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Introduction

Motivation

Key-word

Definition Katz-Sarnak Cojecture

L-function

A function that can be written
both as a sum indexed by natural
numbers and a product indexed

The average weighted N-level density behaves like a Gaussian distribution, agree-
ing to one from Random Matrix Ensemble’s eigenvalue distribution.
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Figure 2: Lower Order Terms affect the speed of convergence to Gaussian.

The Main Theorem

Average weighted Weighted Average of n-level den-

n-level density

sity over a family.

Theorem of LOT

For suflicient

Let log R be the average log-conductor of a finite family of L-functions F.
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Figure 1: Example of critical line zero distribution

Using Harmonic Weights

We use the Harmonic weights defined by

L ZN(laf)

This weight is essentially constant over the family of holomorphic

cusp newforms and naturally occur during the derivation of the Pe-
terson trace formula.

We looked at the behaivior of Dy(F, ®) for

e Case 1: N is prime with NV — oo.
e Case 2: N = qiqo with ¢ fixed and ¢ — o0.

e Case 3: N = ¢gyqo with both ¢; and ¢y — o0.

Future Directions

® Generalize to n-level density; we looked at 2-level density.

® Look at different weights; we looked at harmonic weights.

@ Further generalization of NV squarefree to look for new behavior.

o 'This is an easter egg. If you see this, ask us for chocolate.
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