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Introduction
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Statement

S finite set of integers, |S| its size. Form

Sumset: S + S = {ai + aj : aj , aj ∈ S}.
Difference set: S − S = {ai − aj : aj , aj ∈ S}.
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Statement

S finite set of integers, |S| its size. Form

Sumset: S + S = {ai + aj : aj , aj ∈ S}.
Difference set: S − S = {ai − aj : aj , aj ∈ S}.

Definition
We say S is difference dominated if |S − S| > |S + S|,
balanced if |S − S| = |S + S| and sum dominated (or an
MSTD set) if |S + S| > |S − S|.
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Expect generic in Z set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.
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Expect generic in Z set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.

Sum Dominated sets are rare but do occur.
Conway: {0, 2, 3, 4, 7, 11, 12, 14}
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Intuition

Key Idea: In the Z case, fringe matters most, middle
sums and differences are present with high
probability.
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Intuition

Key Idea: In the Z case, fringe matters most, middle
sums and differences are present with high
probability.

If we choose the "fringe" of S cleverly, the middle of S
will become largely irrelevant. - Martin, O’Bryant 2007
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Intuition

Key Idea: In the Z case, fringe matters most, middle
sums and differences are present with high
probability.

If we choose the "fringe" of S cleverly, the middle of S
will become largely irrelevant. - Martin, O’Bryant 2007

In a finite group there is no fringe. So the "largely
irrelevant" is the only thing that can be relevant.
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Main Result
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Theorem
Let G be a group and let S ⊆ G. As |G| → ∞
P(S + S = S − S = G) → 1.

Thus, as an immediate consequence, most set are
balanced in finite groups.
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Proof

Let g ∈ G.

We will first compute P(g /∈ S + S).
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Proof

Let g ∈ G.

We will first compute P(g /∈ S + S).

P(g /∈ S + S) = P(x /∈ S ∨ y /∈ S ∀x , y ∈ G s.t. xy = g)
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Proof

Let g ∈ G.

We will first compute P(g /∈ S + S).

P(g /∈ S + S) = P(x /∈ S ∨ y /∈ S ∀x , y ∈ G s.t. xy = g)

This is not entirely trivial to compute since there are some
slight dependency issues for example when we have
xy = zx = g.
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Proof Continued

Let a1a2 = a2a3 = · · · = an−1an = ana1 = g where ai ∈ G
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Proof Continued

Let a1a2 = a2a3 = · · · = an−1an = ana1 = g where ai ∈ G

Claim: The number of subsets S of the "chain" elements
{a0, a1, . . . , an} such that g /∈ S + S is the nth Lucas
number.
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Proof Continued

Let a1a2 = a2a3 = · · · = an−1an = ana1 = g where ai ∈ G

Claim: The number of subsets S of the "chain" elements
{a0, a1, . . . , an} such that g /∈ S + S is the nth Lucas
number.

To see this we look at a n-sided polygon.

The number of subsets such that g /∈ S +S is equal to the
number of ways we can color the vertices of an n-polygon
red or blue such that no two adjacent vertices are blue.
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For example, here we have a possible coloring for a chain
corresponding to 7̄ ∈ Z/8Z.

Blue signifies that element is in S.
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Let n1, n2, . . . , nm be all the size of "chains" that we get for
g ∈ G.
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Let n1, n2, . . . , nm be all the size of "chains" that we get for
g ∈ G.

Since the "chains" partition the group we know that
∑

ni = |G|.
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Let n1, n2, . . . , nm be all the size of "chains" that we get for
g ∈ G.

Since the "chains" partition the group we know that
∑

ni = |G|.

We also know that the nth Lucas Number is given by
L(n) = φn + (−1/φ)n where φ is the golden ratio.

Thus, the nth lucas number can be bounded above by
L(n) < 1.8n.
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P(g /∈ S + S) =

∏

L(ni)

2|G|
≤

1.8
∑

ni

2|G|
=

(

1.8
2

)|G|
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P(g /∈ S + S) =

∏

L(ni)

2|G|
≤

1.8
∑

ni

2|G|
=

(

1.8
2

)|G|

P(S + S 6= G) = P(∪g∈Gg /∈ S + S)

≤
∑

g∈G

P(g /∈ S + S)

≤ |G|(1.8/2)|G|
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P(g /∈ S + S) =

∏

L(ni)

2|G|
≤

1.8
∑

ni

2|G|
=

(

1.8
2

)|G|

P(S + S 6= G) = P(∪g∈Gg /∈ S + S)

≤
∑

g∈G

P(g /∈ S + S)

≤ |G|(1.8/2)|G|

So as |G| → ∞ we have that P(S + S 6= G) = 0. �
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Why the Dihedral Group is Special
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Recall that in the integer case there exists many more
difference dominated sets than sum dominated sets.

This is no longer necessarily the case in finite groups.
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Recall that in the integer case there exists many more
difference dominated sets than sum dominated sets.

This is no longer necessarily the case in finite groups.

Conjecture: For any Dihedral Group, there exists more
sum dominated subsets than difference dominated
subsets.
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Some Intuition on Why This Should Be True

We know that a presentation for the dihedral group is D2n

is 〈a, b|an = abab = b2 = e〉.

The thing to notice is that at least half the elements in D2n

are of order 2.

So for many elements x = x−1
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Some more intuition

Let S ⊆ D2n
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Some more intuition

Let S ⊆ D2n

Let S = R ∪ F where R is the set of rotations in S and F
is the set of flips in S.
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Some more intuition

Let S ⊆ D2n

Let S = R ∪ F where R is the set of rotations in S and F
is the set of flips in S.
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Some more intuition

Let S ⊆ D2n

Let S = R ∪ F where R is the set of rotations in S and F
is the set of flips in S.

Note that the difference in what contributes to the sumset
and diffset is R − R which contributes to the diffset and
−R + F and R + R which contribute to the sunset.
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Sum Dominated Sets vs Difference Dominated Sets
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Sum Dominated Sets vs Difference Dominated Sets
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Conclusion

A fInite group acts different than the integers because a
finite group does not have fringe elements .
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Conclusion

A fInite group acts different than the integers because a
finite group does not have fringe elements .

However, if we let S be a random subset such that for
each element in g ∈ G, P(g ∈ S) = 1/|G| then trivially
P(S + S = G) < 1.
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Conclusion

A fInite group acts different than the integers because a
finite group does not have fringe elements .

However, if we let S be a random subset such that for
each element in g ∈ G, P(g ∈ S) = 1/|G| then trivially
P(S + S = G) < 1.

So a question to ask is, with what constant probability
does the phase transition occur.
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