Limiting Behavior in Missing Sums of Sumsets

Rauan Kaldybayev

rk19@williams.edu

Joint work with Aditya Jambhale, Chris Yao aj644@cam.ac.uk, chris.yao@yale.edu

Advised by Steven Miller

sjm1@williams.edu

Workshop on Combinatorial and Additive Number Theory, May 22, 2024

Introduction ●○○○○○○○○○	Our Setup	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion
Introduct	tion					

Given $A \subseteq \mathbb{Z}$, define its sumset • $A + A \coloneqq \{a_1 + a_2 \mid a_1, a_2 \in A\}.$

Introduction ••••••••	Our Setup	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion
Setting						

• Fix
$$N \ge 0$$
. Fix $p \in (0, 1)$, and let $q \coloneqq 1 - p$.

Select A ⊆ [0, N] by a Bernoulli process: for each k ∈ [0, N], independently include k in A with probability p.

• Fix
$$N \ge 0$$
. Fix $p \in (0, 1)$, and let $q \coloneqq 1 - p$.

- Select A ⊆ [0, N] by a Bernoulli process: for each k ∈ [0, N], independently include k in A with probability p.
- Recent research in |A + A| as a random variable.
- Martin and O'Bryant's seminal paper [MO] compared |A + A| to |A A| when p = 1/2.

Introduction	Our Setup	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion	
Why study sumsets?							

- Prove patterns seen from Monte Carlo simulations.
- Might potentially aid other number-theoretic work.

Observed: Divots and Concentration

Figure: Point distribution function $\mathbb{P}(|(A + A)^c| = m)$ for several values of *p*, for *N* very large.

Observed: Divots and Concentration

Figure: Point distribution function $\mathbb{P}(|(A + A)^c| = m)$ for several values of p, for N very large.

- For large *p*, missing an even number appears more likely.
- For small p, we see concentration around the mean.

Observed: Exponential Decay

Figure: Point distribution function $\mathbb{P}(|(A + A)^c| = m)$ and cumulative distribution function $\mathbb{P}(|(A + A)^c| \ge m)$ for several values of *p*, for *N* very large.

CDF appears to decay exponentially.

Introduction Our Setup Ococo Ococo

Prior Work: Mean and Variance

Theorem (Martin and O'Bryant '06 [MO])

If
$$p = \frac{1}{2}$$
, then $\mathbb{E}[|(A + A)^c|] = 10 + O((3/4)^{N/2})$.

Prior Work: Mean and Variance

Theorem (Martin and O'Bryant '06 [MO])

If
$$p = \frac{1}{2}$$
, then $\mathbb{E}[|(A + A)^c|] = 10 + O((3/4)^{N/2})$.

Theorem (Lazarev, Miller, and O'Bryant '13 [LMO])

If $p = \frac{1}{2}$, then for $i < j \le N$ with i, j odd,

$$\mathbb{P}(i \text{ and } j \notin A + A) = \frac{1}{2^{j+1}} F_{q+2}^r F_{q+4}^{r'}$$

for q, r, r' depending on *i* and *j*, and similar formulations hold for the other 3 parity cases.

Prior Work: Exponential Decay

Theorem (Lazarev, Miller, and O'Bryant '13 [LMO])

If $p = \frac{1}{2}$, then

11

$$m(3/4)^{m/2} \ll \mathbb{P}(|(A+A)^c| = m) \ll (\phi/2)^{m/2}$$
 (1)

Introduction	Our Setup	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion
Prior Wo	rk					

• When $p \neq 1/2$, not all subsets are equally likely, and previous methods become hard to implement.

- When $p \neq 1/2$, not all subsets are equally likely, and previous methods become hard to implement.
- Chu, King, Luntzlara, Martinez, Miller, Shao, Sun, and Xu [CKLMMSSX] study sumsets for generic *p*.
- [CKLMMSSX] and [LMO] both use graph-theoretic approaches, particularly the notion of a *condition graph*.

Prior Work

Theorem (King, Martinez, Miller, Sun '19)

For $p \in [0, 1]$ and $q \coloneqq 1 - p$,

$$\mathbb{E}[|\boldsymbol{A}+\boldsymbol{A}|] = \sum_{r=0}^{n} p^{r} q^{n-r} \binom{n}{r} \left(2 \sum_{k=0}^{n-1} \left(1 - \frac{f(k)}{\binom{n}{r}} \right) - \left(1 - \frac{f(n-1)}{\binom{n}{r}} \right) \right),$$

where n = N + 1 and

$$f(k) = \begin{cases} \sum_{i=\frac{k+1}{2}}^{k+1} 2^{k+1-i} {\binom{\frac{k+1}{2}}{i-\frac{k+1}{2}}} {\binom{n-k-1}{r-i}} & \text{for } k \text{ odd} \\ \sum_{i=\frac{k}{2}}^{k} 2^{k-i} {\binom{\frac{k}{2}}{i-\frac{k}{2}}} {\binom{n-k-1}{r-1-i}} & \text{for } k \text{ even.} \end{cases}$$

In particular, where the LHS holds for $p > \frac{1}{2}$,

$$2n-1-2 \ rac{1}{1-\sqrt{2q}}-(2q)^{rac{n-1}{2}} \leq \mathbb{E}[|A+A|] \leq 2n-1-2 \ rac{1-q^{rac{n-1}{2}}}{1-\sqrt{q}}.$$

Introduction	Our Setup	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion

Prior Work

Theorem (King, Martinez, Miller, Sun '19)

For
$$p \in (0, 1)$$
 and $q \coloneqq 1 - p$,

$$Var(|A + A|) = \sum_{r=0}^{n} {n \choose r} p^{r} q^{n-r} \\ \times \left(2 \sum_{0 \le i < j \le 2n-2} 1 - P_{r}(i,j) + \sum_{0 \le i \le 2n-2} 1 - P_{r}(i) \right) \\ - \mathbb{E}[|A + A|]^{2},$$

where n = N + 1,

$$P_r(i) = \mathbb{P}(i \notin A + A \mid |A| = r),$$

and

$$P_r(i,j) = \mathbb{P}(i \text{ and } j \notin A + A \mid |A| = r).$$

- Calculated the mean of P (|(A + A)^c| = m) exactly for generic p.
- Calculated the second moment of P (|(A + A)^c| = m) to leading order in 1/p.

- Calculated the mean of P (|(A + A)^c| = m) exactly for generic p.
- Calculated the second moment of P (|(A + A)^c| = m) to leading order in 1/p.
- Proved concentration in the limit *p* → 0, thanks to a cancellation of leading terms.

- Calculated the mean of P (|(A + A)^c| = m) exactly for generic p.
- Calculated the second moment of P (|(A + A)^c| = m) to leading order in 1/p.
- Proved concentration in the limit *p* → 0, thanks to a cancellation of leading terms.
- Proved exponential bounds for ℙ(|(A + A)^c| = m) for generic p.

- Calculated the mean of P (|(A + A)^c| = m) exactly for generic p.
- Calculated the second moment of P (|(A + A)^c| = m) to leading order in 1/p.
- Proved concentration in the limit *p* → 0, thanks to a cancellation of leading terms.
- Proved exponential bounds for ℙ(|(A + A)^c| = m) for generic p.

This is all in the limit $N \to \infty$.

Introduction Our Setup Mean and variance Higher Moments Exponentia

xponential Decay

Back to the Finite Case

Conclusion

Our Setup

- Instead of considering A ⊆ [0, N] for some natural number N, consider A ⊆ Z_{≥0} chosen randomly via a Bernouli process.
- For any $k \in \mathbb{Z}_{\geq 0}$, include k in A with probability p.

Introduction 00000000000	Our Setup ○●○	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion
_						
Coture						
Seluo						

- Instead of considering A ⊆ [0, N] for some natural number N, consider A ⊆ Z_{≥0} chosen randomly via a Bernouli process.
- For any $k \in \mathbb{Z}_{\geq 0}$, include k in A with probability p.
- With probability 1, A and A^c both include infinitely many elements.

• Only one fringe to worry about.

- Only one fringe to worry about.
- Infinite sums are nice to evaluate.

- Only one fringe to worry about.
- Infinite sums are nice to evaluate.
- Easy to convert to the original "finite case."

- Only one fringe to worry about.
- Infinite sums are nice to evaluate.
- Easy to convert to the original "finite case."
- To check if n ∈ A + A, only need to know about the first n + 1 elements: {0, 1, 2, ..., n}.

Introduction Our Setup

Mean and variance

Higher N

Exponential D

Back to the Finite Case

Conclusion

Mean and variance

Probability of Missing a Specific Summand

• Define $\mathbb{Y} := |\mathbb{Z}_{\geq 0} \setminus (\mathbb{A} + \mathbb{A})|$, the number of missing summands.

Probability of Missing a Specific Summand

Mean and variance

00000000

- Define $\mathbb{Y} := |\mathbb{Z}_{\geq 0} \setminus (\mathbb{A} + \mathbb{A})|$, the number of missing summands.
- For each $i \ge 0$, let \mathbb{X}_i be the indicator variable for $i \notin \mathbb{A} + \mathbb{A}$:

$$\mathbb{X}_i := \begin{cases} 1 & i \notin \mathbb{A} + \mathbb{A} \\ 0 & i \in \mathbb{A} + \mathbb{A}. \end{cases}$$

Higher Moments Exponential Decay

Back to the Finite Case

Conclusion

Introduction

Our Setup

Probability of Missing a Specific Summand

Mean and variance

- Define 𝖞 := |ℤ_{≥0}\(𝔅 + 𝔅)|, the number of missing summands.
- For each $i \ge 0$, let \mathbb{X}_i be the indicator variable for $i \notin \mathbb{A} + \mathbb{A}$:

$$\mathbb{X}_i \coloneqq egin{cases} 1 & i
otin \mathbb{A} + \mathbb{A} \ 0 & i \in \mathbb{A} + \mathbb{A}. \end{cases}$$

Higher Moments Exponential Decay

Back to the Finite Case

Conclusion

- Then $\mathbb{Y} \;=\; \sum_{i=0}^\infty \mathbb{X}_i.$
- To calculate $\mathbb{E}(\mathbb{Y})$, need $\mathbb{E}(\mathbb{X}_i) = \mathbb{P}(i \notin \mathbb{A} + \mathbb{A})$.

Introduction

Our Setup

Our Setup Mean and variance Higher Moments Exponential Decay Introduction 00000000

Back to the Finite Case Conclusion

Probability of Missing a Specific Summand

Like [LMO], for odd n,

 $\{n \notin \mathbb{A} + \mathbb{A}\} = \{(0 \notin \mathbb{A} \text{ or } n \notin \mathbb{A}) \text{ and } \cdots \text{ and } (\frac{n-1}{2} \notin \mathbb{A} \text{ or } \frac{n+1}{2} \notin \mathbb{A})\}$

and for even n,

 $\{n \notin \mathbb{A} + \mathbb{A}\} = \{(0 \notin \mathbb{A} \text{ or } n \notin \mathbb{A}) \text{ and } \cdots \text{ and } n/2 \notin \mathbb{A}\}.$

Introduction Our Setup Mean and variance Higher

Higher Moments Exponential Decay

Back to the Finite Case Conclusion

Probability of Missing a Specific Summand

Like [LMO], for odd n,

 $\{n \notin \mathbb{A} + \mathbb{A}\} = \{(0 \notin \mathbb{A} \text{ or } n \notin \mathbb{A}) \text{ and } \cdots \text{ and } (\frac{n-1}{2} \notin \mathbb{A} \text{ or } \frac{n+1}{2} \notin \mathbb{A})\}$

and for even n,

 $\{n \notin \mathbb{A} + \mathbb{A}\} = \{(0 \notin \mathbb{A} \text{ or } n \notin \mathbb{A}) \text{ and } \cdots \text{ and } n/2 \notin \mathbb{A}\}.$ Hence.

$$\mathbb{P}\left(n \not\in \mathbb{A} + \mathbb{A}\right) = \begin{cases} (1-p^2)^{\frac{n+1}{2}} & n \text{ odd} \\ (1-p)(1-p^2)^{\frac{n}{2}} & n \text{ even.} \end{cases}$$

• By the Monotone Convergence Theorem,

$$\mathbb{E}(\mathbb{Y}) = \sum_{n=0}^{\infty} \mathbb{E}(\mathbb{X}_n) = \sum_{n \text{ odd}} (1-p^2)^{(n+1)/2} + \sum_{n \text{ even}} (1-p)(1-p^2)^{n/2}.$$

By the Monotone Convergence Theorem,

$$\mathbb{E}(\mathbb{Y}) = \sum_{n=0}^{\infty} \mathbb{E}(\mathbb{X}_n) = \sum_{n \text{ odd}} (1-p^2)^{(n+1)/2} + \sum_{n \text{ even}} (1-p)(1-p^2)^{n/2}.$$

PropositionFor $p \in (0, 1)$, $\mathbb{E}(\mathbb{Y}) = \frac{2}{p^2} - \frac{1}{p} - 1.$

Introduction Our Setup Mean and variance Occoso Occ

Conclusion

Probability of Missing Two Specific Summands

• Let $n < m \le N$.

Probability of Missing Two Specific Summands

• Let $n < m \le N$.

• Let $I = \lceil \frac{n+1}{m-n} \rceil$ be the "degree of twistedness".

Probability of Missing Two Specific Summands

• Let $n < m \le N$.

• Let $I = \lceil \frac{n+1}{m-n} \rceil$ be the "degree of twistedness".

Proposition

If m, n, I are all odd,

$$\mathbb{P}(m, n \notin A + A) = (a_{2l+2})^{\frac{(m+1)-l(m-n)}{2}} (a_{2l})^{\frac{l(m-n)-(n+1)}{2}}$$

Similar formulas hold for other parities.

Probability of Missing Two Specific Summands

• Let $n < m \le N$.

• Let $I = \lceil \frac{n+1}{m-n} \rceil$ be the "degree of twistedness".

Proposition

If m, n, I are all odd,

$$\mathbb{P}(m, n \notin A + A) = (a_{2l+2})^{\frac{(m+1)-l(m-n)}{2}} (a_{2l})^{\frac{l(m-n)-(n+1)}{2}}$$

Similar formulas hold for other parities.

Here,
$$a_1 = 1$$
, $a_2 = 1 - p^2$, and

$$a_k = (1-p)a_{k-1} + p(1-p)a_{k-2}.$$
 (2)

$\mathbb{E}\left(\mathbb{Y}^{2} ight)$ as an infinite sum

Proposition

$$\mathbb{E}\left(\mathbb{Y}^{2}\right) = -\left(\frac{2}{p^{2}} - \frac{1}{p} - 1\right) + 2\sum_{l=1}^{\infty} \frac{a_{2l} + (1-p)a_{l-1} + (1-p)a_{l}a_{2l} + (1-p)^{2}a_{l}a_{l-1}}{(1-a_{2l+2})(1-a_{2l})}.$$
(3)

Here, $a_1 = 1$, $a_2 = 1 - p^2$, and

$$a_k = (1-p)a_{k-1} + p(1-p)a_{k-2}$$

Introduction Our Setup Mean and variance Higher Moments Exponential Decay B:

Back to the Finite Case

Conclusion

Asymptotics of the second moment

Proposition

For $p \in (0, 1)$,

$$\mathbb{E}\left(\mathbb{Y}^2\right) = rac{4}{
ho^4} + o(
ho^{-4}).$$

Introduction Our Setup Mean and variance Higher Moments Ex

Exponential Decay

Back to the Finite Case Conclusion

Asymptotics of the second moment

Proposition

For $p \in (0, 1)$ *,*

$$\mathbb{E}\left(\mathbb{Y}^{2}
ight)=rac{4}{
ho^{4}}+o(
ho^{-4}).$$

Figure: Exact values and asymptotic estimate for $\mathbb{E}(\mathbb{Y}^2)$.

Introduction 00000000000	Our Setup	Mean and variance	Higher Moments	Exponential Decay	Back to the Finite Case	Conclusion

Proving concentration

Recall:

Proposition

For $p \in (0, 1)$ *,*

$$\mathbb{E}\left(\mathbb{Y}^{2}\right)=\frac{4}{\rho^{4}}+o(\rho^{-4}).$$

Proposition

For
$$p \in (0, 1)$$
,

$$\mathbb{E}\left(\mathbb{Y}\right)=\frac{2}{p^2}-\frac{1}{p}-1.$$

• Therefore, the standard deviation σ ,

$$\sigma = \sqrt{\mathbb{E}(\mathbb{Y}^2) - \mathbb{E}(\mathbb{Y})^2} = o(\rho^{-2})$$
 (4)

grows asymptotically slower than $\mathbb{E}(Y) \sim 2/p^2$.

Figure: The cumulative distribution function of *Y*, normalized by $\mathbb{E}(Y)$, for N = 800 and p = 0.05, 0.08, 0.16, 0.24, 0.32. (Monte Carlo simulation.)

Introduction Our Setup Oco

Higher Moments

A Problem with Dependencies

- To calculate $\mathbb{E}(\mathbb{Y}^2)$, need $\mathbb{P}(i, j \notin \mathbb{A} + \mathbb{A})$.
- Unlike ℙ (i ∉ A + A), ℙ (i, j ∉ A + A) is laden with dependencies.
- Example: $\mathbb{P}(0 \notin \mathbb{A} + \mathbb{A}) = 1 p$ and $\mathbb{P}(1 \notin \mathbb{A} + \mathbb{A}) = 1 p^2$, but $\mathbb{P}(0, 1 \notin \mathbb{A} + \mathbb{A}) = 1 p^2$.
- For higher moments, $\mathbb{E}(\mathbb{Y}^k)$, even more dependency.

Introduction 00000000000	Our Setup	Mean and variance	Higher Moments ○○●○	Exponential Decay	Back to the Finite Case	Conclusion

A Workaround

Instead of an exact expression, we find a bound:

$$\mathbb{E}(\mathbb{Y}^{k}) = \sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{k}=0}^{\infty} \mathbb{P}(n_{1}, \dots, n_{k} \notin \mathbb{A} + \mathbb{A})$$
$$\leq \sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{k}=0}^{\infty} \mathbb{P}(\max\{n_{1}, \dots, n_{k}\} \notin \mathbb{A} + \mathbb{A})$$

• We know the probability of $n \notin \mathbb{A} + \mathbb{A}$:

$$\mathbb{E}\left(\mathbb{Y}^{k}\right) \leq \sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{k}=0}^{\infty} (1-p^{2})^{(\max\{n_{1},\ldots,n_{k}\}+1)/2}$$

 Intuitively may not be too much loss; if max{n₁,..., n_k} ∉ A + A, many elements are missing from A, so other values are probably also missing from A + A.

Introduction Our Setup Mean and variance Higher Moments Conclusion Setup Setup

The bound

• Evaluating the "almost-geometric" sum yields

$$\mathbb{E}\left(\mathbb{Y}^{k}\right) \leq \left(1 + \frac{\alpha}{\sqrt{2\pi}}\right) \frac{k!}{\alpha^{k}},$$

where

$$\alpha \coloneqq \log \frac{1}{\sqrt{1-p^2}} = \left| \log \sqrt{1-p^2} \right|.$$

• $O(k!/\alpha^k)$ moments correspond to $f(x) = e^{-\alpha x}$.

Introduction Our Setup Oco

Exponential Decay

• Since $\mathbb{E}(\mathbb{Y}^k) = O(k!/\alpha^k)$, Chernoff's inequality yields

$$\mathbb{P}\left(\mathbb{Y} \geq n\right) = O\left(n\left(1-p^2\right)^{n/2}\right)$$

If 0,..., n/2 are missing from A, then 0,..., n are missing from A + A. Therefore,

$$\mathbb{P}\left(\mathbb{Y} \geq n\right) \geq (1-p)^{n/2+1}$$

Back to the Finite Case

- A ⊆ [0, N] selected at random such that P (i ∈ A) = p for all i independently.
- Define $Y \coloneqq 2N + 1 |A + A|$ and $X_i \coloneqq [i \notin A + A]$.
- Object of interest: random variable $Y_{N \to \infty}$,

$$\mathbb{P}(Y_{N\to\infty}=n):=\lim_{N\to\infty}\mathbb{P}(Y=n).$$

What we will compute: the k-th moment

$$\mathbb{E}\left(Y_{N\to\infty}^{k}\right) = \lim_{N\to\infty}\mathbb{E}\left(Y^{k}\right).$$

The *k*-th moment of *Y* as a corner sum

- $\mathbb{E}(Y^k) = \sum_{i_1,...,i_k=0}^{2N} \mathbb{E}(X_{i_1}...X_{i_k})$ is a sum over a *k*-dimensional hypercube.
- Observation: *A* + *A* is "almost full" in the middle.
- Conclusion: To compute E (Y^k), we just need to sum over the corners of the hypercube.

- Observation: When *j* − *i* > *N*, events *i* ∉ *A* + *A* and *j* ∉ *A* + *A* are independent. Therefore, the corners are independent.
- Result of calculations: the *k*-th moment of $Y_{N\to\infty}$ is

$$\lim_{N\to\infty}\mathbb{E}\left(Y^{k}\right)=\sum_{s=0}^{k}\binom{k}{s}\mathbb{E}\left(\mathbb{Y}^{s}\right)\mathbb{E}\left(\mathbb{Y}^{k-s}\right).$$

Observation: The moments lim_{N→∞} 𝔼 (Y^k) are the same as those of 𝒱 + 𝒱'. Apply Carleman's condition.

Theorem

The probability distribution of $Y_{N\to\infty}$ is the same as that of $\mathbb{Y} + \mathbb{Y}'$, where \mathbb{Y}' is a copy of \mathbb{Y} independent of it.

• Intuition: Summands can be missing from the left and right fringes, and these are independent for large *N*.

- Use Euler's identity to calculate the even-odd disparity: P(𝔄 even) − P(𝔄 odd) = E(e^{iπ𝔄}).
- Investigate A^{+k}, the k-th additive power of A, as well as A^{+∞} = {0} ∪ A ∪ A⁺²..., the set of all possible sums resulting from A.

We would like to thank our mentor, Professor Steven J. Miller, and previous years of SMALL for their contributions.

Thanks to our SMALL 2023 faculty, research assistants, and peers for their support.

This presentation was supported by NSF Grants DMS2241623 and DMS2241623. We thank the NSF and Williams College for making SMALL 2023 possible.

- O. Lazarev, S. J. Miller, K. O'Bryant, Distribution of Missing Sums in Sumsets (2013), Experimental Mathematics 22, no. 2, 132–156.
- G. Martin and K. O'Bryant, *Many sets have more sums than differences*, in Additive Combinatorics, CRM Proc. Lecture Notes, vol. 43, Amer. Math. Soc., Providence, RI, 2007, pp. 287–305.
- H. V. Chu, D. King, N. Luntzlara, T. Martinez, S. J. Miller, L. Shao, C. Sun, and V. Xu, *Generalizing the distribution of missing sums in sumsets*, Journal of Number Theory **239** (2022), 402-444