When almost all sets are difference dominated in $\mathbb{Z}/n\mathbb{Z}$

Adam Lott, alott@u.rochester.edu (Joint work with Anand Hemmady and Steven J. Miller)

Department of Mathematics, University of Rochester, Rochester, NY 14627

Integers Conference University of West Georgia October 7, 2016

Background

Given a set $A \subset \mathbb{Z}$, define the *sumset* and *difference set*

$$A + A := \{a + b : a, b \in A\}$$

 $A - A := \{a - b : a, b \in A\}$

Definition

If |A + A| > |A - A|, A is said to be sum-dominated.

If |A + A| = |A - A|, A is said to be balanced.

If |A + A| < |A - A|, A is said to be difference-dominated.

• Addition commutes, subtraction doesn't.

"Even though there exist sets A which have more sums than differences, such sets should be rare, and it must be true with the right way of counting that the vast majority of sets satisfies |A-A|>|A+A|."

-Melvyn Nathanson

Known results

Theorem (Martin and O'Bryant, 2006)

A positive proportion of sets of integers are sum-dominated, in the sense that the quantity

$$\liminf_{n\to\infty}\frac{\text{\# of sum-dominated subsets of }\{1,\ldots,n\}}{2^n}$$

is positive.

Equivalent: if we pick a subset of $\{1, \ldots, n\}$ uniformly at random, the probability of being sum-dominated is nonzero as $n \to \infty$.

Known results

What's going on?

- "Fringe" elements are most important.
 - Large numbers and small numbers have fewer representations as sums than numbers in the middle.
 - Think of rolling two dice more ways to get 7 than 12.
- If A is big, then almost every possible sum and difference is realized.

- What if we pick random subsets in a different way?
- Construct $A \subseteq \{1, \ldots, n\} \subset \mathbb{Z}$ randomly by picking each element independently with probability p(n).
 - Uniform case corresponds to p(n) = 1/2 constant.
 - Let p(n) decay to 0 as $n \to \infty$ (smaller sets are more likely to be picked).

Results

Known results

- What if we pick random subsets in a different way?
- Construct $A \subseteq \{1, ..., n\} \subset \mathbb{Z}$ randomly by picking each element independently with probability p(n).
 - Uniform case corresponds to p(n) = 1/2 constant.
 - Let p(n) decay to 0 as $n \to \infty$ (smaller sets are more likely to be picked).

Theorem (Hegarty and Miller, 2009)

Let $A \subseteq \{1, \ldots, n\} \subset \mathbb{Z}$ be chosen randomly in this way where p(n) = o(1). Then

Prob (A is difference-dominated) $\to 1$ as $n \to \infty$.

New setting

Introduction

- Look at subsets $A \subseteq \mathbb{Z}/n\mathbb{Z}$ (i.e., take sums and differences modulo n).
 - No fringe elements!
- Construct randomly according to decaying probability p(n).
 - Try to avoid sumsets and difference sets being full.

Notation

Introduction

Let X(n) and Y(n) be random variables depending on n. We write $X(n) \sim Y(n)$ if, for every $\epsilon > 0$,

$$\operatorname{\mathsf{Prob}}\left(\left|rac{X(n)}{Y(n)}-1
ight|<\epsilon
ight) o 1 \ ext{as } n o\infty.$$

Our result (full statement)

Theorem (HLM, 2016)

Let $A \subseteq \mathbb{Z}/n\mathbb{Z}$ be chosen randomly according to a binomial parameter p(n) = o(1).

- (Fast decay) If $p(n) = o(n^{-1/2})$, then $|A + A| \sim \frac{1}{2}(np(n))^2$ and $|A A| \sim (np(n))^2$.
- (Critical decay) If $p(n) = c \cdot n^{-1/2}$, then $|A + A| \sim (1 \exp(-c^2/2))n$ and $|A A| \sim (1 \exp(-c^2))n$.
- (Slow decay) If $\sqrt{\log n} \cdot n^{-1/2} = o(p(n))$ and n is prime, then $|A + A| \sim |A A| \sim n$.

Our result (qualitative statement)

Theorem (HLM, 2016)

Let $A \subseteq \mathbb{Z}/n\mathbb{Z}$ be chosen randomly according to a binomial parameter p(n) = o(1).

- (Fast/critical decay) If $p(n) = O(n^{-1/2})$, then
 - Prob (A is difference-dominated) $\to 1$ as $n \to \infty$.
- (Slow decay) If $n^{-1/2}\sqrt{\log n} = o(p(n))$ and n is prime, then
 - Prob (A is balanced) $\rightarrow 1$ as $n \rightarrow \infty$.

• Expect $|A| \sim np(n)$.

- Control number of times a sum or difference is realized more than once.
 - Compute mean number of repeats and bound the variance.
 - Modify techniques of Hegarty and Miller.
- In slow decay case, get

$$|A + A| \sim {|A| \choose 2} = \frac{1}{2} |A| (|A| - 1) \sim \frac{1}{2} (np(n))^2$$

 $|A - A| \sim |A| (|A| - 1) \sim (np(n))^2.$

- Expect $|A| \sim np(n)$.
- Control number of times a sum or difference is realized more than once.
 - Compute mean number of repeats and bound the variance.
 - Modify techniques of Hegarty and Miller.
- In slow decay case, get

$$|A + A| \sim {|A| \choose 2} = \frac{1}{2}|A|(|A| - 1) \sim \frac{1}{2}(np(n))^2$$

 $|A - A| \sim |A|(|A| - 1) \sim (np(n))^2$.

• Critical decay case is similar, but a bit more delicate.

Slow decay $(\sqrt{\log n} \cdot n^{-1/2} = o(p(n)))$

- No control over number of repeats.
 - When $p(n) \gg n^{-1/2}$, expect $|A| \sim np(n) \gg n^{1/2}$.
 - Number of pairs $\sim |A|^2 \gg n$, but only *n* possible sums!

- No control over number of repeats.
 - When $p(n) \gg n^{-1/2}$, expect $|A| \sim np(n) \gg n^{1/2}$.
 - Number of pairs $\sim |A|^2 \gg n$, but only *n* possible sums!
- Compute number of missing sums and differences instead.
 - Show they are both 0 with high probability.

Idea of proof

Introduction

- S^c := number of missing sums.
- D^c := number of missing differences.
- Show $\mathbb{E}[S^c]$, $\mathbb{E}[D^c]$, $Var(S^c)$, and $Var(D^c)$ all tend to 0 as $n \to \infty$.
 - By Chebyshev's inequality, this implies Prob $(S^c = D^c = 0) \rightarrow 1$ as $n \rightarrow \infty$.

Comparison with $\mathbb Z$

- In \mathbb{Z} , $\mathbb{E}[S^c]$ and $\mathbb{E}[D^c]$ don't tend to 0 (Hegarty & Miller).
 - Qualitatively different behavior in $\mathbb{Z}/n\mathbb{Z}$.
- In Z, need heavy machinery from probability to prove strong concentration.
 - More elementary arguments in $\mathbb{Z}/n\mathbb{Z}$.

Write

$$\mathbb{E}\left[S^{c}\right] = \sum_{k \in \mathbb{Z}/n\mathbb{Z}} \mathsf{Prob}\left(k \not\in A + A\right).$$

Computing $\mathbb{E}[S^c]$

- Each $k \in \mathbb{Z}/n\mathbb{Z}$ can be written as a sum in exactly (n+1)/2 disjoint ways.
 - This is what separates $\mathbb{Z}/n\mathbb{Z}$ from \mathbb{Z} .

Computing $\mathbb{E}[S^c]$

Introduction

- Each $k \in \mathbb{Z}/n\mathbb{Z}$ can be written as a sum in exactly (n+1)/2disjoint ways.
 - This is what separates $\mathbb{Z}/n\mathbb{Z}$ from \mathbb{Z} .
- Prob $(k \notin A + A) = (1 p^2)^{(n+1)/2}$ independently of k.
- $\mathbb{E}[S^c] = n(1-p^2)^{(n+1)/2} \sim n(1-p^2)^{n/2}$.
 - Note: doesn't tend to 0 unless $\sqrt{\log n} \cdot n^{-1/2} = o(p(n))$.

Computing $\mathbb{E}[D^c]$

- Each $k \in \mathbb{Z}/n\mathbb{Z}$ can be written as a difference in exactly n different ways.
 - Pairs aren't disjoint, so we can't count them independently like we did for sums.

Computing $\mathbb{E}\left[D^c ight]$

- Each $k \in \mathbb{Z}/n\mathbb{Z}$ can be written as a difference in exactly n different ways.
 - Pairs aren't disjoint, so we can't count them independently like we did for sums.
- Translate to graph theory.

Graph theoretic framework

- Modeling Prob $(k \notin A A)$.
- Each element of $\mathbb{Z}/n\mathbb{Z}$ is a vertex, connect a to b if $a-b\equiv k\pmod n$.
- Example (n = 7, k = 2):

Results

- Prob $(k \notin A A)$ is the same as the probability that no two adjacent vertices are in A.
- Equivalent: pick a random subset of $\{1, \ldots, n\}$, probability that it doesn't contain any consecutive elements.

Counting problem – probability is

$$\sum_{r=1}^{\lfloor n/2 \rfloor} \left[\binom{n-r+1}{r} - \binom{n-r-1}{r-2} \right] p^r (1-p)^{n-r}$$

$$\sim \sum_{r=1}^{\lfloor n/2 \rfloor} \binom{n-r}{r} p^r (1-p)^{n-r}.$$

So

$$\mathbb{E}[D^c] \sim n \sum_{r=1}^{\lfloor n/2 \rfloor} \binom{n-r}{r} p^r (1-p)^{n-r}.$$

Define indicator random variables

$$X_k := \begin{cases} 1 & k \notin A + A \\ 0 & k \in A + A. \end{cases}$$

•
$$S^c = \sum_{k \in \mathbb{Z}/n\mathbb{Z}} X_k$$
.

Define indicator random variables

$$X_k := \begin{cases} 1 & k \notin A + A \\ 0 & k \in A + A. \end{cases}$$

•
$$S^c = \sum_{k \in \mathbb{Z}/n\mathbb{Z}} X_k$$
.

Introduction

Define indicator random variables

$$X_k := \begin{cases} 1 & k \notin A + A \\ 0 & k \in A + A. \end{cases}$$

- $S^c = \sum X_k$. $k \in \mathbb{Z} / n\mathbb{Z}$
- X_k are not independent, so

$$\mathsf{Var}\left(S^c
ight) \ = \ \sum_{k \in \mathbb{Z}/n\mathbb{Z}} \mathsf{Var}\left(X_k
ight) + \sum_{i
eq j \in \mathbb{Z}/n\mathbb{Z}} \mathsf{Cov}\left(X_i, X_j
ight).$$

Covariance terms rely on evaluating

Prob
$$(i \notin A + A \text{ and } j \notin A + A)$$
.

Graph theory works again!

Graph theoretic framework

- *n*, *i*, *j* fixed.
- Connect a and b with an edge if $a + b \equiv i$ or $a + b \equiv j \mod n$.
- Example (n = 7, i = 2, j = 5):

- Translate to same counting problem.
- So

Prob
$$(i \notin A + A \text{ and } j \notin A + A) \sim \sum_{r=1}^{\lfloor n/2 \rfloor} \binom{n-r}{r} p^r (1-p)^{n-r}.$$

In variance expression, this term dominates, giving

$$\operatorname{Var}(S^c) \sim n^2 \sum_{r=1}^{\lfloor n/2 \rfloor} \binom{n-r}{r} p^r (1-p)^{n-r}.$$

Var (D^c) handled similarly.

Getting a good estimate

Key Lemma

Let

$$F(n) := \sum_{r=1}^{\lfloor n/2 \rfloor} \binom{n-r}{r} p^r (1-p)^{n-r}.$$

Then $F(n) = o(1/n^3)$.

Getting a good estimate

Introduction

 By comparing to a binomial distribution and using Stirling's formula, we can get the bound

$$n^3 F(n) \leq 2n^4 (e^p - pe^p)^n.$$

Take log and use power series expansion:

$$\log(n^3 F(n)) \ll \log n - \frac{1}{2} n p^2 + O(n p^3).$$

• Tends to $-\infty$ provided

$$\log n = o(np^2) \Longleftrightarrow \sqrt{\log n} \cdot n^{-1/2} = o(p(n)).$$

"Correspondence" principle

- When p(n) decays rapidly, subsets of $\mathbb{Z}/n\mathbb{Z}$ behave like subsets of \mathbb{Z} (as $n \to \infty$).
- When p(n) decays slowly, subsets of $\mathbb{Z}/n\mathbb{Z}$ behave as if p(n) were constant (as $n \to \infty$).

Open questions

- What happens when $n^{-1/2} \ll p(n) \ll \sqrt{\log n} \cdot n^{-1/2}$?
- Can we extend slow decay analysis to non-prime *n*?

- Anand Hemmady, Steven J. Miller
- University of West Georgia
- Bruce Landman, Florian Luca, Melvyn Nathanson, Jarik Nesetril, Richard Nowakowski
- Williams College
- NSF/SMALL REU
- Williams College Finnerty Fund

References

P. Hegarty and S.J. Miller, "When almost all sets are difference dominated", Random Structures and Algorithms, 35 (2009), no. 1, 118-136. http://arxiv.org/pdf/0707.3417.pdf

G. Martin and K. O'Bryant, "Many sets have more sums than differences" (2006), arXiv: math.NT/0608131. http://arxiv.org/pdf/math/0608131.pdf

M. Nathanson, "Problems in Additive Number Theory, 1" (2006), arXiv: math.NT/0604340. http://arxiv.org/pdf/math/0604340.pdf