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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t15 t25 t37""

Question: What rules govern the spacings between the ;?

Examples: Spacings between
e Energy Levels of Nuclei.
e Eigenvalues of Matrices.
@ Zeros of L-functions.
@ Summands in Zeckendorf Decompositions.
@ Primes.
@ nfa mod 1.
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Sketch of proofs

In studying many statistics, often three key steps:
@ Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:
Hwn = Enwn
H : matrix, entries depend on system

E, : energy levels
1n . energy eigenfunctions
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Origins (continued)

e Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A’ = A).

A
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Random Matrix Ensembles
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Random Matrix Ensembles

dyy a2 a3 - ain
di2 dx d3 - AN T
A= o . = A, a=g
ainy deny asn -+ ann
Fix p, define

Prob(A) = [ p(ay)

1<i<j<N
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Random Matrix Ensembles

an a2 a3z - an
PR I (L
an aéN aéN “o0 ann
Fix p, define
Prob(A) = [ p(ay)
1<i<j<N
This means
Pov(a-ayclon ) = 1] [ powas
Xi

1<i<j<N ¥ Xi=
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let Abe an N x N matrix with eigenvalues \;(A). Then

Trace(A¥) Z Mi(A,

where

N

Trace(A) = Z 23,1,23,2,3 * jyiy -

i1=1 ix=1
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Eigenvalue Distribution

d(x — Xp) is a unit point mass at xp:
I F(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(x — Xp) is a unit point mass at xp:
I F(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

N .
) = 3o )

b #{A;:;L\/% € [a,b]}
/uA,N(X)dX = N
a

k" moment = ZL )‘i(A)k _ Trace(Ak)
2k N2+ ok NE+H
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1—x% if |x| <1

2
0 otherwise.

pan(x) — {




Density of States
[e] Jele]

SKETCH OF PROOF: Correct Scale

Trace(A%) = > \(A).

By the Central Limit Theorem:

N N
Tl’ace(AZ) = a,/a/, = Zzai ~ N2

i=1 j=1 i=1 j=1
> XA~ NP

Gives NAve()\;(A)?) ~ N2 or Ave(\(A)) ~ V/N.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of 114 n(X) is Trace(AK) /2K Nk/2+1,

Average k-th moment is
Trace(A¥)
2ka/2+1 p aj)aaj.

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oc;

e Control variance (show it tends to zero as N — o).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2/ / ZZ i p(ai1)dais - - - p(ann)dann

- i=1 j=1

Integration factors as

[o.9]
/ a p(aj)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / ak, dak/ = 1.
a

(e D)A(7,j) ) == 0
k<l
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Numerical example: Gaussian density

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
0.025 T T T T

0.015-

0.005

0
-15 -1 -0.5 0 0.5 1 15

500 Matrices: Gaussian 400 x 400

_y2
p(x) = e
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Real Symmetric Toeplitz Matrices
Chris Hammond and Steven J. Miller
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Toeplitz Ensembles

Toeplitz matrix is of the form

by by b, - bn_q
b_y by by - by
b by by -+ bns
bi_n boon bs_n - bo

e Will consider Real Symmetric Toeplitz matrices.
e Main diagonal zero, N — 1 independent parameters.
e Normalize Eigenvalues by v/N.
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Numerical Observations: Thoughts?

1500¢
1250¢
1000y
7507
500¢
250¢
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Eigenvalue Density Measure

The k'™ moment of 4 n(X) is

N

1 P Trace( A¥)
Mi(A,N) = NE D X(A) = TN

=1

Let
Mk = IJim EA [Mk(A, N)],

have M, =1 and My, = 0.
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Even Moments

1
Me(N) = S Y EBi-pbiil i)

1<y, ik <N

Main Term: b;’s matched in pairs, say

Biin—inisl = Blip—ipusls  Xm = lim = ims1| = |inp — Ing1].

Two possibilities:
im - im+1 = in - in+1 or im - im+1 = _(in - in+1)-

(2k — 1)!! ways to pair, 2 choices of sign.

DQ
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Main Term: All Signs Negative (else lower order contribution)

1
Me(N) = S Y EBi-pbiil i)

1<y, ik <N

Let x4, ..., xx be the values of the ]/, /,+1\s €1,...,¢cx the
choices of sign. Define Xy =iy — o, Xo = Ip — 3, . . ...

b = ij— X1

i3 = i1 - }1 — }2

o= =X = — Xox

k
Xt X = Yy (1+e)yx =0, n = £1.

=
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Even Moments: Summary

Main Term: paired, all signs negative.
Mo (N) < (2k — 1)1 + O <1NX> :

Bounded by Gaussian.
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The Fourth Moment

M4(N) = A3 Z E(b|i1—iz\bliz—i3|b\"3—f4\b|i4—i1|)

1<l i3,ig <N

Let X; = |ij — ij41]-
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The Fourth Moment

Case One: Xq1 = Xo, X3 = X4:
i1 — ig = —(i2 — /3) and i3 — i4 = —(i4 — I1)

Implies
Iy = I3, I and iy arbitrary.

Left with E[bZ b2 ]:
N3 — N times get 1, N times get p, = E[b;].

Contributes 1 in the limit.
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The Fourth Moment

MiN) =15 D E(Bi—pibipibp—iabiii))

1<t ip,i3,is <N
Case Two: Diophantine Obstruction: x; = X3 and x> = Xy.
ih—l = —(b—1y) and b —1iz = —(iy — Iy).
This yields
It = b+ig— I3, Iy, 03, 0s € {1,...,N}.

If o, is > 2¥ and i3 < ¥, iy > N: at most (1 — ;- )N® valid
choices.
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The Fourth Moment

‘.

Theorem: Fourth Moment: Let p, be the fourth moment
of p. Then

3 N
500 Toeplitz Matrices, 400 x 400.

Mi(N) = 22 4 0, <l> .

1500
1250
1000
750
500
250
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Main Result

Theorem: HM ’05

For real symmetric Toeplitz matrices, the limiting spectral
measure converges in probability to a unique measure of
unbounded support which is not the Gaussian. If p is
even have strong convergence).

Massey, Miller and Sinsheimer '07 proved that if first row
is a palindrome converges to a Gaussian.
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Block Circulant Ensemble J

With Murat Kologlu, Gene Kopp, Fred Strauch and
Wentao Xiong.

e
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The Ensemble of m-Block Circulant Matrices

Symmetric matrices periodic with period m on wrapped
diagonals, i.e., symmetric block circulant matrices.

8-by-8 real symmetric 2-block circulant matrix:

Cho Ci|C C3|C d3 Co d1
Cq do d1 d2 d3 d4 C3 d2
Cc di|C C|C C3|Cs O
C3 d2 Cq do d1 dg d3 d4
Cy d3 Co d1 Co C|C C3
d3 d4 C3 dg Cq do d1 dg
Co C3 | C4 d3 Co d1 Co Cy
d1 dg d3 d4 C3 d2 Cq do

Choose distinct entries i.i.d.r.v.

e TS -
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Oriented Matchings and Dualization

Compute moments of eigenvalue distribution (as m stays
fixed and N — oo) using the combinatorics of pairings.

Rewrite:
M,(N) = i Z E(ai1 2 Qigi * " aini1)
2 <l <N
1
TN D o n(~)May () -+ M.

where the sum is over oriented matchings on the edges
{(1,2),(2,3),...,(n,1)} of a regular n-gon.
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Oriented Matchings and Dualization

C ¢l ala dle d
Cq do d1 o)) d3 d4 C3 d2
Co di|c ¢ | C3|cCqy O
C3 dg Cq do d1 d2 d3 d4
Cy4 d3 Co d1 Ch C | C (3
O3 dy|Cc3 do|Cy do|dy ab
Co C3 | C4 d3 Co d1 Ch (¢4
a 1 d2 d3 d4 C3 ab Cq do

Figure: An oriented matching in the expansion for M,(N) = Ms(8).
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Contributing Terms

As N — oo, the only terms that contribute to this sum are
those in which the entries are matched in pairs and with
opposite orientation.
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Only Topology Matters

Think of pairings as topological identifications; the
contributing ones give rise to orientable surfaces.

ig iQ

Ay iy
o Z'1 —

Qigi,

a

is

Contribution from such a pairing is m—29, where g is the
genus (number of holes) of the surface. Proof:
combinatorial argument involving Euler characteristic.

A
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Computing the Even Moments

Theorem: Even Moment Formula

Lk/2] 1
Moy = Z eg(K)m=29 4 Oy <N> )

=0

with e4(k) the number of pairings of the edges of a
(2k)-gon giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions
for the e4(k).
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Harer and Zagier

Lk/2]
> eglk)rkt1T9 = (2k — 1)1l ¢(k, r)
g=0
where .
> 1+ x
k+1
1+2kz;c(k,r)x = (1—x> :

Thus, we write

Mo = m- D2k — 1)t e(k, m).

4
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A multiplicative convolution and Cauchy’s residue formula
yield the characteristic function of the distribution.

oy = 3

A
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Results

Fourier transform and algebra yields

Theorem: Kologlu, Kopp and Miller

The limiting spectral density function f,(x) of the real
symmetric m-block circulant ensemble is given by the
formula

fn(X) = 52;—22;"; (21r IZ (r+rsn+ 1)
ggijfgﬂ;(_l)spnx%f

(r+s)!s! 2

As m — oo, the limiting spectral densities approach the
semicircle distribution.
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.

A
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Results (continued)

0.4

Figure: Plot for £, and histogram of eigenvalues of 100 2-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f3 and histogram of eigenvalues of 100 3-block
circulant matrices of size 402 x 402.
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for f; and histogram of eigenvalues of 100 4-block
circulant matrices of size 400 x 400.

[
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Results (continued)

0.4

Figure: Plot for f3 and histogram of eigenvalues of 100 8-block
circulant matrices of size 400 x 400.

[
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Results (continued)

Figure: Plot for f;o and histogram of eigenvalues of 100 20-block
circulant matrices of size 400 x 400.

[
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Results (continued)

Figure: Plot of convergence to the semi-circle.

The Limiting Spectral Measure for Ensembles of Symmetric Block
Circulant Matrices (with Murat Kologlu, Gene S. Kopp, Frederick W.
Strauch and Wentao Xiong), Journal of Theoretical Probability 26
(2013), no. 4, 1020-1060. http://arxiv.org/abs/1008.4812

eSS -



http://arxiv.org/abs/1008.4812

Checkerboard Matrices
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Checkerboard Matrices

e First paper with Paula Burkhardt, Peter Cohen,
Jonathan Dewitt, Max Hlavacek, Carsten Sprunger,
Yen Nhi Truong Vu, Roger Van Peski, and Kevin Yang,
and an appendix joint with Manuel Fernandez and
Nicholas Sieger.

@ Second paper with Ryan Chen, Yujin Kim, Jared
Lichtman, Shannon Sweitzer, and Eric Winsor.

e Third paper with Fangu Chen, Yuxin Lin and Jiahui Yu.

;
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Checkerboard Matrices: N x N (k, w)-checkerboard ensemble

Matrices M = (mj;) = MT with a; iidrv, mean 0, variance
1, finite higher moments, w fixed and

a; ifizjmodk

mj = e
w if i =) mod k.

Example: (3, w)-checkerboard matrix:

w a1 Qo2 w dpa - doN-1
ao W a2 a3 w T a1 N-1

a o a 1 w a3 aa w

anN-1 dN-1 W agn-1 aanN-—1 - w
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Split Eigenvalue Distribution

Scaled Bin Count

10~

I L I L L L I
-0.5 0.0 05 1.0 15 20 25

Figure: Histogram of normalized eigenvalues: 2-checkerboard
100 x 100 matrices, 100 trials.

R
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Split Eigenvalue Distribution

Scaled Bin Count

L L L I
0 1 2 3

Figure: Histogram of normalized eigenvalues: 2-checkerboard
150 x 150 matrices, 100 trials.

OGS -
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Split Eigenvalue Distribution

Scaled Bin Count

0.4

L L L L
0 1 2 3

Figure: Histogram of normalized eigenvalues: 2-checkerboard
200 x 200 matrices, 100 trials.
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Checkerboard Matrices
[ ]

Split Eigenvalue Distribution

Scaled Bin Count

i L L L I
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
250 x 250 matrices, 100 trials.

BQ
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Split Eigenvalue Distribution

Scaled Bin Count

0.2

i L L L L
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
300 x 300 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

I L L L L
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
350 x 350 matrices, 100 trials.
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The Weighting Function

Use weighting function f,(x) = x2"(x — 2)2".

Figure: f,(x) plotted for n € {1,2,3,4}.

RO
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The Weighting Function

Use weighting function f,(x) = x2"(x — 2)2".

05 1.0 15 20

Figure: f(x) plotted for n=4" m e {0,1,...,5}.




Checkerboard Matrices
[

Spectral distribution of hollow GOE

Figure: Hist. of eigenvals of 32000 (Left) 2 x 2 hollow GOE matrices,
(Right) 3 x 3 hollow GOE matrices.

Figure: Hist. of eigenvals of 32000 (Left) 4 x 4 hollow GOE matrices,
(Right) 16 x 16 hollow GOE matrices.

R4
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Anti-Commutator and Checkerboard J

Joint work with Glenn Bruda, Bruce Fang, Raul Marquez,
Beni Prapashtica, Vismay Sharan, Daeyoung Son, Saad
Waheed, and Janine Wang.
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Combining two RMT Ensembles

Is there a natural way to combine two random matrix
ensembles such that

Q All the eigenvalues are real;
@ The combination is symmetric.
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Combining two RMT Ensembles

Is there a natural way to combine two random matrix
ensembles such that

Q All the eigenvalues are real;
@ The combination is symmetric.

Definition
Consider the Anticommutator product, namely

{A B} = AB+ BA.
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Anticommutator of two RMT Ensenbles

@ GOE;
@ Palindromic Toeplitz;
© k-checkerboard.
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Spectral Density of the Anticommutator

Definition (Spectral Density of the Anticommutator)

Theorem (Moments of Spectral Density)

MN,k(XNZN + ZNXN) =K

Tr ( {%(XNZN + ZNXN)] k)] .
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Moments of {GOE, PTE}

Can we compute the moments of the Spectral distribution
of the anticommutator of two ensembles GOE, PTE?

Spectral Density of {GOE, PT}, N=1000

0.035

0.03

0.025

Spectral Density
=4
o
N

0.015

0.01

0.005

0
Eigenvalue

2th
3th
4th
5th
6th
7th
8th

moment:
moment:
moment:
moment:
moment:
moment:
moment:

2.005185
-0.000116
12.220592
-0.659222
110.056541
2.953869
1177.779577

Figure: Moments of
{GOE, PTE}
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Anticommutator of Checkerboards

What is the limiting spectral distribution of the
anticommutator of k-checkerboard and j-checkerboard?

2 TTTSTSLSSSSSSSSSSSSEEEESEESSSSSSEEEE
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Multiple Regimes

Spectral Density of

Figure: Multiple Regimes

One bulk and five smaller regimes (blip regimes).

y




A Closer Look
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‘Spectral Density of {2-checkerboard, 3-checkerboard}

Spectral Density

oL cottane__nlllh,
'

o
Eigenvalue

Figure: Intermediary Blips

1 —

Spectral Density

x107

Spectral Density of N=4500

6735

674 6745 675 6755 676 6765 677
Eigenvalue x10°

Figure: Largest Blip
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Limiting Spectral Distribution

Observation
Numerical simulation tells us location of 5 blip regimes:

(4 NT,2 + ©(N) (1 blip eigenvalue);
Q +! [1_ 1_ N3/2 + ©(N) (k — 1 blip eigevalues);
o f / N3/2 + ©(N) (j — 1 blip eigenvalues).

€

Standard techniques fail to find centered distribution —
construction of weight functions.
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Definitions

We focus on the spectral distribution of the largest blip.

The empirical largest blip spectral measure of
{AN, BN}:

, 2 N2
JKX — N
e ()= > G (W) ’ (X ) (Tj» |
) eigenvalues

where g&"(x) = x2"(2 — x)2", n(N) = log log(N).
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Weight Function for Largest Blip Regime

Figure: go(x)'% = x190(2 — x)100

y
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Moments of the Empirical Largest Blip Spectral Measure

The m" moment of the largest blip spectral measure is

= [MEZ\]/)\/:BN}] = Z C(m, mya, Mag, Myp, Map)

My a+Myp+Mpa+Mpp=m;
my4,Myp €VEN

1 Mia+2mMp,

where C(m, Mya, Mpa, Myp, Mop) =
myq ,+m-
m| g m2 182 1b_2(m23+m2b)m1a”m1b”
C\ Uk myg!myptmog!mop! ’

myp+2myyp

y
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