Centered Moments of the Weighted One-Level Density of *GL*(2) *L*-Functions

Vishal Muthuvel ¹ Steven Zanetti²

¹Columbia University, vm2696@columbia.edu ²University of Michigan, szanetti@umich.edu

Joint work with L. Dillon, X. Huang, S. Kwon, M. Laurence, S. J. Miller, L. Rowen, and P. Saldin.

Maine-Québec Number Theory Conference October 5th, 2025 https://arxiv.org/abs/2509.05810

Overview

For families of modular form *L*-functions,

- Iwaniec-Luo-Sarnak [ILS00]: unweighted one-level densities;
- Hughes-Miller [HM07]: *n*th centered moments of unweighted one-level densities;
- Knightly-Reno [KR18]: weighted one-level densities; and
- D— et al. [DHK⁺25]: nth centered moments of weighted one-level densities.

Introduction

Preliminaries
•000000000

Intro to Modular Forms

Definition

A modular form of weight k and level N is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ that is

"periodic" with respect to the N^{th} congruence subgroup of $SL_2(\mathbb{Z})$:

$$f\left(rac{a au+b}{c au+d}
ight)=(c au+d)^kf(au)$$
 for all $egin{pmatrix} a&b\c&d \end{pmatrix}\in SL_2(\mathbb{Z}), c\equiv 0 mod N.$

2 holomorphic at all cusps: The function f is holomorphic at all cusps of $\Gamma_0(N)$, including ∞ .

Results

Hecke Operator

A Holomorphic cusp forms have a Fourier expansion of the form

$$f(\tau) = \sum_{n=1}^{\infty} a_n e^{2\pi i n \tau}.$$

Definition

Define the **n**th **Hecke Operator** $T_n: S_k(N) \to S_k(N)$ to be:

$$T_n f(au) = \sum_{m=0}^{\infty} \left(\sum_{d \mid \gcd(m,n)} d^{k-1} a_{mn/d^2} \right) q^m.$$

■ If f holomorphic cuspform of level N, for every $n \in \mathbb{N}$ relatively prime to N, f is eigenfunction of T_n .

- If f holomorphic cuspform of level N, for every $n \in \mathbb{N}$ relatively prime to N, f is eigenfunction of T_n .
- Therefore, we have

$$T_n f = \lambda_f(n) f$$
.

- If f holomorphic cuspform of level N, for every $n \in \mathbb{N}$ relatively prime to N, f is eigenfunction of T_n .
- Therefore, we have

$$T_n f = \lambda_f(n) f$$
.

Hecke eigenvalues are multiplicative:

$$\lambda_f(m)\lambda_f(n) = \sum_{d|\gcd(m,n)} \lambda_f\left(\frac{mn}{d^2}\right).$$

Preliminaries

- If f holomorphic cuspform of level N, for every $n \in \mathbf{N}$ relatively prime to N, f is eigenfunction of T_n .
- Therefore, we have

$$T_n f = \lambda_f(n) f$$
.

Hecke eigenvalues are multiplicative:

$$\lambda_f(m)\lambda_f(n) = \sum_{d|\gcd(m,n)} \lambda_f\left(\frac{mn}{d^2}\right).$$

Using Hecke eigenvalues, we can define the L-function:

$$L(s, f) := \sum_{n=1}^{\infty} \frac{\lambda_f(n)}{n^s} = \prod_{p} L_p(s, f)^{-1}.$$

Oldform-Newform Theory

Atkin-Lehner (1970): Possible to induce forms of level *N* from forms of level *M* when $M \mid N$:

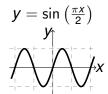
Results

$$f(z)$$
 has level $M \Longrightarrow f_N(z) := f\left(\frac{N}{M}z\right)$ has level N

$$y = \sin(2\pi x)$$

$$y$$

$$x$$



A form that cannot be induced from lower levels is called a **newform**; otherwise, an **oldform**.

Statistics of Zeros

Katz-Sarnak Conjecture

The limiting distribution of the scaled zeros near 1/2 of any family of "naturally related" L-functions coincides with the limiting distribution of the scaled eigenvalues near 1 of one of the (five) classical compact groups.

- The (non-trivial) zeros of any *L*-function can be enumerated $\rho_k = \frac{1}{2} + i\gamma_k$.
- We study the local statistics of γ_k .
- The oldforms of level *N* are "naturally related" to the newforms of level *M* that induce them, having the same analytic conductor.

Interdisciplinary Connections

- If GRH is assumed true, the zeros of *L*-functions can be ordered on the critical line $\Re \mathfrak{e}(s) = 1/2$.
- Actuate interesting interpretations in the context of random matrix theory and nuclear physics:

Zeros of L-Functions

←→ Eigenvalues of Random Matrix Ensembles

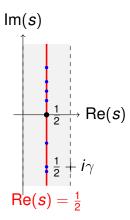
←→ Energy Levels of Heavy Nuclei

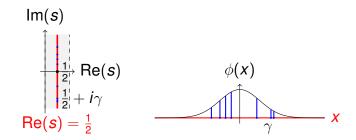
One-Level Density

Preliminaries

000000000

■ Wish to study the low-lying zeros, near the central point $(s = \frac{1}{2})$.





Definition (1-Level Density)

 $L_f(s)$ the L-function associated to a modular form f; and ϕ an even Schwartz function with $\widehat{\phi}$ compactly supported:

$$D(f;\phi) := \sum_{\gamma_f} \phi\left(\frac{\log R_f}{2\pi}\gamma_f\right).$$

4

Preliminaries

0000000000

For uniformity, we convert the sum over zeros to a sum over primes.

Theorem (Iwaniec, Luo, and Sarnak [ILS00])

Letting $\alpha_f(p)$ and $\beta_f(p)$ be the Satake parameters of f, and A be a sum of some digamma factors $\Gamma'(s)/\Gamma(s)$,

$$D(f;\phi) = \frac{A}{\log R} - 2\sum_{p} \sum_{m=1}^{\infty} \left(\frac{\alpha_f(p)^m + \beta_f(p)^m}{p^{m/2}} \right) \hat{\phi} \left(\frac{m \log p}{\log R} \right) \frac{\log p}{\log R}.$$

Weights and nth Centered Moments

Introducing Weights

■ Weights naturally occur in trace formulae.

Introducing Weights

- Weights naturally occur in trace formulae.
 - Logarithmic weights in Mertens' theorem:

$$\sum_{p\leq x}\frac{\log\left(p\right)}{p}\ =\ \log\left(x\right)\ +\ O(1).$$

Preliminaries

- Weights naturally occur in trace formulae.
 - Logarithmic weights in Mertens' theorem:

$$\sum_{p \le x} \frac{\log(p)}{p} = \log(x) + O(1).$$

Harmonic weights in Petersson trace formula [ILS00]:

$$w_f = \frac{\zeta(2)}{L(1, \operatorname{sym}^2 f)}.$$

Introducing Weights

Preliminaries

- Weights naturally occur in trace formulae.
 - Logarithmic weights in Mertens' theorem:

$$\sum_{p\leq x}\frac{\log\left(p\right)}{p}=\log\left(x\right)+O(1).$$

Harmonic weights in Petersson trace formula [ILS00]:

$$w_f = \frac{\zeta(2)}{L(1, \operatorname{sym}^2 f)}.$$

Analytic weights in Kuznetsov trace formula [AAI+15, GK12]

- Weights naturally occur in trace formulae.
 - Logarithmic weights in Mertens' theorem:

$$\sum_{p\leq x}\frac{\log\left(p\right)}{p}=\log\left(x\right)+O(1).$$

Harmonic weights in Petersson trace formula [ILS00]:

$$w_f = \frac{\zeta(2)}{L(1, \operatorname{sym}^2 f)}.$$

- Analytic weights in Kuznetsov trace formula [AAI+15, GK12]
- Unweighted and weighted statistics have the same distribution in most cases. Exceptions:
 - Kowalski-Saha-Tsimmerman [KST12]: GSp(4) spinor L-functions
 - Knightly-Reno [KR18]: modular form *L*-functions.

Why does weight change convergence?

Consider two lobster-roll competitions with different scoring schemes:

	Maine	Québec
Taste	75%	33.3%
Presentation	15%	33.3%
Creativity	10%	33.3%

Example: Contestant A and Contestant B

Suppose we have

	Contestant A	Contestant B	Maine	Québec
Taste	10	6	75%	33.3%
Presentation	5	7.5	15%	33.3%
Creativity	5	7.5	10%	33.3%

■ Who would win each contest?

Example: Contestant A and Contestant B

Suppose we have

	Contestant A	Contestant B	Maine	Québec
Taste	10	6	75%	33.3%
Presentation	5	7.5	15%	33.3%
Creativity	5	7.5	10%	33.3%

- Who would win each contest?
- Depends on the scoring scheme! In Maine, Contestant A would have won with 8.75/10. However, in Québec, Contestant B would have won better with 7/10.

Weights (Knightly Reno)

Preliminaries

Given a primitive real Dirichlet character χ of modulus D > 1 and r > 0 relatively prime to D.

$$w_f = \frac{\Lambda\left(\frac{1}{2}, f \times \chi\right) |a_f(r)|^2}{\parallel f \parallel^2}$$

for the completed *L*-function $\Lambda(s, f \times \chi)$

Theorem ([KR18])

For
$$\mathcal{F}_n = \mathcal{F}_k(N)^{new}(N+k \to \infty \text{ as } n \to \infty)$$
, we have

$$\lim_{n\to\infty} \frac{\sum_{f\in\mathcal{F}_n} D(f,\phi) w_f}{\sum_{f\in\mathcal{F}_n} w_f} = \begin{cases} \int_{-\infty}^{\infty} \phi(x) W_{\operatorname{Sp}}(x) \, dx, & \text{if } \chi \text{ is trivial,} \\ \int_{-\infty}^{\infty} \phi(x) W_{\operatorname{O}}(x) \, dx, & \text{if } \chi \text{ is nontrivial.} \end{cases}$$

The nth Centered Moment

Preliminaries

Definition (nth Centered Moment)

Let $\mathcal{F}_{k,N}$ be the family of holomorphic cusp newforms. Let ϕ be an even Schwartz function with compact Fourier support. Then, its nth centered moment is given by:

$$\mathcal{A}_{\mathcal{F}_{k,N}}\left(\left[D(\cdot,\phi)-\mathcal{A}_{\mathcal{F}_{k,N}}(D(\cdot,\phi))\right]^{n}\right)$$

where $\mathcal{A}_{\mathcal{F}_{k,N}}(Q(\cdot))=rac{1}{|\mathcal{F}_{k,N}|}\sum_{f\in\mathcal{F}_{k,N}}Q(f)$ for some function $Q: \mathcal{F}_{k,N} \to \mathbb{C}$.

The nth Centered Moment

Definition (*n*th **Centered Moment)**

Let $\mathcal{F}_{k,N}$ be the family of holomorphic cusp newforms. Let ϕ be an even Schwartz function with compact Fourier support. Then, its **n**th **centered moment** is given by:

$$\mathcal{A}_{\mathcal{F}_{k,N}}\left(\left[D(\cdot,\phi)-\mathcal{A}_{\mathcal{F}_{k,N}}(D(\cdot,\phi))\right]^{n}\right)$$

where $\mathcal{A}_{\mathcal{F}_{k,N}}(Q(\cdot)) = \frac{1}{|\mathcal{F}_{k,N}|} \sum_{f \in \mathcal{F}_{k,N}} Q(f)$ for some function $Q: \mathcal{F}_{k,N} \to \mathbb{C}$.

■ Hughes and Miller computes the unweighted n^{th} centered moments for $\mathcal{F}_{k,N}$ [HM07].

Our Work

- We look at the weighted nth Centered Moments of families of modular form L-functions.
- We use the same weights as Knightly:

$$w_f = \frac{\Lambda\left(\frac{1}{2}, f \times \chi\right) |a_f(r)|^2}{\parallel f \parallel^2}.$$

We denote

$$A^w_{\mathcal{F}_{k,N}}(Q(\cdot)) := \lim_{N o \infty} rac{\sum_{f \in \mathcal{F}_{k,N}} Q(f) w_f}{\sum_{f \in \mathcal{F}_{k,N}} w_f}$$

where $Q: \mathcal{F} \to \mathbb{C}$.

Main Theorem

Theorem (D— et al.)

Let ϕ be a Schwartz test function with supp $\hat{\phi} \subset (-\frac{1}{2n}, \frac{1}{2n})$. For real Dirichlet character χ , we have

$$\mathcal{A}_{\mathcal{F}_{k,N}}^{w} \left[(D(\cdot,\phi) - \mathcal{A}_{\mathcal{F}_{k,N}}^{w} (D(\cdot,\phi)))^{m} \right]$$

$$= \begin{cases} (n-1)!! & \sigma_{\phi}^{n} & \text{if n even,} \\ 0 & \text{if n odd,} \end{cases}$$

where
$$\sigma_{\phi}^2=2\int_{-\infty}^{\infty}\widehat{\phi}^2(y)|y|\,dy$$

■ This confirms the work of [KR18] since symplectic and orthogonal moments agree with the Gaussian on this support.

Auxiliary Lemmas

- Use explicit formula of [ILS00] to convert from sums over zeros to sums over primes.
- Generalize Jackson-Knightly's weighted trace formula [JK15] from prime powers to arbitrary integers using Hecke multiplicativity:

Lemma (D— et al.)

For any positive integer n,

$$\mathcal{A}_{\mathcal{F}_{k,N}}^{w}(\lambda.(n)) = n^{-\frac{1}{2}}\chi(n) \, \sigma_1((r,n)) + O\left(\frac{n^{\frac{k-1}{2}}W^k}{N^{\frac{k-1}{2}}k^{\frac{k}{2}-1}}\right),$$

where V is a constant depending on r and D, and σ_1 is the divisor sum function.

Case Work and Analysis

For χ nontrivial,

Case	Main Term		Error Term
$m_j + n_j \ge 3$ for some j	0		$\log^{-3} R$
$(m_j, n_j) = (1, 1)$ for some j	0		$\frac{\log\log(3N)}{\log R}$
$(m_j, n_j) = (0, 2)$ for all j	$\begin{cases} 0 \\ (t-1)!!(2\sigma_{\phi}^2)^{t/2} \end{cases}$	t odd t even	log log(3N) log R

For χ trivial,

Case	Main Term	Error Term
$m_j + n_j \ge 3$ for some j	0	$\log^{-3} R$
$m_j + n_j \le 2$ for all j		$\frac{\log\log(3N)}{\log R}$

Preliminaries

In the case $m_j + n_j \le 2$ for all j, the contribution to the main term is given by the combinatorial sum:

$$\sum_{t=0}^{n} \binom{n}{t} (-2)^{t} \sum_{s=0}^{\lfloor t/2 \rfloor} \frac{t!}{2^{s}(t-s)!} \binom{t-s}{s} \left(\frac{\phi(0)}{2}\right)^{t-2s} \left(\frac{\sigma_{\phi}^{2}}{4}\right)^{s}$$

$$= \phi(0)^{n} \sum_{t=0}^{n} \binom{n}{t} (-1)^{t} \sum_{s=0}^{\lfloor t/2 \rfloor} \frac{t!}{(t-s)!} \binom{t-s}{s} \left(\frac{\sigma_{\phi}^{2}}{2\phi(0)^{2}}\right)^{s}.$$

22

Preliminaries

In the case $m_i + n_i \le 2$ for all j, the overall contribution to the main term is given by the combinatorial sum:

$$\phi(0)^{n} \sum_{t=0}^{n} \binom{n}{t} (-1)^{t} \sum_{s=0}^{\lfloor t/2 \rfloor} \frac{t!}{(t-s)!} \binom{t-s}{s} \left(\frac{\sigma_{\phi}^{2}}{2\phi(0)^{2}} \right)^{s}$$

$$= \phi(0)^{n} \sum_{t=0}^{n} \binom{n}{t} (-1)^{t} \sum_{s=0}^{\lfloor t/2 \rfloor} \binom{t}{2s} \frac{(2s)!}{s!} \left(\frac{\sigma_{\phi}^{2}}{2\phi(0)^{2}} \right)^{s}.$$

Preliminaries

In the case $m_j + n_j \le 2$ for all j, the contribution to the main term is given by the combinatorial sum:

$$\phi(0)^{n} \sum_{t=0}^{n} \binom{n}{t} (-1)^{t} \sum_{s=0}^{\lfloor t/2 \rfloor} \binom{t}{2s} \frac{(2s)!}{s!} \left(\frac{\sigma_{\phi}^{2}}{2\phi(0)^{2}} \right)^{s}$$

$$= \phi(0)^{n} \sum_{t=0}^{n} \binom{n}{t} (-1)^{t} \sum_{s=0}^{\lfloor t/2 \rfloor} \binom{t}{2s} (2s-1)!! \left(\frac{\sigma_{\phi}^{2}}{\phi(0)^{2}} \right)^{s}.$$

35

Preliminaries

In the case $m_j + n_j \le 2$ for all j, the contribution to the main term is given by the combinatorial sum:

$$\phi(0)^n \sum_{t=0}^n \binom{n}{t} (-1)^t \sum_{s=0}^{\lfloor t/2 \rfloor} \binom{t}{2s} (2s-1)!! \left(\frac{\sigma_\phi^2}{\phi(0)^2} \right)^s$$
$$= \phi(0)^n \sum_{t=0}^n \binom{n}{t} (-1)^t \sum_{s=0}^{\lfloor t/2 \rfloor} \binom{t}{2s} \mathbb{E} \left[X^{2s} \right],$$

where X is a Gaussian random variable with mean 0 and variance $\sigma_{\phi}^2/\phi(0)^2$.

Preliminaries

In the case $m_j + n_j \le 2$ for all j, the contribution to the main term is given by the combinatorial sum:

$$\phi(0)^n \sum_{t=0}^n \binom{n}{t} (-1)^t \sum_{s=0}^{\lfloor t/2 \rfloor} \binom{t}{2s} \mathbb{E} \left[X^{2s} \right]$$

$$= \begin{cases} 0 & n \text{ odd,} \\ \phi(0)^n (n-1)!! \left(\frac{\sigma_{\phi}^2}{\phi(0)^2} \right)^{n/2} = (n-1)!! \ \sigma_{\phi}^n & n \text{ even,} \end{cases}$$

37

Future Work

Future work

■ Studying the *n*th centered moment of the one-level density with the other set of weights considered by Knightly-Reno:

$$W_f = \frac{\Lambda\left(\frac{1}{2}, f \times \chi\right) \Lambda\left(\frac{1}{2}, f\right)}{\|f\|^2}.$$

- Extending the support of the test function from $\left(-\frac{1}{2n}, \frac{1}{2n}\right)$:
 - Hughes-Miller: RMT distributions are no longer Gaussian when the support is beyond $\left[-\frac{1}{n}, \frac{1}{n}\right]$.
 - Plancherel's theorem: The orthogonal and symplectic distributions are distinguishable beyond $(-\frac{1}{n}, \frac{1}{n})$.

Acknowledgments

- We are grateful to our advisor, Prof. Steven J Miller.
- We acknowledge the support of the National Science Foundation (Grant DMS2241623) and the following institutions: Columbia University, Princeton University, University of Michigan, University of Washington, University of Wisconsin, Williams College, and Yale University.

References I

- Levent Alpoge, Nadine Amersi, Geoffrey Iyer, Oleg Lazarev, Steven J. Miller, and Liyang Zhang, *Maass waveforms and low-lying zeros*, pp. 19–55, Springer International Publishing, 2015.
- Lawrence Dillon, Xiaoyao Huang, Say-Yeon Kwon, Meiling Laurence, Steven J. Miller, Vishal Muthuvel, Luke Rowen, Pramana Saldin, and Steven Zanetti, Centered moments of weighted one-level densities of gl(2) I-functions.
- Dorian Goldfeld and Alex Kontorovich, *On the gl(3)* kuznetsov formula with applications to symmetry types of families of *I-functions*, 2012.

References II

- C. P. Hughes and Steven J. Miller, Low-lying zeros of *I-functions with orthogonal symmetry*, Duke Mathematical Journal **136** (2007), no. 1.
- Henryk Iwaniec, Wen-Ching Luo, and Peter Sarnak, Low lying zeros of families of I-functions, Publications Mathematiques de l'IHES **91** (2000), 55–131.
- Julia Jackson and Andrew Knightly, *Averages of twisted I-functions*, Journal of the Australian Mathematical Society **99** (2015), no. 2, 207â236.
- Andrew Knightly and Caroline Reno, Weighted distribution of low-lying zeros of gl(2) I-functions, 2018.

References III

Emmanuel Kowalski, Abhishek Saha, and Jacob Tsimerman, *Local spectral equidistribution for siegel modular forms and applications*, Compositio Mathematica **148** (2012), no. 2, 335–384.