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Statement

Let A be a finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:aj,a €A}
@ Difference set: A—A = {a; — a; : aj,a € A}.
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Statement

Let A be a finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:aj,a €A}
@ Difference set: A—A = {a; — a; : aj,a € A}.

Definition

We say A is difference dominated if |A — A| > |A + A|, balanced
if A — A| = |A+ A] and sum dominated (or an MSTD set) if
IA+A > |A-A.
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Questions

We expect generic set to be difference dominated:
@ Addition is commutative, subtraction isn't.
@ Generic pair (x,y) gives 1 sum, 2 differences.

B




Introduction
°

Questions

We expect generic set to be difference dominated:
@ Addition is commutative, subtraction isn't.
@ Generic pair (x,y) gives 1 sum, 2 differences.

@ Do there exist sum-dominated sets?

@ If yes, how many?
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Examples
@ Conway: {0,2,3,4,7,11,12,14}.
@ Marica (1969): {0,1,2,4,7,8,12,14,15}.

@ Freiman and Pigarev (1973): {0,1,2,4,5, 9,12,13,
14,16,17, 21,24, 25,26, 28, 29}.

@ Computer search of random subsets of {1,...,100}:
{2,6,7,9,13,14,16,18,19,22, 23, 25, 30, 31, 33,37, 39,
41,42 45 ,46,47,48,49,51,52, 54,57,58,59,61, 64, 65,
66,67,68,72,73,74,75,81,83,84,87,88,91, 93,94, 95,
98,100}.

@ Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation
If A is an arithmetic progression, [A + A| = |A —A|.

Proof:
® WLOG,A={0,1,...,n} as A — aA + § doesn’t change
IA+A| [A-A|

@ A+A=1{0,...,2n},A— A= {—n,...,n}, both of size
2n + 1. g
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Previous Constructions

Many constructions perturb an arithmetic progression.

Example:
@ MSTDsetA=1{0,2,3,4,7,11,12 14}.

@ A={0,2}U{3,7,11} U (14 — {0,2}) U {4}.
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Notation

@ Define [a,b] ={k € Z:a <k <b}.

@ Ais a P2-set if its sumset A + A and difference set A — A
contain all but the first and last n possible elements (may
or may not contain some of fringe elements).

@ AP/-setisasetwhere A+A+A+AandA+A—-A—-A
each contain all but the first and last n elements.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A=LUR an MSTD, Pﬁ-set, Ok is k consecutive elements, M
no runs of k missing elements, then A" = L U Oy UM UO; UR’
an MSTD set and at least C2" /r* of subsets of {0,...,r — 1}
are MSTD.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A=LUR an MSTD, Pﬁ-set, Ok is k consecutive elements, M
no runs of k missing elements, then A" = L U Oy UM UO; UR’
an MSTD set and at least C2" /r* of subsets of {0,...,r — 1}
are MSTD.

Proof: If M never misses k consecutive elements, have all
possible sums/differences.
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A=LUR an MSTD, Pﬁ-set, Ok is k consecutive elements, M
no runs of k missing elements, then A" = L U Oy UM UO; UR’
an MSTD set and at least C2" /r* of subsets of {0,...,r — 1}
are MSTD.

Proof: If M never misses k consecutive elements, have all
possible sums/differences.
OK if have at least one in blocks of k /2 elements, yields
percentage in {0,...,r — 1} is

r/4
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Large Explicit Family

Theorem (Miller-Orosz-Scheinerman)

A=LUR an MSTD, Pﬁ-set, Ok is k consecutive elements, M
no runs of k missing elements, then A" = L U Oy UM UO; UR’
an MSTD set and at least C2" /r* of subsets of {0,...,r — 1}
are MSTD.

Proof: If M never misses k consecutive elements, have all
possible sums/differences.
OK if have at least one in blocks of k /2 elements, yields
percentage in {0,...,r — 1} is

r/4

1 1 \®2
> Z 22k (1 2k/2> :
k=n

Ok and O, completely determined. If k grows with n, cannot

have a Eositive Eercentage.
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Constructing Setswith |[A+A+A+A > |A+A—-A—-A]

@ Begin by searching for a single set with
IA+A+A+A>A+A-A-A|

@ Generate random subsets of [1, 40], include each number
with probability 1/4, and check if the generated set has the
desired property.

@ Two million trials yield
{6,7,9,10,13,32,35, 36,38, 39,40},

which has |[A+ A+A+A|=136and |A+A—-A—A| =135.
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Constructing Infinite Families |[A+A+A+A|>A+A-A—-A]

To use one set to create a large infinite family of sets we
modified Miller, Orosz, and Scheinerman’s construction. The
set must satisfy two properties:

@ The setis a subset of [1, 2n] containing 1 and 2n.
@ The set must be a P} set.
Some work yields

A = {1,2,4,5,8,27,30,31,33,34,35,50,
51,53,54,57,76,79,80,82,83,84} C [1,2n]

with these desired properties.
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Constructing Infinite Families, Continued

Our new set allows us to prove the following result:

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1, n] with |2A + 2A| > |2A — 2A| is
at least C /n*/3.

Proof: Modify method of Miller-Orosz-Scheinerman.

Better Proof: Use results on length of consecutive heads in coin
tosses and replace 4/3 with 2/3.




Results
[ ]

Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1, n] with |2A + 2A| > |2A — 2A|is
at least C/n", where r = £ log,(256,/255) < .001.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1, n] with |2A + 2A| > |2A — 2A|is
at least C/n", where r = £ log,(256,/255) < .001.

Proof: A=LUR, consider A’ =LUO; UM UO, UR’.

@ O’s show up in sums/differences at least in pairs, unless
withL+L+L R +R'+RorL+L—-R’.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1, n] with |2A + 2A| > |2A — 2A|is
at least C/n", where r = £ log,(256,/255) < .001.

Proof: A= LUR, consider A’ =LUO; UM UO, UR’.
@ O’s show up in sums/differences at least in pairs, unless
withL+L+L R +R'+RorL+L—-R’.
@ Eachof L+L+L,R"+R'+R’and L + L — R’ contain a
run of 16 elements in a row.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1, n] with |2A + 2A| > |2A — 2A|is
at least C/n", where r = £ log,(256,/255) < .001.

Proof: A=LUR, consider A’ =LUO; UM UO, UR’.

@ O’s show up in sums/differences at least in pairs, unless
withL+L+L R +R'+RorL+L—-R’.

@ Eachof L+L+L,R"+R'+R’and L + L — R’ contain a
run of 16 elements in a row.

@ Can relax the MOS structure (each O was k consecutive
elements); if each O has no run of 16 missing elements
and 20 full for both O’s, get all sums/differences.
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Constructing Infinite Families, Improved

Theorem (MPR)

There is a constant C > 0 such that as n goes to infinity, the
percentage of subsets A of [1, n] with |2A + 2A| > |2A — 2A|is
at least C/n", where r = £ log,(256,/255) < .001.

Proof: A=LUR, consider A’ =LUO; UM UO, UR’.

@ O’s show up in sums/differences at least in pairs, unless
withL+L+L R +R'+R’orL+L—-R".

@ Eachof L+L+L,R"+R'+R’and L + L — R’ contain a
run of 16 elements in a row.

@ Can relax the MOS structure (each O was k consecutive
elements); if each O has no run of 16 missing elements
and 20 full for both O’s, get all sums/differences.

@ Replace the 1/2% from the Os in MOS with a better
exponent.
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Selecting the Difference Between Sumset and Difference Set

We can construct a set Sy such that the difference between the
sumset and the difference set of Sy is x for any integer x.

Theorem (MPR)

Given x € Z there exists Sx C [0,157|x|] with
|2Sx + 2Sx| — |2Sx — 2Sx| = x. For large X, there exists
Sx C [0,35|x]].

Proof: Start with S; with x = 1. Shift and amalgamate gives Ss,
and repeat with shifts of S; and get Sy for x = 1 mod 4.

Cull the Sy's to move backwards to get missing x mod 4.
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When is a Set Sum-Dominated?

Initial observations: sets including 0 and primes up to p for
small primes p are difference-dominated.

@ Butalso, typically |A +A| — |A — A| = |2A + 2A| — |2A — 2A|
= |[4A + 4A| — |[4A — 4A| = |8A + 8A| — [8A — 8A| =
|16A + 16A| — |16A — 16A|, and continued to hold in higher
sums including |[1024A + 1024A)|.
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Initial observations: sets including 0 and primes up to p for
small primes p are difference-dominated.

@ Butalso, typically |A +A| — |A — A| = |2A + 2A| — |2A — 2A|
= |[4A + 4A| — |[4A — 4A| = |8A + 8A| — [8A — 8A| =
|16A + 16A| — |16A — 16A|, and continued to hold in higher
sums including |[1024A + 1024A)|.

@ True for all checked sets containing 0 and {primes +1}
and even random (normalized sets) tested.
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When is a Set Sum-Dominated?

Initial observations: sets including 0 and primes up to p for
small primes p are difference-dominated.

@ Butalso, typically |A +A| — |A — A| = |2A + 2A| — |2A — 2A|
= |[4A + 4A| — |[4A — 4A| = |8A + 8A| — [8A — 8A| =
|16A + 16A| — |16A — 16A|, and continued to hold in higher
sums including |[1024A + 1024A)|.

@ True for all checked sets containing 0 and {primes +1}
and even random (normalized sets) tested.

@ Only occasional exception: |A + A| — |A — A| sometimes
different. All other differences are equal.
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When is a Set Sum-Dominated?

A |A=a| A ALACALT] A A-A-AY A= an) |4a-48) LS |BA-RA| [1BA* 1684 [16A-18A|
: ] - 14 M [ | ] : W el 23
sl -} 43 83 8y 17 hLc] 7 384
5 L1 5 9 103 201 gy an "5
3 & &7 128 135 264 amt 53 543
ar 08 75 144 15 a9 E ] ] 60T
a8 o -] 173 183 37 a7 [y 8
£ 24 15 244 =1 Adh 483 g a2
58 10 123 234 247 482 435
5 27 uy ars 205 5N & ME3 183
2 3 a8 &7 a3 L] 189 LAl
n i B0 B 124 127 g 268
40 43 88 L 184 187 am B
4 55 105 1 27 sl 441 a7
61 a7 115 139 nr B Ll
1] kL] 150 159 310 R a5
- ] TR wr ane i) TEd TBY
3 14, ns nr 235 457 475 a7 855
4.65.12,14,16.20, § 1 112 127 40 2565 49 &1 008 1023
1 3,0,68,12,14,18.30, [N - 137 7 7 20 ] =it ] 1 134
{Normalead) Randes
10,4,5.8} = o a ol as &0 ¥ a7 g T
WALET.8 18 17 2 3 64 & 138 1 255 257
.23 % 2 2] &+ 4 5 At %0 181 a0 an
0.9.23 e 0 58 a8 122 128 250 257 B0G 83
10.3,5 ) 3 ™ n 168 1681 326 -] Ba2 885
10 3, 5, 41 B " 0w 207 an 423 o7 855 B85
0.3 * 5 L) m 138 141 282 7 570 5715




Open Problems
°

Questions Raised

@ Does this property hold for all sets with probability 1?

@ Originally, this looked to be something unique to the sets of
primes, but that was not the case. Are sets including
primes interesting or unique in any other way?
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