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https://www.sfgate.com/entertainment/article/

2-000-year-old-man-still-kicking-on-new-dvd-3280712.php

https://www.sfgate.com/entertainment/article/

2-000-year-old-man-still-kicking-on-new-dvd-3280712.php : Carl Reiner (left) and Mel Brooks,

“The 2,000 Year Old Man.” Demont PHoto Management.
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Research Inspired By Carl and Mel

⋄ Inspired by Carl: Avoiding Progressions, Sums, Almost
Perfect Numbers (23 colleagues, 8 papers):
Adam Lott, Ajmain Yamin, Alyssa Epstein, Andrew Best, Asimina S. Hamakiotes, Bruce Fang, Chung-Hang Kwan,

Eduardo Dueñez, Enrique Treviño, Eva Fourakis, Gwyneth Moreland, Gwyneth Moreland, Jasmine Powell, Karen

Huan, Katherine Cordwell, Kimsy Tor, Madeleine Weinstein, Megumi Asada, Nancy Jiang, Nathan McNew, Peter

Cohen, Sarah Manski, Sindy Xin Zhang.

⋄ Inspired by Mel: MSTD (41 colleagues, 22 papers):
Amanda Bower, Andrew Keisling, Archit Kulkarni, Astrid Lilly, Brooke Orosz, Carsten Peterson, Chenyang Sun, Dan

Scheinerman, David Moon, Dylan King, Elena Kim, Fei Peng, Geoffrey Iyer, Guilherme Zeus Dantas e Moura, Hong

Suh, Hung Chu, Jake Wellens, Justin Cheigh, Kevin O’Bryant, Kevin Vissuet, Lily Shao, Liyang Zhang, Luc

Robinson, Matthew Phang, Megumi Asada, Nathan McNew, Noah Luntzlara, Oleg Lazarev, Peter Hegarty, Prakod

Ngamlamai, Ron Evans, Ruben Ascoli, Ryan Jeong, Sarah Manski, Scott Harvey-Arnold, Sean Pegado, Sean

Zhang, Thao Do, Thomas C. Martinez, Victor Luo, Victor Xu.
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Polymath Jr

https://geometrynyc.wixsite.com/polymathreu

Our goal is to provide research opportunities to every
undergraduate who wishes to explore advanced mathematics.
This online program consists of research projects in a variety of
mathematical topics and runs in the spirit of the Polymath
Project. Each project is mentored by an active researcher with
experience in undergraduate mentoring.

Each project consists of 15-25 undergraduates, a main mentor,
and graduate students and postdocs as additional mentors.
The group works towards solving a research problem and
writing a paper. Each participant decides what they wish to
obtain from the program, and participates accordingly. The
program is partially supported by NSF award DMS-2218374.

6

https://geometrynyc.wixsite.com/polymathreu


Avoiding Progressions and Sums MSTDs Thanks

Avoiding Progressions and Sums
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History

In 1961: Rankin: subsets of N avoiding geometric
progressions: {n,nr ,nr 2} and r ∈ N \ {1}.

Simple example: squarefree integers, density
6/π2 ≈ 0.60793.

Greedy construction asymptotic density approximately
0.71974. McNew improved to about 0.72195.

Improved bounds (Riddell, Brown–Gordon,
Beiglböck–Bergelson–Hindman–Strauss,
Nathanson–O’Bryant, McNew) on the greatest possible
upper density of such a set, between 0.81841 and
0.81922.
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Results with Colleagues

Generalized to quadratic number fields.

Generalized to algebraic integers (or ideals).

In an imaginary quadratic field with unique factorization
did algebraic integers avoiding 3-term geometric
progressions.

Generalized to Function Fields and Quaternions
(non-commutative!).
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Rankin’s Greedy Set

Rankin constructed and characterized a “greedy set” that
avoids any 3-term geometric progressions.

1

2 3 ��4 5 6 7 8 ��9 10 11 ��12 . . . .
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Previous work in commutative settings: How does
non-commutivity affect the problem in, say, free groups or
the Hurwitz quaternions H? How does the lack of unique
factorization affect the problem in H?

We construct large subsets of H that avoid 3-term
geometric progressions.

Summer 2025: Polymath Jr: Study Octonions?
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The Goal

Goal: Construct and bound Greedy and maximally sized
sets of quaternions of the Hurwitz Order free of
three-term geometric progressions. For definiteness, we
exclude progressions of the form

Q, QR, QR2

where Q,R ∈ H and Norm[R] ̸= 1.

Polymath Jr 2025: Maybe exclude three terms from

Q, QR, RQ, QR2, RQR, R2Q.
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Lower Bound for the Supremum

For a lower bound, we construct a set with large upper
density. Consider SN =

(
N
48 ,

N
45

]
∪
(

N
40 ,

N
36

]
∪
(

N
32 ,

N
27

]
∪
(

N
24 ,

N
12

]
∪
(

N
9 ,

N
8

]
∪

(
N
4 ,N

]
Then the quaternions with norm in SN have no 3-term
progressions in their norms, and thus no 3-term
progressions in the elements themselves.

By spacing out copies of {q ∈ H : Norm[q] ∈ SN}, we
construct a set with upper density

lim
N→∞

{q ∈ H : Norm[q] ∈ SN}
{q ∈ H : Norm[q] ≤ N}

≈ .946589.
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Sums of Powers (with Enrique Treviño)

Sk(n) = 1k + 2k + · · ·+ nk .

New Proof of Theorem: Let k be a positive integer. There
exists a polynomial gk ∈ Q[x , y ] such that gk(0,0) = 0 and

n∑
m=1

mk = gk(S1(n),S2(n)).

Examples:

S5(n) =
3
2

S2
2(n)−

1
2

S2
1(n).

S6(n) =
12
7

S2
1(n)S2(n)−

6
7

S1(n)S2(n) +
1
7

S2(n).
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Problems for Polymath Jr 2025

How many representations if increase the number of
functions; use Sk for k ≤ K , how many polynomials of
these give Sm(n) for m > K ?

If can only use Sk for k ∈ K which powers doable?

From Suaib Lateef: Claim (proved for small n):

if a1 + · · ·+ an−1 = 2 · n − 2
a2

1 + · · ·+ a2
n−1 = 3 · n − 2

...
an−1

1 + · · ·+ an−1
n−1 = n · n − 2

then an
1 + · · ·+ an

n−1 = (n + 1) · n − 2.
35
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L’Hopital (with Eduardo Duenez and Asimina Hamakiotes)

Use

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x − 1
,

apply x d/dx to each side k times, take limit as x → 1,
use L’Hopital, get formula for sum of k th powers!

Easy to see must be a polynomial of degree k + 1, but
algebra nightmare:

Polymath Jr 2025: Good path thru the algebra? Do d/dx
instead and combinatorics?
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More Sums Than Differences
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Definitions

A finite set of integers, |A| its size. Form
Sumset: A + A = {ai + aj : ai ,aj ∈ A},
Difference set: A − A = {ai − aj : ai ,aj ∈ A}.

Definition
Difference dominated: |A − A| > |A + A|
Balanced: |A − A| = |A + A|
Sum dominated (or MSTD): |A + A| > |A − A|.
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History

What could cause a set to be sum-dominated?
Difference-dominated?

x + x = 2x , but x − x = 0.
x + y = y + x , but x − y ̸= y − x .

Nathanson, Problems in Additive Number Theory. "With
the right way of counting the vast majority of sets satisfy
|A − A| > |A + A|."
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History

Theorem (Martin-O’Bryant): If each set A ⊆ [0,n − 1] is
equally likely, then a positive percentage of sets are
sum-dominant in the limit. More precisely:

lim
n→∞

#{A ⊆ [0,n − 1]; A is sum-dominant}
2n ≈ 0.00045.
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Generalizing Martin-O’Bryant

What if we pick random subsets in a different way?
Construct A ⊆ {1, . . . ,n} ⊂ Z randomly by picking
each element independently with probability p(n).

Uniform case corresponds to p(n) = 1/2 constant.
Let p(n) decay to 0 as n → ∞ (smaller sets are more likely
to be picked).

Theorem (Hegarty and Miller, 2009)
Let A ⊆ {1, . . . ,n} ⊂ Z be chosen randomly in this way
where p(n) = o(1). Then

Prob(A is difference-dominated) → 1 as n → ∞.
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History

Say A ⊆ [0,n − 1], x ∈ A+A if we can find a1,a2 ∈ A such
that a1 + a2 = x .

If x is near n there are many possibilities for a1,a2.

With high probability, the middle is full.

The trick is to control the fringes.

48



Avoiding Progressions and Sums MSTDs Thanks

History

Say A ⊆ [0,n − 1], x ∈ A+A if we can find a1,a2 ∈ A such
that a1 + a2 = x .

If x is near n there are many possibilities for a1,a2.

With high probability, the middle is full.

The trick is to control the fringes.

49



Avoiding Progressions and Sums MSTDs Thanks

History

Say A ⊆ [0,n − 1], x ∈ A+A if we can find a1,a2 ∈ A such
that a1 + a2 = x .

If x is near n there are many possibilities for a1,a2.

With high probability, the middle is full.

The trick is to control the fringes.

50



Avoiding Progressions and Sums MSTDs Thanks

History

Say A ⊆ [0,n − 1], x ∈ A+A if we can find a1,a2 ∈ A such
that a1 + a2 = x .

If x is near n there are many possibilities for a1,a2.

With high probability, the middle is full.

The trick is to control the fringes.

51



Avoiding Progressions and Sums MSTDs Thanks

Notation

As adding sets and not multiplying, set

kA = A + · · ·+ A︸ ︷︷ ︸
k times

.

[a,b] = {a,a + 1, . . . ,b}.
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Questions

Can we find a set A such that |kA + kA| > |kA − kA|?

Can we find a set A such that |A + A| > |A − A| and
|2A + 2A| > |2A − 2A|?

Can we find a set A such that |kA + kA| > |kA − kA|
for all k?
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Questions

Can we find a set A such that |kA + kA| > |kA − kA|?
Yes.

Can we find a set A such that |A + A| > |A − A| and
|2A + 2A| > |2A − 2A|? Yes.

Can we find a set A such that |kA + kA| > |kA − kA|
for all k? No. (No such set exists.)
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Initial Observations

Question: Can we find A with |kA + kA| > |kA − kA|?

One set is enough to show a positive percentage.
How do we find one set?
Computer simulations? We couldn’t find a set for
k = 2; the probability of finding some of these sets is
less than 10−16.

If A is symmetric (A = c − A for some c) then

|A + A| = |A + (c − A)| = |A − A|.
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|A + A| = |A + (c − A)| = |A − A|.
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|2A + 2A| > |2A − 2A|

Example: |2A + 2A| > |2A − 2A|

A = {0,1,3,4,5,9}∪ [33,56]∪{79,83,84,85,87,88,89}
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|2A + 2A| > |2A − 2A|

A + A =[0,9] ∪ {10,12,13,14,18} ∪ [33,145]
∪ {158,162,163,164,166,167} ∪ [168,178]
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|2A + 2A| > |2A − 2A|

A
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|2A + 2A| > |2A − 2A|

A + A
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|2A + 2A| > |2A − 2A|

A + A + A
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|2A + 2A| > |2A − 2A|

A + A + A + A
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|2A + 2A| > |2A − 2A|

A + A
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|2A + 2A| > |2A − 2A|

A + A − A
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|2A + 2A| > |2A − 2A|

A + A − A − A
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k -Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|?

Yes!

A = {0,1,3,4,7,26,27,29,30,33,37,38,40,41,42,43,
46,49,50,52,53,54,72,75,76,78,79,80}

In fact, we can find a k -generational set for all k .
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k -Generational Sets

Idea of proof: We can find Aj such that
|jAj + jAj | > |jAj − jAj | for a specific 1 ≤ j ≤ k .

Combine the Aj using the method of base expansion.
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Limiting behavior of kA

Question: Can we find A with |kA + kA| > |kA − kA| for all
k?

No. No such set exists.

It turns out that all sets have a sort of limiting behavior.
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Stabilizing Fringes

Example: A = {0,3,5,6,8,9,10,11,12,15,16,20}
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Stabilizing Fringes
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|kA − kA| vs. |kA + kA|

Nathanson: For any set A, kA becomes stabilized before
k reaches max(A)2 · |A|.

We improve this bound to max(A).
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|kA − kA| vs. |kA + kA|

Theorem
For any set A, kA becomes difference-dominated or
balanced before k reaches 2 ·max(A).

Proof Idea:
The middle quickly becomes full, and the remaining
fringes are finite.
kA ⊆ kA − kA. Any sum can eventually be written as
a difference.

Because the form stabilizes, this means
kA − kA ⊇ kA + kA when k large.
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Future Work: SMALL / Polymath Jr 2025

Extend to d-dimensional MSTD sets.

More generally, any order and number of (nontrivial)
comparisons.
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Thanks
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