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Why study zeros of L-functions?

Infinitude of primes, primes in arithmetic
progressions.

Chebyshev’s bias: π3,4(x) ≥ π1,4(x) ‘most’ of the time.

Birch and Swinnerton-Dyer conjecture.

Connections with random matrix theory and nuclear
physics.

Analytically study arithmetic objects.
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What is an L-function?

The Riemann zeta function with Euler Product:

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1 − 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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What is a general L-function?

A General L-function with Euler Product

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Grand Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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Statistics of Zeros

Assuming GRH, non-trivial zeros of L-functions can
be written as 1

2 + iγi ; possible to investigate statistics
of zeros γi .

Observation: Spacings b/w zeros appear same as
b/w eigenvalues of Complex Hermitian matrices
A

T
= A.

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Intro to Modular Forms

L-functions arise throughout number theory. We care
about associating L-functions to certain modular
forms.

Definition
Define the the N th congruence subgroup

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 modN

}
.
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Intro to Modular Forms

Now for an important definition:

Definition
A modular form of weight k and level N is a holomorphic
function f : H → C such that

1 Modular Transformation Property:

f
(

aτ + b
cτ + d

)
= (cτ + d)k f (τ) for all

(
a b
c d

)
∈ Γ0(N).

2 Holomorphic at the Cusps: The function f is holomorphic at all
cusps of Γ0(N), including ∞.
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Hecke Eigenforms

A modular form has a Fourier expansion of the form
f (τ) =

∑∞
n=0 ane2πinτ . If a0 = 0, f is called a cusp form.

Definition
Define the nth Hecke operator as acting on the Fourier
expansion as

Tnf (τ) =
∞∑

m=0

 ∑
d |gcd(m,n)

dk−1amn/d2

qm.
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Explicit formula for 1-level

Rf > 0: analytic conductor of L(s, f ) =
∑

n λf (n)/ns.

By GRH the non-trivial zeros are 1
2 + iγf ,j .

Satake params αf (p), βf (p); λf (pν) = αf (p)ν + βf (p)ν .

This gives

L(s, f ) =
∞∑

n=1

λf (n)
ns =

∏
p

(
1 − αf (p)p−s)−1 (1 − βf (p)p−s)−1

.
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Explicit formula for 1-level

We wish to find a way to study the 0’s near the central
point (s = 1

2 ). Thus, we associate a 1-level density to
a modular form.

Definition (1-Level Density)

Let Lf (s) be an L-function associated to a modular form f .
Let ϕ be an even Schwartz function whose Fourier
transform has compact support. Then, its 1-level density
is given by:

D1(f ;ϕ) =
∑
γf

ϕ

(
logRf

2π
γf

)
.
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Example with ζ(s)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1
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Example with ζ(s)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1

=
d
ds

∑
p

log
(
1 − p−s)
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p
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Example with L(s) = ζ(s); Contour Integral

Define Φ(s) = ϕ( log(R)
2πi (s − 1

2)).

Integrate ζ′(s)
ζ(s) Φ(s) along the

contour .
By the Argument Principle, the
integral is related to the values
of Φ at zeros of ζ(s).

Because ζ′(s)
ζ(s) ≈ −

∑
p

log(p)
ps =

−
∑

p log(p)e
−s log(p), above

integral is related also to the
Fourier coefficients of Φ and
hence ϕ.
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Explicit Formula (Contour Integration)

This narrative gives us to the explicit formula for the
density for generic L-function.

Theorem (Iwaniec, Luo, and Sarnak [ILS00])
Given the same conditions,

D1(f ;ϕ) =
A

logR
− 2

∑
p

∞∑
m=1

(
αf (p)m + βf (p)m

pm/2

)
ϕ̂

(
m

log p
logR

)
log p
logR

where A represents a sum of digamma (Γ′(s)/Γ(s)) factors.
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Our Work: Preliminaries
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n-Level Density

We can generalize our 1-level density to n-level density.

Definition (n-Level Density)

Let Lf (s) be an L-function associated to a modular form f .
Let Φ(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn) where each ϕi are
even Schwartz function with compact supported fourier
transforms. Then, we define n-Level Density of Lf (s) to
be:

Dn(f ; Φ) =
∑

j1,...,jn
ji ̸=±jk

ϕ1

(
logRf

2π
γj1;f

)
· · ·ϕn

(
logRf

2π
γjn;f

)
.
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Katz-Sarnak Conjecture

As we average over F = ∪FN , a family of L-functions ordered
by conductors N, and take N → ∞, n-level density converges to
a scaled distribution of eigenvalues near 1 of a classical
compact group, i.e.

lim
N→∞

1
|FN |

∑
f∈FN

Dn(f , ϕ) =
∫

Φ(
−→x )Wn,G(F)(

−→x )d−→x .

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Katz-Sarnak Conjecture

As we average over F = ∪FN , a family of L-functions ordered
by conductors N, and take N → ∞, n-level density converges to
a scaled distribution of eigenvalues near 1 of a classical
compact group, i.e.

lim
N→∞

1
|FN |

∑
f∈FN

Dn(f , ϕ) =
∫

Φ(
−→x )Wn,G(F)(

−→x )d−→x .

Conjecture (Katz-Sarnak)

(In the limit) Average n-th level density agrees with scaled
distribution of eigenvalues near 1 of a classical compact group.
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Introducing Weights

Weights {wf}FN are often used to simplify
calculations.
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Introducing Weights

Weights {wf}FN are often used to simplify
calculations.

lim
N→∞

1
|FN |

∑
f∈FN

D1(f , ϕ) = lim
N→∞

1
(
∑

f∈FN
1)

∑
f∈FN

1 · D1(f , ϕ)

vs.

lim
N→∞

1
(
∑

f∈FN
wf )

∑
f∈FN

wf D1(f , ϕ).
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Does weight change convergence?

We need to be careful here!
Consider two classes with different grading schemes:

Class N Class W
Psets 25% 0%
Midterm 1 25% 0%
Midterm 2 25% 0%
Final 25% 100%
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Example: Steve and Luke

Suppose we have
Steve Luke

Psets 100% 0%
Midterm 1 95% 10%
Midterm 2 95% 15%
Final 15% 95%

Who would have gotten a better grade in the class?
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Example: Steve and Luke

Suppose we have
Steve Luke

Psets 100% 0%
Midterm 1 95% 10%
Midterm 2 95% 15%
Final 15% 95%

Who would have gotten a better grade in the class?

Depends on the grading scheme!
In Class N, Steve would have done better with a
76.25% and Luke with 30%.
However, in Class W, Luke would have done better
with 95% and Steve with 15%.
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Weights change Convergence

Kowalski, Saha and Tsimmerman [KST12] found that
for GSp(4) spinor L-functions, adding weights yielded
symplectic distribution instead of the expected
orthogonal.

Knightly and Reno [KR18] also found that weights
affect the convergence.
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Weights (Knightly Reno)

Given a primitive real Dirichlet character χ of modulus
D ≥ 1 and r > 0 relatively prime to D. For a
holomorphic newform, define the weight

wf =
Λ
(

1
2 , f × χ

)
|af (r)|2

∥f∥2

for the completed L-function Λ(s, f × χ)

Theorem ([KR18])
For Fn = Fk (N)new (N + k → ∞ as n → ∞), we have

lim
n→∞

∑
f∈Fn

D1(f , ϕ)wf∑
f∈Fn

wf
=


∫ ∞

−∞
ϕ(x)WSp(x)dx , if χ is trivial,∫ ∞

−∞
ϕ(x)WO(x)dx , if χ is nontrivial.
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Our Work

For ease of notation, for a function A : F → C, let
Ew(A) = limn→∞

∑
f∈Fn A(f )wf∑

f∈Fn wf

We generalize this work, computing the nth centered
moments of this one level density.

Ew [(D(f , ϕ)− Ew(D(f , ϕ)))m]
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Our Work
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Our Work

Theorem (SMALL 2025)

Let ϕ be a Schwartz test function with supp ϕ̂ ⊂ (− 1
2n ,

1
2n).

For real Dirichlet character χ, we have

Ew [(D(f , ϕ)− Ew(D(f , ϕ)))m]

=

(2m − 1)!!
(∫∞

−∞ ϕ̂2(y)|y |dy
)m/2

if m even,

0 if m odd

This is in line with [KR18] since Gaussian and
symplectic moments agree on this support.
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Our Work

Proving the above theorem reduces to computing sums of
the following form:

∑
(p1,...pt )

pi ∤N

(
t∏

i=1

log pi

p1/2
i logR

ϕ̂

(
log pi

logR

))
Ew

 ℓ∏
j=1

λ.(pi)



=
∑

(p1,...pt )
pi ∤N

(
t∏

i=1

log pi

p1/2
i logR

ϕ̂

(
log pi

logR

)) ∑
m1≡n1(2)

···
mℓ≡nℓ(2)

 ℓ∏
j=1

cmj ,nj

 Ew

 ℓ∏
j=1

λ.(q
mj
j )



where
∏t

i=1 pi =
∏ℓ

j=1 qnj
j . The first step to analyzing this sum is

finding a closed form for Ew [λ·(n)].
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Our Work

Lemma (SMALL 2025)

For any positive integer n =
∏ℓ

j=1 qmj
j ,

Ew [λ·(n)] =
χ(n)σ1 (gcd (r ,n))√

n
+ O

(
n

k−1
2 V k

N
k−1

2 k
k
2−1

)
,

where V is a constant depending on r and D, and σ1 is
the divisor sum function.

This was done using Prop 3.1 of Knightly and Reno
([KR18]) and using a similar proof method.
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Our Work

Through a combinatorial argument and swapping sums
and products, we find we have a product of sums with
factors of the form∑

q∤N

ϕ̂

(
log q
logR

)nj χ(q)mj lognj q
q(nj+mj )/2 lognj R

cmj ,nj · σ1 (gcd (r ,qmj ))

for specific cases of nj and mj .
We split into the nontrivial and trivial character case
Main contribution comes from case (mj ,nj) = (0,2) ∀j for
both nontrivial and trivial
In the trivial case, another combinatorial argument and the
binomial theorem are needed
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Nontrivial Character Analysis

Case Main Term Error Term
mj + nj ≥ 3 for some j 0 log−3 R

(mj ,nj) = (1,1) for some j 0 log log(3N)
log R

(mj ,nj) = (0,2) for all j

{
0 t odd
(t − 1)!!(2σ2

ϕ)
t/2 t even

log log(3N)
log R
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Trivial Character Analysis

Case Main Term Error Term
mj + nj ≥ 3 for some j 0 log−3 R

mj + nj ≤ 2 for all j
∑⌊t/2⌋

s=0
t!

2s(t−s)!

(t−s
s

) (ϕ(0)
2

)t−2s
(

σ2
ϕ

2

)s
log log(3N)

log R
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Closing
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Future work

Verify Gaussian behavior for Knightly and Reno’s
other weight

wf =
Λ (1/2, f × χ) Λ

(
1
2 , f
)

∥f∥2

Extend support of test function used from
(
− 1

2n ,
1

2n

)
to(

−1
n ,

1
n

)
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