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Overview

For families of modular form L-functions,
Iwaniec-Luo-Sarnak [ILS00]: unweighted one-level
densities;
Hughes-Miller [HM07]: nth centered moments of
unweighted one-level densities;
Knightly-Reno [KR18]: weighted one-level densities;
and
D— et al. [DHK+25]: nth centered moments of
weighted one-level densities.
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Introduction
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Intro to Modular Forms

Definition
A modular form of weight k and level N is a holomorphic
function f : H→ C that is

1 “periodic” with respect to the N th congruence
subgroup of SL2(Z):

f
(

aτ + b
cτ + d

)
= (cτ + d)k f (τ)

for all
(

a b
c d

)
∈ SL2(Z), c ≡ 0 mod N.

2 holomorphic at all cusps: The function f is
holomorphic at all cusps of Γ0(N), including∞.
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Hecke Operator

A Holomorphic cusp forms have a Fourier expansion
of the form

f (τ) =
∞∑

n=1

ane2πinτ .

Definition
Define the nth Hecke Operator Tn : Sk(N)→ Sk(N) to be:

Tnf (τ) =
∞∑

m=0

 ∑
d |gcd(m,n)

dk−1amn/d2

qm.
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Hecke eigenvalue

If f holomorphic cuspform of level N, for every n ∈ N
relatively prime to N, f is eigenfunction of Tn.

Therefore, we have

Tnf = λf (n)f .

Hecke eigenvalues are multiplicative:

λf (m)λf (n) =
∑

d | gcd (m,n)

λf

(mn
d2

)
.

Using Hecke eigenvalues, we can define the
L-function:

L(s, f ) :=
∞∑

n=1

λf (n)
ns =

∏
p

Lp(s, f )−1.
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Oldform-Newform Theory

Atkin-Lehner (1970): Possible to induce forms of level
N from forms of level M when M | N:

f (z) has level M =⇒ fN(z) := f
(

N
M

z
)

has level N

x

y
y = sin (2πx)

x

y
y = sin

(
πx
2

)

A form that cannot be induced from lower levels is
called a newform; otherwise, an oldform.
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Statistics of Zeros

Katz-Sarnak Conjecture

The limiting distribution of the scaled zeros near 1/2 of
any family of “naturally related” L-functions coincides with
the limiting distribution of the scaled eigenvalues near 1 of
one of the (five) classical compact groups.

The (non-trivial) zeros of any L-function can be
enumerated ρk = 1

2 + iγk .
We study the local statistics of γk .
The oldforms of level N are “naturally related” to the
newforms of level M that induce them, having the
same analytic conductor.
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Interdisciplinary Connections

If GRH is assumed true, the zeros of L-functions can
be ordered on the critical line Re(s) = 1/2.
Actuate interesting interpretations in the context of
random matrix theory and nuclear physics:

Zeros of L-Functions
←→ Eigenvalues of Random Matrix Ensembles
←→ Energy Levels of Heavy Nuclei
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One-Level Density

Wish to study the low-lying zeros, near the central
point (s = 1

2 ).

Re(s)

Im(s)

Re(s) = 1
2

1
2

1
2 + iγ
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Re(s)

Im(s)

Re(s) = 1
2

1
2
1
2 + iγ

x

ϕ(x)

γ

Definition (1-Level Density)

Lf (s) the L-function associated to a modular form f ; and
ϕ an even Schwartz function with ϕ̂ compactly supported:

D(f ;ϕ) :=
∑
γf

ϕ

(
logRf

2π
γf

)
.
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Explicit Formula

For uniformity, we convert the sum over zeros to a
sum over primes.

Theorem (Iwaniec, Luo, and Sarnak [ILS00])
Letting αf (p) and βf (p) be the Satake parameters of f ,
and A be a sum of some digamma factors Γ′(s)/Γ(s),

D(f ;ϕ) =
A

logR
− 2

∑
p

∞∑
m=1

(
αf (p)m + βf (p)m

pm/2

)
ϕ̂

(
m log p
logR

)
log p
logR

.
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Weights and nth Centered Moments
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Introducing Weights

Weights naturally occur in trace formulae.

Logarithmic weights in Mertens’ theorem:∑
p≤x

log (p)
p

= log (x) + O(1).

Harmonic weights in Petersson trace formula [ILS00]:

wf =
ζ(2)

L(1, sym2f )
.

Analytic weights in Kuznetsov trace formula [AAI+15, GK12]
Unweighted and weighted statistics have the same
distribution in most cases. Exceptions:

Kowalski-Saha-Tsimmerman [KST12]: GSp(4) spinor
L-functions
Knightly-Reno [KR18]: modular form L-functions.
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Why does weight change convergence?

Consider two lobster-roll competitions with different
scoring schemes:

Maine Québec
Taste 75% 33.3%
Presentation 15% 33.3%
Creativity 10% 33.3%
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Example: Contestant A and Contestant B

Suppose we have

Contestant A Contestant B Maine Québec
Taste 10 6 75% 33.3%
Presentation 5 7.5 15% 33.3%
Creativity 5 7.5 10% 33.3%

Who would win each contest?
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Example: Contestant A and Contestant B

Suppose we have

Contestant A Contestant B Maine Québec
Taste 10 6 75% 33.3%
Presentation 5 7.5 15% 33.3%
Creativity 5 7.5 10% 33.3%

Who would win each contest?

Depends on the scoring scheme!
In Maine, Contestant A would have won with 8.75/10.
However, in Québec, Contestant B would have won
better with 7/10.

24



Preliminaries Setup Results Future Work

Weights (Knightly Reno)

Given a primitive real Dirichlet character χ of modulus
D ≥ 1 and r > 0 relatively prime to D.

wf =
Λ
(

1
2 , f × χ

)
|af (r)|2

∥ f ∥2

for the completed L-function Λ(s, f × χ)

Theorem ([KR18])
For Fn = Fk (N)new (N + k →∞ as n→∞), we have

lim
n→∞

∑
f∈Fn

D(f , ϕ)wf∑
f∈Fn

wf
=


∫ ∞

−∞
ϕ(x)WSp(x) dx , if χ is trivial,∫ ∞

−∞
ϕ(x)WO(x)dx , if χ is nontrivial.
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The nth Centered Moment

Definition (nth Centered Moment)

Let Fk ,N be the family of holomorphic cusp newforms. Let
ϕ be an even Schwartz function with compact Fourier
support. Then, its nth centered moment is given by:

AFk,N

(
[D(·, ϕ)−AFk,N (D(·, ϕ))]n

)
where AFk,N (Q(·)) = 1

|Fk,N |
∑

f∈Fk,N
Q(f ) for some function

Q : Fk ,N → C.

Hughes and Miller computes the unweighted nth

centered moments for Fk ,N [HM07].
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Our Work

We look at the weighted nth Centered Moments of
families of modular form L-functions.
We use the same weights as Knightly:

wf =
Λ
(

1
2 , f × χ

)
|af (r)|2

∥ f ∥2 .

We denote

Aw
Fk,N

(Q(·)) := lim
N→∞

∑
f∈Fk,N

Q(f )wf∑
f∈Fk,N

wf

where Q : F → C.
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Our Work
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Main Theorem

Theorem (D— et al.)

Let ϕ be a Schwartz test function with supp ϕ̂ ⊂ (− 1
2n ,

1
2n).

For real Dirichlet character χ, we have

Aw
Fk,N

[
(D(·, ϕ)−Aw

Fk,N
(D(·, ϕ)))m

]
=

{
(n − 1)!! σn

ϕ if n even,
0 if n odd,

where σ2
ϕ = 2

∫∞
−∞ ϕ̂2(y)|y | dy

This confirms the work of [KR18] since symplectic
and orthogonal moments agree with the Gaussian on
this support.
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Auxiliary Lemmas

Use explicit formula of [ILS00] to convert from sums
over zeros to sums over primes.
Generalize Jackson-Knightly’s weighted trace formula
[JK15] from prime powers to arbitrary integers using
Hecke multiplicativity:

Lemma (D— et al.)

For any positive integer n,

Aw
Fk,N

(λ· (n)) = n− 1
2χ(n) σ1 ((r , n)) + O

(
n

k−1
2 W k

N
k−1

2 k
k
2−1

)
,

where V is a constant depending on r and D, and σ1 is
the divisor sum function.
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Case Work and Analysis

For χ nontrivial,

Case Main Term Error Term
mj + nj ≥ 3 for some j 0 log−3 R

(mj , nj) = (1,1) for some j 0 log log(3N)
log R

(mj , nj) = (0,2) for all j

{
0 t odd
(t − 1)!!(2σ2

ϕ)
t/2 t even

log log(3N)
log R

For χ trivial,

Case Main Term Error Term
mj + nj ≥ 3 for some j 0 log−3 R

mj + nj ≤ 2 for all j
∑⌊t/2⌋

s=0
t!

2s(t−s)!

(t−s
s

) (ϕ(0)
2

)t−2s
(

σ2
ϕ

2

)s
log log(3N)

log R

32



Preliminaries Setup Results Future Work

Combinatorial Sum

In the case mj + nj ≤ 2 for all j , the contribution to the
main term is given by the combinatorial sum:

n∑
t=0

(
n
t

)
(−2)t

⌊t/2⌋∑
s=0

t!
2s(t − s)!

(
t − s

s

)(
ϕ(0)

2

)t−2s
(
σ2
ϕ

4

)s

= ϕ(0)n
n∑

t=0

(
n
t

)
(−1)t

⌊t/2⌋∑
s=0

t!
(t − s)!

(
t − s

s

)(
σ2
ϕ

2ϕ(0)2

)s

.
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Combinatorial Sum

In the case mj + nj ≤ 2 for all j , the overall contribution to
the main term is given by the combinatorial sum:

ϕ(0)n
n∑

t=0

(
n
t

)
(−1)t

⌊t/2⌋∑
s=0

t!
(t − s)!

(
t − s

s

)(
σ2
ϕ

2ϕ(0)2

)s

= ϕ(0)n
n∑

t=0

(
n
t

)
(−1)t

⌊t/2⌋∑
s=0

(
t

2s

)
(2s)!

s!

(
σ2
ϕ

2ϕ(0)2

)s

.
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Combinatorial Sum

In the case mj + nj ≤ 2 for all j , the contribution to the
main term is given by the combinatorial sum:

ϕ(0)n
n∑

t=0

(
n
t

)
(−1)t

⌊t/2⌋∑
s=0

(
t

2s

)
(2s − 1)!!

(
σ2
ϕ

ϕ(0)2

)s

= ϕ(0)n
n∑

t=0

(
n
t

)
(−1)t

⌊t/2⌋∑
s=0

(
t

2s

)
E
[
X 2s] ,

where X is a Gaussian random variable with mean 0 and
variance σ2

ϕ/ϕ(0)
2.
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Combinatorial Sum

In the case mj + nj ≤ 2 for all j , the contribution to the
main term is given by the combinatorial sum:

ϕ(0)n
n∑

t=0

(
n
t

)
(−1)t

⌊t/2⌋∑
s=0

(
t

2s

)
E
[
X 2s]

=

0 n odd,

ϕ(0)n(n − 1)!!
(

σ2
ϕ

ϕ(0)2

)n/2
= (n − 1)!! σn

ϕ n even,
.
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Future Work
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Future work

Studying the nth centered moment of the one-level
density with the other set of weights considered by
Knightly-Reno:

wf =
Λ
(

1
2 , f × χ

)
Λ
(

1
2 , f
)

∥f∥2 .

Extending the support of the test function from(
− 1

2n ,
1

2n

)
:

Hughes-Miller: RMT distributions are no longer Gaussian
when the support is beyond [− 1

n ,
1
n ].

Plancherel’s theorem: The orthogonal and symplectic
distributions are distinguishable beyond (− 1

n ,
1
n ).
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