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Introduction

Key-word Definition

L-function A function that can be written
both as a sum indexed by natural
numbers and a product indexed
by primes.

Grand Riemann
Hypothesis

Assumption that non-trivial zeros
lie on the critical line Re(s) = 1

2.

n-level density A statistics to study how low-lying
zeros of L-functions are spaced on
the critical line.

Average weighted
n-level density

Weighted Average of n-level den-
sity over a family.

Figure 1: Example of critical line zero distribution

Motivation

Katz-Sarnak Cojecture

The average weighted N-level density behaves like a Gaussian distribution, agree-
ing to one from Random Matrix Ensemble’s eigenvalue distribution.

Figure 2: Lower Order Terms affect the speed of convergence to Gaussian.

The Main Theorem

Theorem of LOT

Let log R be the average log-conductor of a finite family of L-functions F . For sufficient
test function Φ(x, y) = ϕ1(x)ϕ2(y)

D2 (F , Φ) =Ak,N(ϕ1)Ak,N(ϕ2)
log2 R

+
Ak,N(ϕ2)

log R

 S1(F , ϕ1) +
Ak,N(ϕ1)

log R

 S1(F , ϕ2)

+ S2(F , ϕ1, ϕ2) − 2
Ak,N(ϕ1ϕ2)

log R
+ S1(F , ϕ1ϕ2)


+ Φ(0, 0)

∑
f∈F wR(f )(1 − ϵf)

2WR(F)
where the sum S2 decomposes as

S2(F , ϕ1, ϕ2) = SB′′(F) + 2SB′(F) + SB(F) + O

 1
log4 R


and the sum S1 has the expansion

S1(F , ϕ) = SA′(F) + S0(F) + S1(F) + S2(F) + SA(F) + O

 1
log4 R

 .

Using Harmonic Weights

We use the Harmonic weights defined by

wR(f ) := ZN(1, f )
Z(1, f ) .

This weight is essentially constant over the family of holomorphic
cusp newforms and naturally occur during the derivation of the Pe-
terson trace formula.
We looked at the behaivior of D2(F , Φ) for
• Case 1: N is prime with N → ∞.

• Case 2: N = q1q2 with q1 fixed and q2 → ∞.

• Case 3: N = q1q2 with both q1 and q2 → ∞.

Future Directions

1 Generalize to n-level density; we looked at 2-level density.
2 Look at different weights; we looked at harmonic weights.
3 Further generalization of N squarefree to look for new behavior.
4 This is an easter egg. If you see this, ask us for chocolate.
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