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Background

Given a set A C Z, define the sumset and difference set

A+A = {a+b:abe A}
A—A = {a—b:abe A}

Definition

If A+ Al >|A-A
IFJA+ A =]A—A
If A+ A <|A—A

, A is said to be sum-dominated.
, A is said to be balanced.
, A is said to be difference-dominated.
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Background

@ Addition commutes, subtraction doesn't.

“Even though there exist sets A which have more sums than
differences, such sets should be rare, and it must be true with the
right way of counting that the vast majority of sets satisfies
[A—Al > |A+ A"

—Melvyn Nathanson
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Known results

Theorem (Martin and O'Bryant, 2006)

A positive proportion of sets of integers are sum-dominated, in the
sense that the quantity

# of sum-dominated subsets of {1,...,n}

lim inf
00 2
is positive.
Equivalent: if we pick a subset of {1,..., n} uniformly at random,

the probability of being sum-dominated is nonzero as n — oo.
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Known results

What's going on?
@ “Fringe” elements are most important.

o Large numbers and small numbers have fewer representations
as sums than numbers in the middle.
e Think of rolling two dice — more ways to get 7 than 12.

o If Ais big, then almost every possible sum and difference is
realized.
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Known results

@ What if we pick random subsets in a different way?

e Construct A C {1,...,n} C Z randomly by picking each
element independently with probability p(n).
o Uniform case corresponds to p(n) = 1/2 constant.

o Let p(n) decay to 0 as n — oo (smaller sets are more likely to
be picked).
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Known results

@ What if we pick random subsets in a different way?

e Construct A C {1,...,n} C Z randomly by picking each
element independently with probability p(n).
o Uniform case corresponds to p(n) = 1/2 constant.

o Let p(n) decay to 0 as n — oo (smaller sets are more likely to
be picked).

Theorem (Hegarty and Miller, 2009)

Let AC {1,...,n} C Z be chosen randomly in this way where
p(n) = o(1). Then

Prob (A is difference-dominated) — 1 as n — oc.




Introduction
oooooe

New setting

@ Look at subsets A C Z/nZ (i.e., take sums and differences
modulo n).

o No fringe elements!
e Construct randomly according to decaying probability p(n).

e Try to avoid sumsets and difference sets being full.
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Notation

Let X(n) and Y(n) be random variables depending on n. We write
X(n) ~ Y(n) if, for every € > 0,

X(n)
Prob(‘y(n) —1‘ <e> —1as n— oco.
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Our result (full statement)

Theorem (HLM, 2016)
Let A C Z/nZ be chosen randomly according to a binomial
parameter p(n) = o(1).
o (Fast decay) If p(n) = o(n1/2), then |A + A| ~ 1(np(n))?
and |A — A| ~ (np(n))>.

o (Critical decay) If p(n) = c - n~1/2, then
|A+ Al ~ (1 —exp(—c?/2))n and |A— A| ~ (1 — exp(—c?))n.

o (Slow decay) If v/logn - n='/2 = o(p(n)) and n is prime, then
A+ Al ~|A—A|l ~n.
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Our result (qualitative statement)

Theorem (HLM, 2016)

Let A C Z/nZ be chosen randomly according to a binomial
parameter p(n) = o(1).

o (Fast/critical decay) If p(n) = O(n~%/?), then
Prob (A is difference-dominated) — 1 as n — oo.
o (Slow decay) If n=1/2\/log n = o(p(n)) and n is prime, then

Prob (A is balanced) — 1 as n — oo.
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.

Fast /critical decay (p(n) = O(n"1/?))

e Expect |A| ~ np(n).
@ Control number of times a sum or difference is realized more

than once.
o Compute mean number of repeats and bound the variance.
e Modify techniques of Hegarty and Miller.

@ In slow decay case, get

asal ~ (1) = S04 1) ~ Soplny

(A=Al ~ |AI(A[ = 1) ~ (np(n))*.
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Fast /critical decay (p(n) = O(n"1/?))

e Expect |A| ~ np(n).
@ Control number of times a sum or difference is realized more
than once.

o Compute mean number of repeats and bound the variance.
e Modify techniques of Hegarty and Miller.

@ In slow decay case, get

asal ~ (1) = S04 1) ~ Soplny

(A=Al ~ |AI(A[ = 1) ~ (np(n))*.

@ Critical decay case is similar, but a bit more delicate.
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Slow decay (+/logn - nY2 = o(p(n)))

@ No control over number of repeats.

o When p(n) > n=1/2, expect |A| ~ np(n) > n'/2.
o Number of pairs ~ |A|?> > n, but only n possible sums!



@00

Slow decay (+/logn - nY2 = o(p(n)))

@ No control over number of repeats.

o When p(n) > n=1/2, expect |A| ~ np(n) > n'/2.
o Number of pairs ~ |A|?> > n, but only n possible sums!

@ Compute number of missing sums and differences instead.

e Show they are both 0 with high probability.



|dea of proof

e S5¢:=

= number of missing sums.
e D¢

number of missing differences.

e Show E[S€], E[D¢], Var (5¢), and Var (D¢) all tend to 0 as
n— oo.

e By Chebyshev's inequality, this implies
Prob (5¢ = D¢ =0) — 1 as n — oo.



Comparison with Z

e In Z, E[S¢] and E[D€] don't tend to 0 (Hegarty & Miller).
o Qualitatively different behavior in Z/nZ.

@ In Z, need heavy machinery from probability to prove strong
concentration.

e More elementary arguments in Z/nZ.



Computing E [5€]

o Write
E[ST] = ) Prob(k¢ A+A).
keZ/nZ
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Computing E [5€]

e Each k € Z/nZ can be written as a sum in exactly (n+ 1)/2
disjoint ways.

o This is what separates Z/nZ from Z.
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Computing E [5€]

e Each k € Z/nZ can be written as a sum in exactly (n+ 1)/2
disjoint ways.

o This is what separates Z/nZ from Z.
@ Prob(k ¢ A+ A) = (1 — p?)("*1/2 independently of k.
° E[SC] _ n(l _ p2)(n+1)/2 ~ n(l _ p2)n/2_

o Note: doesn't tend to 0 unless v/Togn - n=1/2 = o(p(n)).



Computing E [D¢]

@ Each k € Z/nZ can be written as a difference in exactly n
different ways.

e Pairs aren't disjoint, so we can’t count them independently like
we did for sums.



Computing E [D¢]

@ Each k € Z/nZ can be written as a difference in exactly n
different ways.

e Pairs aren't disjoint, so we can’t count them independently like
we did for sums.

@ Translate to graph theory.
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Graph theoretic framework

e Modeling Prob (k ¢ A— A).

e Each element of Z/nZ is a vertex, connect ato bif a— b=k
(mod n).

e Example (n =7,k =2):



Computing E [D€]

@ Prob(k ¢ A— A) is the same as the probability that no two
adjacent vertices are in A.

e Equivalent: pick a random subset of {1,...,n}, probability
that it doesn’t contain any consecutive elements.

0
5/\2



Computing E [D¢]

@ Counting problem — probability is

S (e

r=1
2,
~ Z< . )p(lp) :
r=1
e So

o2y
E[D] ~ Z( , )p(lp) .



Proofs

Computing variances

@ Define indicator random variables

1 kgA+A
,Xk =
0 ke A+ A

e 5¢= E: Xk.
keZ/nZ
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@ Define indicator random variables

1 kgA+A
,Xk =
0 ke A+ A

e 5¢= E: Xk.
keZ/nZ



Proofs

Computing variances

@ Define indicator random variables

1 ke A+ A
Xk =
0 ke A+A.
e 5¢= E Xk.
keZ/n.
@ X, are not independent, so

Var(5) = > Var(X)+ D> Cov(X,X).
k€EZ/nZ i#jEL/nZ



Proofs

Computing variances

@ Covariance terms rely on evaluating
Prob(iZ A+ Aand j € A+ A).

@ Graph theory works again!



Proofs

Graph theoretic framework

@ n,i,j fixed.
@ Connect a and b with an edge if a+ b=/ or a+ b=, mod n.
@ Example (n=7,i=2,j=05):

: b
6 ', 3/ D)
/ \
5 2 2 4



Proofs

Computing variances

@ Translate to same counting problem.

e So

Ln/2]
Prob(i g A+Aand jZ A+ A) ~ Y (" i r>p’(1—p)"—f.
r=1

@ In variance expression, this term dominates, giving
Ln/2] n_r
V. Sc ~ 2 r 1— nfr'
ar (5°) Z( r)p( p)

e Var (D€) handled similarly.



Proofs

Getting a good estimate
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Getting a good estimate

@ By comparing to a binomial distribution and using Stirling's
formula, we can get the bound

n*F(n) < 2n*(eP — peP)".

@ Take log and use power series expansion:

1
log(n*F(n)) < logn — Enp2 + O(np?).
@ Tends to —oco provided

log n = o(np?) <= /logn- n"*/? = o(p(n)).
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“Correspondence” principle

@ When p(n) decays rapidly, subsets of Z/nZ behave like
subsets of Z (as n — 0).

@ When p(n) decays slowly, subsets of Z/nZ behave as if p(n)
were constant (as n — 00).
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Open questions

Difference dominatedl ? Balanced

]
) I I
1/n n 12 Viogn - n~1/? 1

p(n)

o What happens when n=1/2 < p(n) < v/Togn- n~/2?

@ Can we extend slow decay analysis to non-prime n?
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