze the terms from Holomorphic and Maass cuspforms, similar
techniques require σ ≤ 4

n (the expected bound; the sum of supports is 4).
On the other hand, a contour shift for the Eisenstein series term no longer
in general achieves any cancellation with n even and only minimal
cancellation with n odd. Thus, we need σ ≤ 4

2n−12∤n
.
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Results
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical line before we
are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an L-function. Assume GRH,
zeros of the form 1

2 + iγ.
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical line before we
are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an L-function. Assume GRH,
zeros of the form 1

2 + iγ.

S. D. Miller: L-functions of real archimedian type has γ < 14.13.

J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S. Koutsoliotas, S.
Lemurell, M. Rubinstein, H. Yoshida: General L-function has
γ < 22.661.
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical line before we
are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an L-function. Assume GRH,
zeros of the form 1

2 + iγ.

J. Mestre: Elliptic curves: first zero occurs by O(1/ log logNE), where
NE is the conductor (expect order 1/ logNE ).

J. Goes and S. J. Miller: One-Parameter Family of Elliptic Curves of
rank r : r + 1

2 normalized zeros on average within the band
≈ (−0.551329

σ
, 0.551329

σ
).
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New Results: S. J. Miller and Tang

Theorem: Upper Bound Lowest First Zero in Even Cuspidal Families
For an odd n = 2m + 1, whenever ω satisfies this following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< 1n even(n − 1)!!σn
ϕω

+ S(n, a;ϕω),

at least one form with at least one normalized zero in (−ω, ω). Can take

ω >

−
σ
∫ 1

0 h(u)2 du + σ2

4

∫ 2/σ
0

∫ 1
v−1 h(u)h(v − u) du dv

1
σ

∫ 1
0 h(u)h′′(u) du + 1

4

∫ 2/σ
0

∫ 1
v−1 h(u)h′′(v − u) du dv

− 1
2

π−1. (1)

Only know for σ < 2 (under GRH).
Get ωmin(2,h) > 0.21864 for h = cos(πy/2).
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New Results

Theorem: Normalized Zeros Near the Central Point
Pr ,ρ(F): percent of forms with at least r normalized zeros in (−ρ, ρ).

For even n and r ≥ µ(ϕ,F)/ϕ(ρ):

Pr ,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n,a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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New Results

Theorem: Lower Bound In Terms of Derivatives
From the same methods used to prove the original bound on the first zero
for even families we obtain,

ωmin >
1

2π

(
−

g′′
w(0) +

∫ 1
0 g′′

w(x)dx∫ 1
0 gw(x)dx + gw(0)

)1/2

.
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Explicit Bounds

Number of zeros 2-level 4-level 6-level
6 N/A 10.849910 48.154279

16 N/A 0.004235 2.83230·10−4

26 N/A 3.541901·10−4 6.716802·10−6

28 420.045063 2.486819·10−4 3.943864·10−6

30 20.991406 1.796948·10−4 2.418466·10−6

32 6.651738 1.330555·10−4 1.538761·10−6

34 3.220871 1.006126·10−4 1.010576·10−6

Table: Upper bound on probability of forms with at least r normalized zeros within 0.8
average spacing from central point, using naive test function with support 2/n.
“N/A” means restriction in our theorem not met.
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Constructions
and Proofs
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Preliminaries

Convolution:
(A ∗ B)(x) =

∫ ∞

−∞
A(t)B(x − t)dt .

Fourier Transform:

Â(y) =

∫ ∞

−∞
A(x)e−2πixydx

Â′′(y) = −(2πy)2Â(y).

Lemma: ̂(A ∗ B)(y) = Â(y) · B̂(y);
in particular, ̂(A ∗ A)(y) = Â(y)2 ≥ 0 if A is even.
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Construction of Test Function

Create compactly supported ϕ̂(y).
Choose h(y) even, twice continuously differentiable, supported on (−1, 1), monotonically decreasing.
f (y) := h

(
2y
σ/n

)
.

g(y) := (f ∗ f )(y), ĝ(x) = f̂ (x)2 ≥ 0.
ϕ̂ω(y) := g(y) + (2πω)−2g′′(y) thus ϕω(x) = ĝ(x) · (1 − (x/ω)2).

- 3 - 2 - 1 1 2 3

0.5

1.0

1.5

Plot of ϕω(x) = ĝ(x) · (1 − (x/ω)2), for h = cos
(πy

2

)
, σ = 2, ω = .5, and n = 1.
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Construction of Test Function
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2y
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)
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g(y) := (f ∗ f )(y), ĝ(x) = f̂ (x)2 ≥ 0.
ϕ̂ω(y) := g(y) + (2πω)−2g′′(y) thus ϕω(x) = ĝ(x) · (1 − (x/ω)2).

- 3 - 2 - 1 1 2 3

0.5

1.0

1.5

Plot of ϕω(x) = ĝ(x) · (1 − (x/ω)2), for h = cos
(πy

2

)
, σ = 2, ω = .5, and n = 1.
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Sketch of Proof: Key Expansion

Theorem: Upper Bound Lowest First Zero in Even Cuspidal Families
For odd n, whenever ω satisfies this following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< 1n even(n − 1)!!σn
ϕω

+ S(n,a;ϕω),

there exists at least one form with at least one normalized zero in (−ω, ω).
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Sketch of Proof: Key Expansion

Replace mean from finite N with the limit:

lim
N→∞

N prime

1
|FN |

∑
f∈FN

∑
j

ϕ (γf ,jcn)− µ(ϕ,F)

n

= 1n even(n − 1)!!σn
ϕ ± S(n,a;ϕ),

and main term of the mean of the 1-level density of FN is

µ(ϕ,F) := ϕ̂(0) +
1
2

∫ ∞

−∞
ϕ̂(y)dy .
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Key Observation

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

∑
j

ϕ(γ̃f ,jcn)− µ(ϕ,F)

n

= 1n even(n − 1)!!σn
ϕ ± S(n,a;ϕ).

ϕω(x) = ĝ(x) · (1 − (x/ω)2).

ϕω(x) ≥ 0 when |x | ≤ ω, and ϕω(x) ≤ 0 when |x | > ω.
Contribution of zeroes for |x | ≥ ω is non-positive.
As n odd, doesn’t decrease if drop these non-positive contributions:
why we restrict to odd n.
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Sketch of Proof: Proof by Contradiction

Dropping negative contributions:

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

 ∑
|γf ,j |≤ω

ϕω(γf ,jcn)− µ(ϕω,F)

n

≥ S(n,a;ϕω).

Assume no forms have a zero on the interval (−ω, ω):

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

(−µ(ϕω,F))n ≥ S(n,a;ϕω),

(−µ(ϕω,F))n lim
N→∞
Nprime

1
|FN |

∑
f∈FN

1 ≥ S(n,a;ϕω).
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Sketch of Proof: Proof by Contradiction

Assume no forms have a zero on the interval (−ω, ω):

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

(−µ(ϕω,F))n ≥ S(n,a;ϕω),

(−µ(ϕω,F))n lim
N→∞
Nprime

1
|FN |

∑
f∈FN

1 ≥ S(n,a;ϕω).

As limN→∞
Nprime

1
|FN |

∑
f∈FN

1 = 1, get

(−µ(ϕω,F))n ≥ S(n,a;ϕω).
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Sketch of Proof: Continued

Because of the compact support of ϕ̂ω,

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

≥ S(n,a;ϕω).

Thus, if ω satisfies the following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< S(n,a;ϕω),

we get a contradiction, so at least one form has a normalized zero in
(−ω, ω).
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Explicit Bound from 1-Level Density

First Zero from 1-Level

The first zero of the family of cuspidal newforms exists on the interval (−ωmin, ωmin), where

ωmin >

−
σ
∫ 1

0 h(u)2 du + σ2

4

∫ 2/σ
0

∫ 1
v−1 h(u)h(v − u) du dv

1
σ

∫ 1
0 h(u)h′′(u) du + 1

4

∫ 2/σ
0

∫ 1
v−1 h(u)h′′(v − u) du dv

− 1
2

π−1. (2)

Number theory known only for σ < 2 (under GRH).

Get ωmin(2, h) > 0.21864 for h = cos(πy/2).
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Remarks on Computation and Support σ

Restrictions with higher level computation.

Riemann sum approximation.

Currently worse bounds with σ = 2 for larger n.

Higher level yields better bounds if support large.

Larger n better if σ larger.
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Main Theorem 2

Naive Test Function

The naive test functions are the Fourier pair

ϕnaive(x) =

(
sin(πσnx)
(πσnx)

)2

, ϕ̂naive(y) =
1
σn

(
y − |y |

σn

)
for |y | < σn where σn is the support.

Theorem: Normalized Zeros Near the Central Point

Pr,ρ(F): percent of forms with at least r normalized zeros in (−ρ, ρ).
For even n and r ≥ µ(ϕ,F)/ϕ(ρ):

Pr,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n, a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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Sketch of Proof

Even n, dropping all with less than r zeros in (−ρ, ρ) drops a non-negative sum:

lim
N→∞
Nprime

1
|FN |

∑
f∈F

(ρ)
N,r

 ∑
|γf ,j |≤ρ

ϕ(γf ,jcn) + Tf (ϕ)− µ(ϕ,F)

n

≤ 1n even(n − 1)!!σn
ϕ + S(n, a;ϕ)

Replace the summation of ϕ(γf ,jcn) with rϕ(ρ); can drop Tf (ϕ) and not increase LHS if
r ≥ µ(ϕ,F)/ϕ(ρ):

lim
N→∞
N prime

1
|FN |

∑
f∈F

(ρ)
N,r

(rϕ(ρ)− µ(ϕ,F))n ≤ . . . .

Pr,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n, a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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Sketch of Proof
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Explicit Bounds

Figure: Percentage vs. number of zeros (for a fixed ρ = .4).

Higher levels starts above lower when r small, decrease faster and eventually gives better results as
r grows.
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Expanding Space for Test Functions
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Main Idea

The construction of the test function requires ĝ(x) to decay at the rate of
Θ(|x |−4) so it may decay faster than the term (1 − (x/ω)2).

We can multiply ϕ(x) by a polynomial term of an even degree such that
ĝ(x) decays at a rate |x |−A, where A > 4.
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Main Idea

The construction of the test function requires ĝ(x) to decay at the rate of
Θ(|x |−4) so it may decay faster than the term (1 − (x/ω)2).

We can multiply ϕ(x) by a polynomial term of an even degree such that
ĝ(x) decays at a rate |x |−A, where A > 4.
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Conditions on the Polynomial

As mentioned previously, ϕω must satisfy the condition, such that ϕω(x) ≥ 0
when |x | ≤ ω and ϕω ≤ 0 when |x | > ω and must be even and decay, such
that ϕω → 0 as x → ∞.

Therefore the polynomial term must be positive and even, so we can write

ϕ(x) = ĝ(x)(1 − (x/ω)2)(1 + c1x2 + c2x4 + ...+ cwx2w),

where w is the degree of differentiability of h(x) at x = 1.
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Conditions on the Polynomial

As mentioned previously, ϕω must satisfy the condition, such that ϕω(x) ≥ 0
when |x | ≤ ω and ϕω ≤ 0 when |x | > ω and must be even and decay, such
that ϕω → 0 as x → ∞.
Therefore the polynomial term must be positive and even, so we can write

ϕ(x) = ĝ(x)(1 − (x/ω)2)(1 + c1x2 + c2x4 + ...+ cwx2w),

where w is the degree of differentiability of h(x) at x = 1.
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Since ĝw(x) = ĝ(x)(1 + c1x2 + c2x4 + ...+ cwx2w),

ĝw(x) = ĝ(x) + c1ĝ(x)x2 + c2ĝ(x)x4 + · · ·+ cw ĝ(x)x2w).

We then use the properties of the Fourier transform to deduce that

gw(x) = g(x)− c1(2π)−2g′′(x) + · · ·+ cw(2πi)−2w d2w

dx2w g(x)

= g(x) +
w∑

k=1

ck(−4π2)−k d2k

dx2k g(x).
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Main Result

From the same methods used to prove the original bound on the first zero
for even families we obtain,

ωmin >
1

2π

(
−

g′′
w(0) +

∫ 1
0 g′′

w(x)dx∫ 1
0 gw(x)dx + gw(0)

)1/2

.

76



Introduction Automorphic L-functions Prior Work Main Results Proof Sketch Main Results Constructions/Proofs Test Func Space Future Works Refs

Main Result

From the same methods used to prove the original bound on the first zero
for even families we obtain,

ωmin >
1

2π

(
−

g′′
w(0) +

∫ 1
0 g′′

w(x)dx∫ 1
0 gw(x)dx + gw(0)

)1/2

.

77



Introduction Automorphic L-functions Prior Work Main Results Proof Sketch Main Results Constructions/Proofs Test Func Space Future Works Refs

Constraints on Coefficients

We can consider the constraints on the coefficients ck of the polynomial.
Consider

pa(x) =
a∏

i=1

(λix2 − 1)2,

a positive even polynomial of degree 4a with all real roots.

The ck terms depend on the λi parameters so we write,

ck = (−1)2a−k
∑

1≤r1<r2<···<ri≤2a

λr1λr2 · · ·λri .

Because all the zeros are real, the coefficients ck of pa are minimal
constants.
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Since we aim to minimize ωmin with respect to the ck we use a program to
minimize the {λi} given w ,h. Take

h(x) = (1 − x2)2w+1

 s∏
j=1

(1 − αjx2) + β

 ,

where s denotes the number of zeros this polynomial may have and
0 ≤ αj ≤ 1 and β ≥ 0.

Thus, a minimization program may be able to take in the constants of σ, s,
and w , while optimizing constraints for αj and λi to minimize ω with respect
to these parameters.
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When letting the differentiability of h, w = 1, the support of the test
function, σ = 2, and the degree of the polynomial for h,s = 4, a
Mathematica program suited for minimization estimates ωmin = 0.218503.

There is a convergence of ck independent of the of the original h(x), so the
zeros of an optimal gω may be approximated by a program
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Figure: Result of a program optimizing h for w , σ, s = 1,2,4 respectively.
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Future Works

84



Introduction Automorphic L-functions Prior Work Main Results Proof Sketch Main Results Constructions/Proofs Test Func Space Future Works Refs

Improving Bounds

Optimize test function.

Increase support of test function.

Recent studies increased the support to 4 (Baluyot, Chandee, and Li)
for a certain group of L-functions....
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References
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