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Why study zeros of L-functions?

m Infinitude of primes, primes in arithmetic
progressions.

m Chebyshev’s bias: 73 4(x) > 71 4(x) ‘most’ of the time.
m Birch and Swinnerton-Dyer conjecture.

m Connections with random matrix theory and nuclear
physics.

m Analytically study arithmetic objects.
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What is an L-function?

m The Riemann zeta function with Euler Product:
> 1 1\
C(s):ZF: 1T 1—}; , Re(s) > 1.
n=1 p prime

m Functional Equation:

{(s) = r(3)mk(s) = €(1—s).
m Riemann Hypothesis (RH):

, 1 .
; can write zeros as ~+1/v.

All non-trivial zeros have Re(s) = 5

N —
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What is a general L-function?

m A General L-function with Euler Product

= [] Le(s.H)™". Re(s)>1.

n=1 p prime
m Functional Equation:

A(s, f) = Ao(s,f)L(s,f) = N1 —s,f).
m Grand Riemann Hypothesis (GRH):

- 1 : 1 .
All non-trivial zeros have Re(s) = 5 can write zeros as §+w.
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Statistics of Zeros

m Assuming GRH, non-trivial zeros of L-functions can
be written as % + Iv;; possible to investigate statistics
of zeros ;.

m Observation: Spacings b/w zeros appear same as
b/w eigenvalues of Complex Hermitian matrices

A = A

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Intro to Modular Forms

m [-functions arise throughout number theory. We care
about associating L-functions to certain modular
forms.

Define the the N congruence subgroup

Fo(N) = { (? Z) € SLo(Z) : ¢ = 0 mod N}.

17/
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Intro to Modular Forms

m Now for an important definition:

A modular form of weight k and level N is a holomorphic
function f : HH — C such that

El Modular Transformation Property:

f(aT+b

cr+d

) = (cr + d)¥f(r) forall (i 2) € o(N).

H Holomorphic at the Cusps: The function f is holomorphic at all
cusps of I'y(N), including cc.
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Hecke Eigenforms

m A modular form has a Fourier expansion of the form
f(r) => 0 ane®™™ . If ag = 0, fis called a cusp form.

Define the n” Hecke operator as acting on the Fourier
expansion as

Tnf(T) = i Z dk71 am,,/dz qm.

m=0 \ d|gcd(m,n)
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Explicit formula for 1-level

m R; > 0: analytic conductor of L(s,f) =Y, Ar(n)/n°.
m By GRH the non-trivial zeros are 1 + iv.

m Satake params ay(p), 8¢(P); A(p”) = cs(pP)” + Br(p)" "
m This gives

L(s,f)=

=TI (1 —arp)p=*)"" (1 Bi(pIP~®) "
p

n=1
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Explicit formula for 1-level

m We wish to find a way to study the 0’s near the central
point (s = 1). Thus, we associate a 1-level density to
a modular form.

Definition (1-Level Density)

Let L¢(s) be an L-function associated to a modular form f.
Let ¢ be an even Schwartz function whose Fourier
transform has compact support. Then, its 1-level density

is given by:
log R
o )

Ditrio) = Yo

21
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Example with ((s)

/ d d s\ 1
_% — —ﬁlogg(s) = —£|0g1;[<1 —-p)

DD
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Example with ((s)

/ d d _
‘Cc((j)) = —<_log((s) = —@oglp}(1 -p°)

d _
= 35 Ep log (1 —p~%)
_ylep - p”

1—ps

— Z Iogsp + Good(s).
o P
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Example with L(s) = ((s); Contour Integral

.
T—-Nxz._ﬂ_ : ) m Define ¢(s) = 925(%(3 —3))-
l )
!
7 : N
1
0
4| ) 2 f
!
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S l o
£
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0
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Example with L(s) = ((s); Contour Integral

|
Endor™ B m Define ®(s) = 6(“52(s — 1)).
| = Integrate $5/®(s) along the
J A\ contour .
i
|
4| ) [ ’
i
Y l
b1
LN l 5.
T
|
|
[}
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Example with L(s) = ((s); Contour Integral

=, | . m Define ¢(s) = ¢(2%(s — 1)).
= Integrate $5/®(s) along the
Y A contour .

m By the Argument Principle, the
integral is related to the values
of ¢ at zeros of ((s).

L 4
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Example with L(s) = ((s); Contour Integral

|
I
|
¥
!
|
i
i
|
Vel
i
l
|
i
l
|
|
|
]

=, | . m Define ¢(s) = ¢(2%(s — 1)).
= Integrate $5/®(s) along the
Y A contour .

m By the Argument Principle, the
integral is related to the values
of ¢ at zeros of ((s).

<) log(p) __
m Because 5 ~ — 20 =

4 — ., log(p)e =), above
integral is related also to the
Fourier coefficients of ¢ and
hence ¢.

L 4
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Explicit Formula (Contour Integration)

m This narrative gives us to the explicit formula for the
density for generic L-function.

Theorem (lwaniec, Luo, and Sarnak [ILS00

Given the same conditions,

o (P)" + B(P)"\ » ( logp\ logp
D1(16) = g =2 S 3 (M) 5 (mpth) ool

P m=1

where A represents a sum of digamma (I’ (s)/T(s)) factors.
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n-Level Density

We can generalize our 1-level density to n-level density.

Definition (n-Level Density)

Let L¢(s) be an L-function associated to a modular form f.
Let ®(x1,...,Xn) = ¢1(X1) - - - &n(Xn) Where each ¢; are
even Schwartz function with compact supported fourier
transforms. Then, we define n-Level Density of L¢(s) to
be:

log R log R
Dy(f; ®) = Z 1 (7’{%#) o On <77jn;f) -
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Katz-Sarnak Conjecture

As we average over F = UFy, a family of L-functions ordered
by conductors N, and take N — oo, n-level density converges to
a scaled distribution of eigenvalues near 1 of a classical
compact group, i.e.

) 1
Jim 37 Di(1.0) = [ S(X) Wy (X)d .

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Katz-Sarnak Conjecture

As we average over F = UFy, a family of L-functions ordered
by conductors N, and take N — oo, n-level density converges to
a scaled distribution of eigenvalues near 1 of a classical
compact group, i.e.

o
im = 3 Dalf.0) :/¢(7)Wn76(f)(7)d7’.

N—oo
feFn

Conjecture (Katz-Sarnak)

(In the limit) Average n-th level density agrees with scaled
distribution of eigenvalues near 1 of a classical compact group.
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Introducing Weights

m Weights {ws}x, are often used to simplify
calculations.

lim LZDM,@: lim 21 Di(f, ¢)

N—oo ’FN| feFy N—>oo Zfe]—'N fern
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Introducing Weights

m Weights {ws}x, are often used to simplify
calculations.

, 1
i 0000~ i 1= 3 1-000)

N—o0 = N=oo (D rcr, 1) fems

VS.

lim Z wsD; (f, 9).

N—>oo Zfef,\, fe]-'
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Does weight change convergence?

We need to be careful here!
Consider two classes with different grading schemes:

Class N Class W
Psets 25% 0%
Midterm 1 25% 0%
Midterm 2 25% 0%
Final 25% 100%
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Example: Steve and Luke

m Suppose we have

Steve Luke
Psets 100% 0%
Midterm1 95% 10%
Midterm2 95% 15%
Final 15%  95%

m Who would have gotten a better grade in the class?
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Example: Steve and Luke

m Suppose we have

Steve Luke
Psets 100% 0%
Midterm1 95% 10%
Midterm2 95% 15%
Final 15%  95%

m Who would have gotten a better grade in the class?

m Depends on the grading scheme!
In Class N, Steve would have done better with a
76.25% and Luke with 30%.
However, in Class W, Luke would have done better
with 95% and Steve with 15%.

41
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Weights change Convergence

m Kowalski, Saha and Tsimmerman [KST12] found that
for GSp(4) spinor L-functions, adding weights yielded
symplectic distribution instead of the expected
orthogonal.

m Knightly and Reno [KR18] also found that weights
affect the convergence.

AD
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Weights (Knightly Reno)

m Given a primitive real Dirichlet character x of modulus
D > 1 and r > 0 relatively prime to D. For a
holomorphic newform, define the weight

A (3. fxx) lar(r)?

112
for the completed L-function A(s, f x x)

Theorem (J[KR18

For Fn = Fx(N)™ (N + k — oo as n — oo), we have

Wr =

B(x)Wey(x) dx,  if x is trivial,
- Tier, Dilf. )W _ /,oo ”

li = 0o
Lter, Wi / d(x)Wo(x) dx, if x is nontrivial.

n—oo
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Our Work

m For ease of notation, for a function A: F — C, let

. A(f
EulA) = limy o, XD

AAd
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Our Work

m For ease of notation, for a function A: F — C, let

. A(f
Ew(A) = limy o —ng;f o

m We generalize this work, computing the n' centered
moments of this one level density.

Ew [(D(f, ¢) — Ew(D(f, ¢)))"]
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Our Work

Theorem (SMALL 2025)

Let ¢ be a Schwartz test function with supp ¢ C (5=, ).
For real Dirichlet character x, we have

Ew [(D(f, ¢) — Ew(D(f, 9)))"]
{(Zm —1)! (f W)yl dy) " if m even,
0 if m odd

m This is in line with [KR18] since Gaussian and
symplectic moments agree on this support.

A7
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Our Work

Proving the above theorem reduces to computing sums of
the following form:

t 4
log pi A<|0gp,) . "
Z, ( %o R¢ log R > w[jl} (p)

(p1,--
itN
T logp; log p; :
- Z /21, ; ¢<I F‘I’> Z HC’"I”/ Ew H/\-(q/')
(p1,-.pr) \i=1 Pi gR g m=m2) \j=1 =1
pi*N sz”I';z(Z)

where H, 1Pi= H/ 1 q}’ The first step to analyzing this sum is
finding a closed form for £y [\.(n)].
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Lemma (SMALL 2025)

For any positive integer n = Hf:1 qu"f ,

Ew[N(n)] = x(n)oq (ged (r, n)) L0 (M) |

vn NG K5

where V is a constant depending on r and D, and o4 is
the divisor sum function.

This was done using Prop 3.1 of Knightly and Reno
([KR18]) and using a similar proof method.
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Our Work

Through a combinatorial argument and swapping sums
and products, we find we have a product of sums with
factors of the form

~(logg\"” x(q)™log" q -
%qs <Iog R> g m jog g Omeny 1 (8 (1. 47))

for specific cases of n; and m.
m We split into the nontrivial and trivial character case

m Main contribution comes from case (m;, n;) = (0, 2) Vj for
both nontrivial and trivial

m In the trivial case, another combinatorial argument and the
binomial theorem are needed



Our Work
0000080

Nontrivial Character Analysis

Case Main Term Error Term
m; + n; > 3 for some j 0 log >R
(mj, n;) = (1,1) for some j 0 o oeleR]
. 0 t odd log log(3N
m;, n;) = (0, 2) for all log log(3N)
(m;, ) = (0.2) / {(t—1)!!(2ag)f/2 t even log A




Our Work
000000

Trivial Character Analysis

Case Main Term Error Term
m; + n; > 3 for some j 0 log ° R
t—2s 2\ °
. t/2 1 _ 0 o log log(3N
m; + n; < 2 for allj 2:&:/0J 25(1”75)! (tss) <¢(2 )> <7¢) gIogg(ﬁ’ :
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Future work

m Verify Gaussian behavior for Knightly and Reno’s
other weight

AN1/2,fx x)N (3, 1)

W =
1£11?

m Extend support of test function used from (-3, L) to

(=7:7)
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