

2nd Level Low-Order Terms of Holomorphic Cusp Newforms Presenter: Say-Yeon Kwon¹, Luke Rowen², and Steven Zanetti³

Collaborators: Lawrence Dillon⁴, Xiaoyao Huang⁵, Meiling Laurence⁶, Vishal Muthuvel⁷, and Pramana Saldin⁸

Advisor: Prof. Steven J. Miller

¹Princeton University, ²Carleton College, ^{3,5}University of Michigan ⁴University of Washington, ⁶Yale University, ⁷Columbia University, ⁸ University of Wisconsin-Madison

Introduction

Key-word	Definition
L-function	A function that can be written both as a sum indexed by natural numbers and a product indexed by primes.
	∞ α (α)

$$L(s,f) = \sum_{n=1}^\infty rac{a_f(n)}{n^s} = \prod_{p ext{ prime}} L_p(s,f)^{-1}$$

Grand	Riemann	Assumption that non-trivial zeros
Hypothe	sis	lie on the critical line $Re(s) = \frac{1}{2}$.
n-level d	ensity	A statistics to study how low-lying
		zeros of L-functions are spaced on
		the critical line.

$$D_n(f;\Phi) = \sum_{\substack{j_1,\dots,j_n \ j_i
eq \pm j_k}} \phi_1\left(rac{\log R_f}{2\pi}\gamma_{j_1;f}
ight) \cdots \phi_n\left(rac{\log R_f}{2\pi}\gamma_{j_n;f}
ight)$$

Average weighted Weighted Average of n-level den*n*-level density sity over a family.

$$rac{1}{\sum_{f \in \mathcal{F}} w_f} \sum_{f \in \mathcal{F}} w_f D_n(f,\phi)$$

Figure 1: Example of critical line zero distribution

Motivation

Katz-Sarnak Cojecture

The average weighted N-level density behaves like a Gaussian distribution, agreeing to one from Random Matrix Ensemble's eigenvalue distribution.

Figure 2: Lower Order Terms affect the speed of convergence to Gaussian.

The Main Theorem

Theorem of LOT

Let $\log R$ be the average log-conductor of a finite family of L-functions \mathcal{F} . For sufficient test function $\Phi(x,y) = \phi_1(x)\phi_2(y)$

test function
$$\Phi(x, y) = \phi_1(x)\phi_2(y)$$

$$D_2(\mathcal{F}, \Phi) = \frac{A_{k,N}(\phi_1)A_{k,N}(\phi_2)}{\log^2 R} + \left(\frac{A_{k,N}(\phi_2)}{\log R}\right)S_1(\mathcal{F}, \phi_1) + \left(\frac{A_{k,N}(\phi_1)}{\log R}\right)S_1(\mathcal{F}, \phi_2)$$

$$+ S_2(\mathcal{F}, \phi_1, \phi_2) - 2\left(\frac{A_{k,N}(\phi_1\phi_2)}{\log R} + S_1(\mathcal{F}, \phi_1\phi_2)\right)$$

$$+ \Phi(0, 0)\frac{\sum_{f \in \mathcal{F}} w_R(f)(1 - \epsilon_f)}{2W_R(\mathcal{F})}$$
where the sum S_2 decomposes as

where the sum S_2 decomposes as

$$S_2(\mathcal{F}, \phi_1, \phi_2) = S_{B''}(\mathcal{F}) + 2S_{B'}(\mathcal{F}) + S_B(\mathcal{F}) + O\left(\frac{1}{\log^4 R}\right)$$

and the sum S_1 has the expansion

$$S_1(\mathcal{F},\phi) = S_{A'}(\mathcal{F}) + S_0(\mathcal{F}) + S_1(\mathcal{F}) + S_2(\mathcal{F}) + S_A(\mathcal{F}) + O\left(\frac{1}{\log^4 R}\right).$$

Using Harmonic Weights

We use the **Harmonic weights** defined by

$$w_R(f) := \frac{Z_N(1, f)}{Z(1, f)}.$$

This weight is essentially constant over the family of holomorphic cusp newforms and naturally occur during the derivation of the Peterson trace formula.

We looked at the behaivior of $D_2(\mathcal{F}, \Phi)$ for

- Case 1: N is prime with $N \to \infty$.
- Case 2: $N = q_1q_2$ with q_1 fixed and $q_2 \to \infty$.
- Case 3: $N = q_1q_2$ with both q_1 and $q_2 \to \infty$.

Future Directions

- \bullet Generalize to n-level density; we looked at 2-level density.
- 2 Look at different weights; we looked at harmonic weights.
- This is an easter egg. If you see this, ask us for chocolate.

Selected References

- 1 Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak. "Low lying zeros of families of L- functions". In: Publications Math'ematiques de l'IH 'ES 91 (2000), pp. 55–131. doi: 10. 1007/s10240-000-8198-5. url: https://doi.org/10.1007/s10240-000-8198-5.
- 2 Steven J. Miller. "Lower order terms in the 1-level density for families of holomorphic cuspidal newforms". In: Acta Arithmetica 137.1 (2009), pp. 51–98. doi: 10.4064/aa137- 1-3. arXiv: 0704.0924 [math.NT]. url: https://arxiv.org/abs/0704.0924.

Acknowledgements

We would like to thank our advisor, Prof. Steven J. Miller, for his guidance.

We also gratefully acknowledge the support of the National Science Foundation under Grant No. DMS-2241623, as well as Columbia University, Princeton University, the University of Michigan, the University of Washington, Williams College, and Yale University.