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Overview

For families of modular form L-functions,

m Iwaniec-Luo-Sarnak [ILS00]: unweighted one-level
densities;

m Hughes-Miller [HMO07]: n'" centered moments of
unweighted one-level densities;

m Knightly-Reno [KR18]: weighted one-level densities;
and

m D— et al. [DHK*25]: n centered moments of
weighted one-level densities.
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Intro to Modular Forms

A modular form of weight k and level N is a holomorphic
function 7 : HL — C that is

Bl “periodic” with respect to the N congruence
subgroup of SL,(Z):

f ar+b
ctr+d

> = (1 + d)*f(7)
ab
for all (c d) € SLy(Z),c =0mod N.

B holomorphic at all cusps: The function f is
holomorphic at all cusps of I'y(N), including co.
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Hecke Operator

m A Holomorphic cusp forms have a Fourier expansion
of the form

o0
f(r) = a,e®™.
n=1

Define the n'" Hecke Operator T, : Sx(N) — Sk(N) to be:

Tof(r) =) ( > dk1am,,/d2) q".

m=0 \ d|gcd(m,n)

5
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Hecke eigenvalue

m If f holomorphic cuspform of level N, for every n € N
relatively prime to N, f is eigenfunction of T,,.
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m If f holomorphic cuspform of level N, for every n € N
relatively prime to N, f is eigenfunction of T,,.
m Therefore, we have

Tof = A()f.

m Hecke eigenvalues are multiplicative:

Mmam = 3 a( d2>

d| ged (m,n)
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Hecke eigenvalue

m If f holomorphic cuspform of level N, for every n € N
relatively prime to N, f is eigenfunction of T,,.
m Therefore, we have

Tof = A()f.

m Hecke eigenvalues are multiplicative:

A(m)Ae(n) = X:N( )

d| ged (m,n)

m Using Hecke eigenvalues, we can define the

L-function:
L(s,f) = =[] Lo(s.H)"
P

n=1
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Oldform-Newform Theory

m Atkin-Lehner (1970): Possible to induce forms of level
N from forms of level M when M | N:

N
f(z) has level M = fy(2) = f (M z) has level N

= sm (27 x) y =sin (%)

JWVAVW AP

m A form that cannot be induced from lower levels is
called a newform; otherwise, an oldform.
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Statistics of Zeros

Katz-Sarnak Conjecture

The limiting distribution of the scaled zeros near 1/2 of
any family of “naturally related” L-functions coincides with
the limiting distribution of the scaled eigenvalues near 1 of
one of the (five) classical compact groups.

m The (non-trivial) zeros of any L-function can be
enumerated px = 1 + ik

m We study the local statistics of k.

m The oldforms of level N are “naturally related” to the
newforms of level M that induce them, having the
same analytic conductor.
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Interdisciplinary Connections

m If GRH is assumed true, the zeros of L-functions can
be ordered on the critical line fRe(s) = 1/2.

m Actuate interesting interpretations in the context of
random matrix theory and nuclear physics:

Zeros of L-Functions
+— Eigenvalues of Random Matrix Ensembles
+— Energy Levels of Heavy Nuclei
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One-Level Density

m Wish to study the low-lying zeros, near the central
point (s = 1).

Im(s)
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Definition (1-Level Density)

L¢(s) the L-function associated to a modular form f; and
¢ an even Schwartz function with ¢ compactly supported:

D(f;¢) = Z¢('°§f’w).
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Explicit Formula

m For uniformity, we convert the sum over zeros to a
sum over primes.

Theorem (lwaniec, Luo, and Sarnak [ILS00

Letting a¢(p) and 5¢(p) be the Satake parameters of f,
and A be a sum of some digamma factors T'(s)/T(s),

D(fio) = o -2y - (SO 5 (mioep) oep,

p m=1
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Introducing Weights

m Weights naturally occur in trace formulae.

A7
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Y T symef)y
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Introducing Weights

m Weights naturally occur in trace formulae.
m Logarithmic weights in Mertens’ theorem:

S e g x) + O(1),

p<x P

m Harmonic weights in Petersson trace formula [ILS00]:

(2)

W= T3, symzf)”

m Analytic weights in Kuznetsov trace formula [AAIT15, GK12]
m Unweighted and weighted statistics have the same
distribution in most cases. Exceptions:

m Kowalski-Saha-Tsimmerman [KST12]: GSp(4) spinor
L-functions
m Knightly-Reno [KR18]: modular form L-functions.

O
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Why does weight change convergence?

m Consider two lobster-roll competitions with different
scoring schemes:

Maine Québec
Taste 75% 33.3%
Presentation 15% 33.3%
Creativity 10%  33.3%
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Example: Contestant A and Contestant B

m Suppose we have

Contestant A Contestant B | Maine
Taste 10 6 75%
Presentation 5 7.5 15%
Creativity 5 7.5 10%

m Who would win each contest?

Québec
33.3%
33.3%
33.3%
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Example: Contestant A and Contestant B

m Suppose we have

Contestant A Contestant B | Maine Québec

Taste 10 6 75% 33.3%
Presentation 5 7.5 15% 33.3%
Creativity 5 7.5 10% 33.3%

m Who would win each contest?

m Depends on the scoring scheme!
In Maine, Contestant A would have won with 8.75/10.
However, in Québec, Contestant B would have won
better with 7/10.
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Weights (Knightly Reno)

m Given a primitive real Dirichlet character x of modulus
D > 1 and r > 0 relatively prime to D.

A (3. xx)|ar(r)?

W:
f E

for the completed L-function A(s, f x x)

Theorem (JKR18

For F, = Fi(N)™ (N + k — 0o as n — o), we have

S ez D(f, )Wy / P(x)Wep(x) dx, if x is trivial,
T i N e

n—oo

Lter, Wi / d(x)Wo(x) dx, if x is nontrivial.
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The nth Centered Moment

Definition (n'" Centered Moment)

Let i v be the family of holomorphic cusp newforms. Let
¢ be an even Schwartz function with compact Fourier
support. Then, its nt* centered moment is given by:

A]:k,N ([D(’ d)) - Afk,N(D('a ¢))]n)

where Az, ,(Q()) = 77 Zre, , Q(f) for some function
Q: ./—";(7/\/ — C.
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The nth Centered Moment

Definition (n'" Centered Moment)

Let i v be the family of holomorphic cusp newforms. Let
¢ be an even Schwartz function with compact Fourier
support. Then, its nt* centered moment is given by:

A]:k,N ([D(’ d)) - Afk,N(D('a ¢))]n)

where Az, ,(Q()) = 77 Zre, , Q(f) for some function
Q: ./—";(7/\/ — C.

m Hughes and Miller computes the unweighted n®"
centered moments for Fj y [HMO7].
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Our Work

m We look at the weighted n'" Centered Moments of
families of modular form L-functions.

m We use the same weights as Knightly:

. A (3. fx x)lar(r)?
T [ f]2 '

m We denote

AL (@) = fim 2tz KD

N—oco Zféfk,N Wr

where Q : F — C.
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Main Theorem

Theorem (D— et al.)

Let ¢ be a Schwartz test function with supp ¢ C (—2‘—,,, ).

2
For real Dirichlet character x, we have !

A% (DG, 8) - A%, (D, 0)"]

~J(n=1)" ol ifneven,
)0 if n odd,

where 05 =2 [ 22(y)ly| dy

m This confirms the work of [KR18] since symplectic
and orthogonal moments agree with the Gaussian on
this support.
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Auxiliary Lemmas

m Use explicit formula of [ILS00] to convert from sums
over zeros to sums over primes.

m Generalize Jackson-Knightly’s weighted trace formula
[JK15] from prime powers to arbitrary integers using
Hecke multiplicativity:

Lemma (D— et al.)

For any positive integer n,

Nz k&'

A% (L (n) = nbx(n) o ((r,m) + O (—W) ,

where V is a constant depending on r and D, and o4 is
the divisor sum function.
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Case Work and Analysis

m For y nontrivial,

Case Main Term Error Term
m; + n; > 3 for some j 0 log ° R
(mj, ;) = (1,1) for some j 0 )
. 0 t odd log log(3N
m;, nj) = (0,2) for all log log(3N)
(m ) = (0,2) / {(t 1)11(202)!/2  t even log R
m For x trivial,
Case Main Term Error Term
m; + n; > 3 for some j 0 log >R

t—2s 2\ °
. t/2 _ 0 o log log(3N
m;+n; < 2forall j Z£ /oj 2S(ttl BI (r %) (%) <7¢) glogg(ﬁ’ :
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Combinatorial Sum

In the case m; + n; < 2 for all j, the contribution to the
main term is given by the combinatorial sum:

0L ats ()07 (3)
:¢(0)ni(?)(_1)f%(t—t_!s)!<t;s) <%>

t=0 s=0
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Combinatorial Sum

In the case m; + n; < 2 for all j, the overall contribution to
the main term is given by the combinatorial sum:

n Lt/2]

o0y <';'>(—1)t > (t_t—'s),<t h S) (%)
— a0y ('Z)(—ﬂf % (;S) 2] (2 (;"2)2)3.

t=0 s=0
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Combinatorial Sum

In the case m; + n; < 2 for all j, the contribution to the
main term is given by the combinatorial sum:

¢(0)”i (?)(—1)’ WZZJ (2t3> (2:;)! (2&%)2)3

t=0

5 () (e ()
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Combinatorial Sum

In the case m; + n; < 2 for all j, the contribution to the
main term is given by the combinatorial sum:

o073 ()13 (£ )es o ( ¢(g)>

- ¢(o>"t2n; (7)e )f ETS

where X is a Gaussian random variable with mean 0 and
variance o3 /¢(0).
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Combinatorial Sum

In the case m; + n; < 2 for all j, the contribution to the
main term is given by the combinatorial sum:

ooy (7)1 > () X

t=0 s=0

0 nodd,
= -2 \N/2 )
¢(0)"(n— 1! (¢(g)2) =(n—1)1o] neven,
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Future work

m Studying the n" centered moment of the one-level
density with the other set of weights considered by
Knightly-Reno:

A X X) A (5. 1)

Wr =
]2

m Extending the support of the test function from
1

(=25 25):
m Hughes-Miller: RMT distributions are no longer Gaussian
when the support is beyond [, 1].
m Plancherel’s theorem: The orthogonal and symplectic
distributions are distinguishable beyond (-1, !

n'n/*
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