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Background

Given a set A ⊂ Z, define the sumset and difference set

A + A := {a + b : a, b ∈ A}
A− A := {a− b : a, b ∈ A}

Definition

If |A + A| > |A− A|, A is said to be sum-dominated.
If |A + A| = |A− A|, A is said to be balanced.
If |A + A| < |A− A|, A is said to be difference-dominated.
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Background

Addition commutes, subtraction doesn’t.

“Even though there exist sets A which have more sums than
differences, such sets should be rare, and it must be true with the
right way of counting that the vast majority of sets satisfies
|A− A| > |A + A|.”

–Melvyn Nathanson
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Known results

Theorem (Martin and O’Bryant, 2006)

A positive proportion of sets of integers are sum-dominated, in the
sense that the quantity

lim inf
n→∞

# of sum-dominated subsets of {1, . . . , n}
2n

is positive.

Equivalent: if we pick a subset of {1, . . . , n} uniformly at random,
the probability of being sum-dominated is nonzero as n→∞.
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Known results

What’s going on?

“Fringe” elements are most important.

Large numbers and small numbers have fewer representations
as sums than numbers in the middle.
Think of rolling two dice – more ways to get 7 than 12.

If A is big, then almost every possible sum and difference is
realized.
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Known results

What if we pick random subsets in a different way?

Construct A ⊆ {1, . . . , n} ⊂ Z randomly by picking each
element independently with probability p(n).

Uniform case corresponds to p(n) = 1/2 constant.
Let p(n) decay to 0 as n→∞ (smaller sets are more likely to
be picked).

Theorem (Hegarty and Miller, 2009)

Let A ⊆ {1, . . . , n} ⊂ Z be chosen randomly in this way where
p(n) = o(1). Then

Prob (A is difference-dominated)→ 1 as n→∞.
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New setting

Look at subsets A ⊆ Z/nZ (i.e., take sums and differences
modulo n).

No fringe elements!

Construct randomly according to decaying probability p(n).

Try to avoid sumsets and difference sets being full.
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Notation

Let X (n) and Y (n) be random variables depending on n. We write
X (n) ∼ Y (n) if, for every ε > 0,

Prob

(∣∣∣∣X (n)

Y (n)
− 1

∣∣∣∣ < ε

)
→ 1 as n→∞.
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Our result (full statement)

Theorem (HLM, 2016)

Let A ⊆ Z/nZ be chosen randomly according to a binomial
parameter p(n) = o(1).

(Fast decay) If p(n) = o(n−1/2), then |A + A| ∼ 1
2(np(n))2

and |A− A| ∼ (np(n))2.

(Critical decay) If p(n) = c · n−1/2, then
|A + A| ∼ (1− exp(−c2/2))n and |A−A| ∼ (1− exp(−c2))n.

(Slow decay) If
√

log n · n−1/2 = o(p(n)) and n is prime, then
|A + A| ∼ |A− A| ∼ n.
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Our result (qualitative statement)

Theorem (HLM, 2016)

Let A ⊆ Z/nZ be chosen randomly according to a binomial
parameter p(n) = o(1).

(Fast/critical decay) If p(n) = O(n−1/2), then

Prob (A is difference-dominated)→ 1 as n→∞.

(Slow decay) If n−1/2
√

log n = o(p(n)) and n is prime, then

Prob (A is balanced)→ 1 as n→∞.
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Fast/critical decay (p(n) = O(n−1/2))

Expect |A| ∼ np(n).

Control number of times a sum or difference is realized more
than once.

Compute mean number of repeats and bound the variance.
Modify techniques of Hegarty and Miller.

In slow decay case, get

|A + A| ∼
(
|A|
2

)
=

1

2
|A|(|A| − 1) ∼ 1

2
(np(n))2

|A− A| ∼ |A|(|A| − 1) ∼ (np(n))2.

Critical decay case is similar, but a bit more delicate.
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Slow decay (
√

log n · n−1/2 = o(p(n)))

No control over number of repeats.

When p(n)� n−1/2, expect |A| ∼ np(n)� n1/2.
Number of pairs ∼ |A|2 � n, but only n possible sums!

Compute number of missing sums and differences instead.

Show they are both 0 with high probability.
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Idea of proof

Sc := number of missing sums.

Dc := number of missing differences.

Show E [Sc ], E [Dc ], Var (Sc), and Var (Dc) all tend to 0 as
n→∞.

By Chebyshev’s inequality, this implies
Prob (Sc = Dc = 0)→ 1 as n→∞.
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Comparison with Z

In Z, E [Sc ] and E [Dc ] don’t tend to 0 (Hegarty & Miller).

Qualitatively different behavior in Z/nZ.

In Z, need heavy machinery from probability to prove strong
concentration.

More elementary arguments in Z/nZ.
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Computing E [S c ]

Write
E [Sc ] =

∑
k∈Z/nZ

Prob (k 6∈ A + A) .
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Computing E [S c ]

Each k ∈ Z/nZ can be written as a sum in exactly (n + 1)/2
disjoint ways.

This is what separates Z/nZ from Z.

Prob (k 6∈ A + A) = (1− p2)(n+1)/2 independently of k .

E [Sc ] = n(1− p2)(n+1)/2 ∼ n(1− p2)n/2.

Note: doesn’t tend to 0 unless
√

log n · n−1/2 = o(p(n)).
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Computing E [Dc ]

Each k ∈ Z/nZ can be written as a difference in exactly n
different ways.

Pairs aren’t disjoint, so we can’t count them independently like
we did for sums.

Translate to graph theory.
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Graph theoretic framework

Modeling Prob (k 6∈ A− A).

Each element of Z/nZ is a vertex, connect a to b if a− b ≡ k
(mod n).

Example (n = 7, k = 2):
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Computing E [Dc ]

Prob (k 6∈ A− A) is the same as the probability that no two
adjacent vertices are in A.

Equivalent: pick a random subset of {1, . . . , n}, probability
that it doesn’t contain any consecutive elements.
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Computing E [Dc ]

Counting problem – probability is

bn/2c∑
r=1

[(
n − r + 1

r

)
−
(
n − r − 1

r − 2

)]
pr (1− p)n−r

∼
bn/2c∑
r=1

(
n − r

r

)
pr (1− p)n−r .

So

E [Dc ] ∼ n

bn/2c∑
r=1

(
n − r

r

)
pr (1− p)n−r .
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Computing variances

Define indicator random variables

Xk :=

{
1 k 6∈ A + A

0 k ∈ A + A.

Sc =
∑

k∈Z/nZ
Xk .

Xk are not independent, so

Var (Sc) =
∑

k∈Z/nZ

Var (Xk) +
∑

i 6=j∈Z/nZ

Cov (Xi ,Xj) .
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Computing variances

Covariance terms rely on evaluating

Prob (i 6∈ A + A and j 6∈ A + A) .

Graph theory works again!
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Graph theoretic framework

n, i , j fixed.

Connect a and b with an edge if a+ b ≡ i or a+ b ≡ j mod n.

Example (n = 7, i = 2, j = 5):
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Computing variances

Translate to same counting problem.

So

Prob (i 6∈ A + A and j 6∈ A + A) ∼
bn/2c∑
r=1

(
n − r

r

)
pr (1−p)n−r .

In variance expression, this term dominates, giving

Var (Sc) ∼ n2
bn/2c∑
r=1

(
n − r

r

)
pr (1− p)n−r .

Var (Dc) handled similarly.
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Getting a good estimate

Key Lemma

Let

F (n) :=

bn/2c∑
r=1

(
n − r

r

)
pr (1− p)n−r .

Then F (n) = o(1/n3).
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Getting a good estimate

By comparing to a binomial distribution and using Stirling’s
formula, we can get the bound

n3F (n) ≤ 2n4(ep − pep)n.

Take log and use power series expansion:

log(n3F (n)) � log n − 1

2
np2 + O(np3).

Tends to −∞ provided

log n = o(np2)⇐⇒
√

log n · n−1/2 = o(p(n)).
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“Correspondence” principle

When p(n) decays rapidly, subsets of Z/nZ behave like
subsets of Z (as n→∞).

When p(n) decays slowly, subsets of Z/nZ behave as if p(n)
were constant (as n→∞).
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Open questions

What happens when n−1/2 � p(n)�
√

log n · n−1/2?

Can we extend slow decay analysis to non-prime n?
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