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Summary

o Review Zeckendorf-type decompositions

@ Discuss new approaches to asymptotic behavior of
variance

@ Discuss new results on Gaussian behavior of gaps
between summands
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Definitions: Zeckendorf Decomposition

Theorem (Zeckendorf)

Let { F,} nen denote the Fibonacci numbers with Fy = 1
and F, = 2. Every positive integer can be written uniquely
as a sum of non-consecutive Fibonacci numbers.
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Definitions: Zeckendorf Decomposition

Theorem (Zeckendorf)

Let { F,} nen denote the Fibonacci numbers with Fy = 1
and F, = 2. Every positive integer can be written uniquely
as a sum of non-consecutive Fibonacci numbers.

v

101=89+8+3+1 :F10+F5—|—F3—|—F1

A\

TS »HH




Previous Results
[e]e] lelelele]e]

Definitions: Positive Linear Recurrence Sequence

A Positive Linear Recurrence Sequence (PLRS) is a
sequence {G,} satisfying

Gn = C Gn—1 Heee CLGn—L

with nonegative integer coefficients ¢; with ¢, ¢, L > 1
and initial conditions G; = 1 and
Gh=0¢Gp1+6Gy2+--+C1Gi+1for1 <n< L
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Examples of PLRS

@ Fibonacci numbers: L=2,¢; = ¢, = 1.
G =1,G,=2,G3=3,G,=5,....
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Examples of PLRS

@ Fibonacci numbers: L=2,¢; = ¢, = 1.
G =1,G,=2,G3=3,G,=5,....

©Q Powersofb: L=2,ci=b—-1,c, = b.
Gi=1,G=bG;=b>G,=b%,....
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Examples of PLRS

@ Fibonacci numbers: L=2,¢; = ¢, = 1.
G =1,G,=2,G3=3,G,=5,....

©Q Powersofb: L=2,ci=b—-1,c, = b.
Gi=1,G=bG;=b>G,=b%,....

© d-bonaccinumbers: L=d,ci=¢c,=---=¢c4y =1,
G,=2"""forn<d.
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Definition: Generalized Zeckendorf Decomposition

Definition (Generalized Zeckendorf Decomposition)

Let {G,} be a PLRS and m be a positive integer. Then

N
m = Z aiGny1—i

i=1
is a legal decomposition if a; > 0 and the other a; > 0,
and one of the following conditions holds.
Q@ Wehave N< Land g =c¢;for1 <i<N.
@ There existsan s € {1,..., L} such that
a =Cy,8=Cy...,as 1= Cs_1,8s < Cs, and {b;}N*
(with b; = ag.) is either legal or empty.
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Consider the PLRS:
Gn = SGn_1 + 2Gn_2 + ZGn_4.

Examples of legal decompositions:
@ m=38Gy+2Gsg + Ge +3Gs + G4 + 2G;.
e m=3Gy +2Gs + G +3Gs + G4 + 3G;.
Examples of NOT legal decompositions:
o m=4G@G.
e m=3Gy+2Gg + Gy.
@ m=23Gy +2Gg + 2Geg.

1
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Theorem: Generalized Zeckendorf Decomposition

Let{G,} be a PLRS. Then there is a unique legal
decomposition for every positive integer m.
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Definitions and Notations

@ Probability Space Q,: The set of legal
decompositions of integers in [Gp, Gni1)-

@ Probability Measure: Let each of the G,,1 — G, legal
decompositions be weighted equally.

@ Random Variables K,: Set K,(w) equal to the number
of summands of w € Q.
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Old Result

Theorem (Miller and Wang, 2012)

When {G,} is a PLRS, there exists constants
A B,C,D,~ €(0,1),72 € (0,1) such that

E[K:] = An+ B+ o(v{) (1)
Var[K,] = Cn+ D+ o(73) (2)

@ Proof of (1) is easy.
@ Proof of (2) is hard. Key difficulty: bound of C.




Asymptotic Behavior of Variance
00800000000

Main New Result

When {G,} is a PLRS with length L, there exists Cp, > 0
such that
Var[K;,] > Cnmin- n

foralln > L.
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Definition of Blocks

Definition

e We define a Type 1 block as an integer sequence
corresponding to Condition 1.

@ We define a Type 2 block as an integer sequence
corresponding to Condition 2.

(Example
Gn = 2Gn—1 + 2Gn—2 + 2Gn—4
Suppose m = Gs + 2G3 + Gz + 2G;y, we write the
decomposition into an integer sequence: [1,0,2,1,2].
@ The Type 2 Blocks: [1],[0],[2, 1]
@ The Type 1 Block: [2].
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Definition of Blocks

@ We define the size of a block as the total number of
summands in it.

@ We define the length of a block as the total number of
indices in it.

Gn = 2Gn7‘| + 36{;73 + 2Gn74

A possible Type 2 Block is [2, 0, 3, 1]. It has size 6 and
length 4.
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Key Observations of Type 1 Blocks

Properties:
e It appears at most once in any legal decomposition.

@ It has to be the last block if it does exist.
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Key Observations of Type 1 Blocks

Properties:
e It appears at most once in any legal decomposition.

@ It has to be the last block if it does exist.
So,
@ Type 1 block matters little when nis large.

@ Second to last block has to be a Type 2 block.
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Key Observations of Type 2 Blocks

@ The length of a Type 2 block is fully determined by its
size. So we can define a function ¢(t) such that a
Type 2 block with size t has length /().
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Key Observations of Type 2 Blocks

@ The length of a Type 2 block is fully determined by its
size. So we can define a function ¢(t) such that a
Type 2 block with size t has length /().

e A Type 2 block always has nonnegative size and
strictly positive length.
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Key Observations of Type 2 Blocks

@ The length of a Type 2 block is fully determined by its
size. So we can define a function ¢(t) such that a
Type 2 block with size t has length /().

e A Type 2 block always has nonnegative size and
strictly positive length.

@ A legal decomposition will stay legal if we add a Type
2 block to it or remove a Type 2 block from it.
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For a fixed t, there is a bijection h; between:

e all legal decompositions with total length n and the
second to last block with size t, and

e all legal decompositions with total length n — ((t).

G,=2G,_1 +2G,_2 +0+2G,_a.
m=Gg+ Gs + 2G4 + Gy.

Its block representation: [1],[1],[2,0], [0], [1].
After removing [0]: [1],[1],[2,0], [1].
The resulting legal decomposition: Gs + G4 + 2G5 + Gj.
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e Set Z,(w) equal to the size of the second to last block
for the legal decomposition w € Q,. Then if Z,(w) = t,
we have

Kn((,U) = Kn_g(t)(ht(W)) +t
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e Set Z,(w) equal to the size of the second to last block
for the legal decomposition w € Q,. Then if Z,(w) = t,
we have

Kn((,U) = Kn_g(t)(ht(W)) +t

@ In other words, we get the conditional expectations:

E[Kn’Zn = t] = E[Kn_/(t)] +t

E[K?|Zy = 1] = E[(Kn-iy + 1)°]
= E[Kg—l(z‘)] + 2t E[Kn_/(t)] + t2.




Asymptotic Behavior of Variance
00000000080

Proof of Main Theorem

e We first explicitly choose Cp,». Then, we use strong
induction on nto prove Var[K,] > Cpjs - n.
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Proof of Main Theorem

e We first explicitly choose Cp,». Then, we use strong
induction on nto prove Var[K,] > Cpjs - n.

@ From previous results, we know E[K,| = An+ B+ f(n)
for some f(n) = o(7).
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Proof of Main Theorem

e We first explicitly choose Cp,». Then, we use strong
induction on nto prove Var[K,] > Cpjs - n.

@ From previous results, we know E[K,| = An+ B+ f(n)
for some f(n) = o(7).

@ From induction hypothesis, we can bound E[K,?fg(,)]
by estimating Var[K,_.n] + (E[Knr—i(1)])?.
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Proof of Main Theorem

e We first explicitly choose Cp,». Then, we use strong
induction on nto prove Var[K,] > Cpjs - n.

@ From previous results, we know E[K,| = An+ B+ f(n)
for some f(n) = o(7).

@ From induction hypothesis, we can bound E[K,?fg(,)]
by estimating Var[K,_.n] + (E[Knr—i(1)])?.

@ In inductive step, we will be able to bound Var[K,] by
estimating E[K?] — (E[K])?.
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Further Works

e Can we lift the constraint that the recurrence
relationship is positive linear?




Asymptotic Behavior of Variance
0000000000@

Further Works

e Can we lift the constraint that the recurrence
relationship is positive linear?

@ Can we generalize to more general sequences? Even
without a recurrence relation?
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Further Works

e Can we lift the constraint that the recurrence
relationship is positive linear?

@ Can we generalize to more general sequences? Even
without a recurrence relation?

e Can we define legal decompositions and blocks for
other sequences?

eSS
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Technical Note

For the rest of the talk, assume PLRS refers to
recurrences

Gn = 0 Gn—1 +- CLGn—L

withc, > 0for1 <j < L.

(Previoiusly, we only needed ¢;, ¢, > 0 and ¢; > 0 for
1<i<lL)

YT
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Gaps in Decompositions

Let m be a positive integer with decomposition

N
m= ZaiGN—H—i: Gi, + G, + -+ G,

i=1

and iy > i > --- > Ix. Then the gaps in the decomposition
of m are the numbers I —do,dp — Is, ... Ixk—1 — ik.
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Gaps in Decompositions

Let m be a positive integer with decomposition

N
m= ZaiGN—H—i: Gi, + G, + -+ G,

i=1

and iy > i > --- > Ix. Then the gaps in the decomposition
of m are the numbers I —do,dp — Is, ... Ixk—1 — ik.

The gaps for the decomposition of m =101 are 5,2, 2.

101 :F10+F5+F3—|—F1.
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Gaps in Decompositions

Recall:

@ Let k(m) be the number of summands in the
decomposition of m.

e Let K, be k(m) for an m chosen uniformly in
[Grs Gy 1)-
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Gaps in Decompositions

@ Let k(m) be the number of summands in the
decomposition of m.

e Let K, be k(m) for an m chosen uniformly in
[Gm Gn+1)-

@ Let ky;(m) be the number of size-g gaps in the
decomposition of m.

o Let K; , be ky(m) for an m chosen uniformly in
[Gm Gn+1 )
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Gaps in Decompositions

@ k(m) : number of summands in m
@ Kky(m) : number of size-g gaps in m

101 = Fio+ F5 + F3 + F4

k(101) = 4, kp(101) = 2, k3(101) = ks(101) = 0,
ks(101) = 1
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Gaps in Decompositions

@ k(m) : number of summands in m
@ Kky(m) : number of size-g gaps in m

101 = Fio+ F5 + F3 + F4

k(101) = 4, kp(101) = 2, k3(101) = ks(101) = 0,
ks(101) = 1
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Understand: Distribution of number of summands: K,
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Understand: Distribution of number of summands: K,

Don’t Understand: Distribution of number of size-g gaps:
Kg.n

AR
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Results: Mean and Variance

Kn: number of summands in random m € [Gp, Gp1)

Theorem (Lekkerkerker, 1951)

When {G,} is Fibonacci, E[K,] = Crekn + O(1) for
Crek = = (Clek ~ 0.276)

w241

Theorem (Miller and Wang, 2012)

When {G,} is a PLRS, there exists A > 0, B, and
71 € (0,1) such that E[K,] = An+ B+ O(7]).

Theorem (Miller and Wang, 2012)

When {G,} is a PLRS, there exists C > 0, D, and
72 € (0,1) such thatVar[K,] = Cn+ D + O(~3).




Gaussian Behavior of Gaps
0000000 e000000000

Results: Mean and Variance

Kgy,»: number of size-g gaps in random m € [G,, Gp41)

Theorem (Main Result 1: Lekkerkerker for gaps)

When {G,} is a PLRS, for every integer g > 0, there
exists Aq, By and 41 € (0,1) such that

E[Kg,n] = Agn + By + O(vg). By Bower et al. 2013, Aq is
known for all PLRS {G,} and g.

Theorem (Main Result 2: Variance is linear for gaps)

When {G,} is a PLRS, for every integer g > 0, there
exists Cg, Dy and 4, € (0, 1) such that

A
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Results: Asymptotic Gaussianity

K,: number of summands in random m € [G,,, G 1)
Kgy,n: number of size-g gaps in random m € [G,, Gp41)

Theorem (Kopp, Kologlu, Miller, and Wang, 2011)

When {G,} is Fibonacci, as n — oo, K, approaches
Gaussian.

Theorem (Miller and Wang, 2012)

When {G,} is PLRS, as n — co, K, approaches
Gaussian.

Theorem (Main Result 3: Gaussian Behavior for Gaps)

When {G,} is PLRS, as n — oo, Ky, approaches
Gaussian.
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Results: Summary

Theorem (Main Results, Summary)

The mean 4, and variance a n Of Kg.n grow linearly in n,
and (Kgn — pig.,n)/0gn converges fo the standard normal
N(0,1) as n — oo.

Histogram: k(m) for m in [F_100,F_101) Histogram: k_2(m) for m in [F_100,F_101)
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Proof Sketch

Theorem (Main Result 3: Fibonacci Numbers, g = 2)

When {G,} is Fibonacci, as n — oo, (Ka,n — pi2.n)/02.n
converges to standard normal.

BO)
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Proof Sketch

Theorem (Main Result 3: Fibonacci Numbers, g = 2)

When {G,} is Fibonacci, as n — oo, (Ka,n — pi2.n)/02.n
converges to standard normal.

Let ponk = #{m € [F,, Fri1) with k size-2 gaps}|.
Pr[Kg,,, = k] X P20 k-

Histogram: k_2(m) for m in [F_100,F_101) p_{2,100,k}
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Proof Sketch

Do = #{m € [Fy, Frer) With k size-2 gaps}|.

nik
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Proof Sketch

Do = #{m € [Fy, Frer) With k size-2 gaps}|.

Mk 0 1 2 3 4 5 &
o0 0 o 0o 0 0 0 0O
1 1 0o 0o 0o 0 0 o
2 1 0 0o o0 0 o o
3 1 1 0 0 0 0 o
il o o o o o
s 3 1 1 0 0 o o
6 4 3l 1 0o o0 o o
7 6 i 1 0 0o o
8 9 7 4 1 0 0 0

Ponk = Po.n-1k T P2n-2k-1+P2n3k1— P2,n3k

;
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Proof Sketch

Lemma (Key Lemma)

If ank is a “nice” two dimensional homogenous recurrence

o fo

ank = Z Z lij@n—ik—j

i=1 j=0

for constants t;;, then the random variable X, given by
Pr[X, = k] « anx approaches Gaussian as n — oc.

BA
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Proof Sketch

Lemma (Key Lemma)

If ank is a “nice” two dimensional homogenous recurrence
then the random variable X, given by Pr[ X, = K] x an«
approaches Gaussian as n — oc.

Famous example: apx = an_1 + an_1x_1 gives...

NS
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Proof Sketch

Lemma (Key Lemma)

If ank is a “nice” two dimensional homogenous recurrence
then the random variable X, given by Pr[ X, = K] x an«
approaches Gaussian as n — oc.

Famous example: apx = a1 + @n_1x_1 gives...
the binomials: a,x = (})!

50 choose k

Lag+1a
126414
118+ H
8E413
6413
ae413

e — ..ﬁ”illﬁn

135 7 9111315171921232527293133353739414345474951
K

50 choose k

R
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Proof Sketch

Lemma (Key Lemma)

If a, « is a “nice” two dimensional homogenous recurrence
then the random variable X, given by Pr[ X, = K]  an«
approaches Gaussian as n — oc.

Applications
@ ank = an—1k T An-1 k-1
X, = # heads after n coin flips (Pr[X, = k] = &)
@ ank =an 1kt an2k-1+ an-3k-1— A3k
X, = # size-2 gaps of random m € [Fp,, Fpi1)
(an,k = P2,n.k, Xn = K2,n)

° an,k - an—1,k + an—2,k—1
X, = # summands of random m € [F,, Fpi1)
(Xn — Kn)

L
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Proof Sketch

Lemma (Key Lemma)

If ank is a “nice” two dimensional homogenous recurrence
then the random variable X, given by Pr[ X, = K] x an
approaches Gaussian as n — oc.

Let jin(m) = E[(Xn — 1n)"].

Lemma (Method of Moments)

Suffices to prove

lim ﬁ,,(2nr73 = (2m — 1)l jim

;
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Proof Sketch

fin(m) = Z (Z’) Z Fn,:_:'ti’j “(J+ i — Mn)g fin-i(m—0).

ti j70

BQ
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Proof Sketch

finkm) = Y- (7)) X T2 Gt s ) 1),

ti j70

For each integer m > 0, there exist degree m polynomials
Qom, Qomi1 @and yom, vam+1 € (0, 1) such that

fin(2m) = Qan(n) + O(151)
fin(2m + 1) = Qe (1) + O(1Bms).

Furthermore, if Cop, is the leading coefficient of Qom, then
for all m, Com = (2m —1)11 - CJ.
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Future Work

@ Are there other meaningful two-dimensional
recurrences to which we can apply our asymptotic
Gaussianity result?
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e Can you lift the constraint that every coefficient ¢;
must be positive?
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Future Work

@ Are there other meaningful two-dimensional
recurrences to which we can apply our asymptotic
Gaussianity result?

e Can you lift the constraint that every coefficient ¢;
must be positive?

e What is the rate at which our K; , converges to a
normal distribution?
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