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Introduction

Given A C Z, define its sumset
e A+A={a +a|a,a €A}
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Setting

@ Fix N>0.Fixpe (0,1),andletg:=1—p.

@ Select A C [0, N] by a Bernoulli process: for each
k € [0, N], independently include k in A with
probability p.




Introduction
L]

Setting

@ Fix N>0.Fixpe (0,1),andletg:=1—p.

@ Select A C [0, N] by a Bernoulli process: for each
k € [0, N], independently include k in A with
probability p.

@ Recent research in |A+ A| as a random variable.

@ Martin and O’Bryant’s seminal paper [MO] compared
|A+ Al to |A— Alwhenp=1/2.
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Why study sumsets?

@ Prove patterns seen from Monte Carlo simulations.

@ Might potentially aid other number-theoretic work.
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Observed: Divots and Concentration
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Figure: Point distribution function P (|(A 4+ A)¢| = m) for several
values of p, for N very large.
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Observed: Divots and Concentration
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Figure: Point distribution function P (|(A 4+ A)¢| = m) for several
values of p, for N very large.

e For large p, missing an even number appears more
likely.

e For small p, we see concentration around the mean.
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Observed: Exponential Decay
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Figure: Point distribution function P (|(A + A)°| = m) and cumulative
distribution function P (|(A + A)¢| > m) for several values of p, for N
very large.

e CDF appears to decay exponentially.
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Prior Work: Mean and Variance

Theorem (Martin and O’Bryant 06 [MO])
Ifp =1, thenE[|(A+ A)°|] = 10 + O((3/4)"/?).
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Prior Work: Mean and Variance

Theorem (Martin and O’Bryant 06 [MO])
Ifp =1, thenE[|(A+ A)°|] = 10 + O((3/4)"/?).

Theorem (Lazarev, Miller, and O’Bryant 13 [LMO])

Ifp =1, thenfori <j< N withi,j odd,

1
P(iandj¢ A+ A) = o/ F¢§+2F5+4
for q,r,r' depending on i and j, and similar formulations
hold for the other 3 parity cases.
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Prior Work: Exponential Decay

Theorem (Lazarev, Miller, and O’Bryant 13 [LMO])
Ifp =1, then

m(3/4)"* < P(|(A+A)°| = m) < (¢/2)"* (1)
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Prior Work

@ When p # 1/2, not all subsets are equally likely, and
previous methods become hard to implement.
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Prior Work

@ When p # 1/2, not all subsets are equally likely, and
previous methods become hard to implement.

@ Chu, King, Luntzlara, Martinez, Miller, Shao, Sun, and
Xu [CKLMMSSX] study sumsets for generic p.

o [CKLMMSSX] and [LMO] both use graph-theoretic
approaches, particularly the notion of a condition

graph.
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Prior Work

Theorem (King, Martinez, Miller, Sun ’19)

Forpe[0,1]andq:=1—p,

wnon- o () (50-19) (- %52)

wheren= N + 1 and

o Zf‘fb kH1=I( %k ) (™A fork odd
= Z,—A 2k ’(,gk)( '1‘ ) for k even.

1

In particular, where the LHS holds for p > 1,

1 n—1 1-qg=
2n—-1-2 ————-(29) * <E[A+A|<2n-1-2—~

1—./2q

E.
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Prior Work

Theorem (King, Martinez, Miller, Sun °19)
Forpe (0,1)andq:=1-p,

n

Var(JA+ Al) = 3 (’r7>prqn_r

r=0

x (2 o =P+ D, 1- P,(i))
0<i<j<2n-—2 0<i<2n—2
—E[A+ A,

wheren= N +1,
P,(i):[P’(igZA+A| |Al =r),

and

P.(i,jy=P(iandj¢ A+ A||A =r).

A
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e Calculated the mean of P (|(A + A)°| = m) exactly for
generic p.

@ Calculated the second moment of P (|(A + A)¢| = m)
to leading order in 1/p.
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cancellation of leading terms.




Introduction

Our Results

e Calculated the mean of P (|(A + A)°| = m) exactly for
generic p.

@ Calculated the second moment of P (|(A + A)¢| = m)
to leading order in 1/p.

@ Proved concentration in the limit p — 0, thanks to a
cancellation of leading terms.

@ Proved exponential bounds for P (|(A + A)¢| = m) for
generic p.




Introduction

Our Results

e Calculated the mean of P (|(A + A)°| = m) exactly for
generic p.

@ Calculated the second moment of P (|(A + A)¢| = m)
to leading order in 1/p.

@ Proved concentration in the limit p — 0, thanks to a
cancellation of leading terms.

@ Proved exponential bounds for P (|(A + A)¢| = m) for
generic p.

This is all in the limit N — oo.
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@ Instead of considering A C [0, N] for some natural
number N, consider A C Z-, chosen randomly via a
Bernouli process.

@ For any k € Z-, include k in A with probability p.
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@ Instead of considering A C [0, N] for some natural
number N, consider A C Z-, chosen randomly via a
Bernouli process.

@ For any k € Z-, include k in A with probability p.

e With probability 1, A and A° both include infinitely
many elements.

@ How does A + A behave?
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Motivation for A C Z~¢

@ Only one fringe to worry about.
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Motivation for A C Z~¢

@ Only one fringe to worry about.
@ Infinite sums are nice to evaluate.
e Easy to convert to the original “finite case.”

@ To check if n € A + A, only need to know about the
first n+ 1 elements: {0,1,2,..., n}.
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Mean and variance

Py TS
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Probability of Missing a Specific Summand

@ Define Y = |Zxo\ (A + A)|, the number of missing
summands.
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Probability of Missing a Specific Summand

@ Define Y = |Zxo\ (A + A)|, the number of missing
summands.

@ Foreach /> 0, let X; be the indicator variable for

i¢A+A:
1 i¢A+A
X,‘Z: .
0 ieA+A.
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Probability of Missing a Specific Summand

@ Define Y = |Zxo\ (A + A)|, the number of missing
summands.

@ Foreach /> 0, let X; be the indicator variable for

i¢A+A:
1 i¢A+A
X,‘Z: .
0 ieA+A.

@ Then .
Y:}jx
i=0

e To calculate E(Y), need E (X;) = P(i ¢ A+ A).
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Probability of Missing a Specific Summand

Like [LMQ], for odd n,

n+1

)

{ng A+A} = {(0¢ Aorn¢ A)and --- and (%@éAor

and for even n,

{n¢A+A} = {(0¢Aorn¢ A)and --- and n/2 ¢ A}.
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Probability of Missing a Specific Summand

Like [LMQ], for odd n,

n+1

)

{ng A+A} = {(0¢ Aorn¢ A)and --- and (%gﬁ&or
and for even n,

{n¢A+A} = {(0¢Aorn¢ A)and --- and n/2 ¢ A}.
Hence,

(1—p?)% n odd

P(ng A+A) = {(1 -p)(1 _p2)§ neven.
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Calculating E (Y)

e By the Monotone Convergence Theorem,

E(Y) = iE(Xn) = > (A=p)"IRLY T (1 - p)(1 - p?)2
n=0 nodd neven
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Calculating E (Y)

e By the Monotone Convergence Theorem,

E(Y) = iE(Xn) = > (A=p)"IRLY T (1 - p)(1 - p?)2
n=0 nodd neven




Mean and variance
[ Jelelele]

Probability of Missing Two Specific Summands

e Lletn<m<N.
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Probability of Missing Two Specific Summands

e Lletn<m<N.

o Let /= [2t1] be the “degree of twistedness”.
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Probability of Missing Two Specific Summands

e Lletn<m<N.

o Let /= [2t1] be the “degree of twistedness”.

Proposition

If m, n, | are all odd,

(m+1) I(m— m—n)—(n+1)

P(mn¢ A+ A) = (a2) n>(321) 2

Similar formulas hold for other patrities.

ey TS
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Probability of Missing Two Specific Summands

e Lletn<m<N.

o Let /= [2t1] be the “degree of twistedness”.

Proposition

If m, n, | are all odd,

(m+1)—I(m—n) m—n)—(n+1)
P(mngA+A) = (amz) " 2 (@) T
Similar formulas hold for other patrities.
Here, a; =1, a =1 — p?, and
= (1 - plax-1+p(1 — p)ak-—2. (2)

eSS -
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E (Y?2) as an infinite sum

9 . o . 2
I Z as| + (1 p)a,,1 aF (1 p)a,agl aF (1 p) a,a;_1 ‘

=1 (1 —az2)(1 — a2)

(3)

v

Here, a; =1, a =1 — p?, and

ax = (1 —p)ak—1+p(1 — p)ak-_2.
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Asymptotics of the second moment

Proposition
Forp € (0,1),
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Asymptotics of the second moment

Proposition
Forp € (0,1),

E(Y?)
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Figure: Exact values and asymptotic estimate for E (Yz).
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Proving concentration

@ Recall:

Proposition
Forp € (0,1),

Proposition
Forp € (0,1),




Mean and variance
[e]ee]e] )

Proving concentration

@ Therefore, the standard deviation o,

o = VE(¥?) - E(Y)’ = o(p?) @)
grows asymptotically slower than E (Y) ~ 2/p?.

CDF
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Figure: The cumulative distribution function of Y, normalized by
E(Y), for N =800 and p = 0.05,0.08,0.16,0.24,0.32. (Monte Carlo
simulation.)
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Higher Moments
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A Problem with Dependencies

e To calculate E (Y?), need P (i,j ¢ A + A).

@ Unlike P(i¢ A+ A), P(i,j € A+ A) is laden with
dependencies.

e Example: P(0 ¢ A+ A)=1—-pand
PAZA+A)=1—-p? butP(0,1¢A+A)=1—-p2

@ For higher moments, E (Y), even more dependency.

A
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A Workaround

@ Instead of an exact expression, we find a bound:
= Z ZP(M,...,HK ¢A+A)
n=0 nk=0

< i iﬂ”(max{m,...,nk}géA—FA).

@ We know the probability of n ¢ A + A:

Z Z 1 . (max{m ..... N} +1 )/2

nkO

@ Intuitively may not be too much loss; if
max{ny,..., Nk} ¢ A+ A, many elements are missing
from A, so other values are probably also missing
from A + A.
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The bound

e Evaluating the “almost-geometric” sum yields
K!
E (V) < (1 +L) i
0= (1 T2z ) o

o= Iog\/1;_7p2 = ‘Iog m)

e O(k!/a*) moments correspond to f(x) = e~*.

where

A
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Exponential Decay
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Proving exponential decay

e Since E (Y¥) = O(k!/a*), Chernoff’s inequality yields
P(Y >n) = O(n(1 —pz)"/2> :

@ If0,...,n/2 are missing from A, then 0,... nare
missing from A + A. Therefore,

P(Y>n)>(1-p)"&.

@ Bounded above and below by exponential functions,
P(Y > n) is “approximately exponential.”
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Back to the Finite Case
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Review of the finite case

@ A C [0, N] selected at random such that P(i € A) = p
for all i independently.

@ Define Y =2N+1—-|A+Aland X, =[i¢ A+ A

@ Object of interest: random variable Yy_...,

P(Ynosoo = n) = lim P(Y =n).

N—o0

e What we will compute: the k-th moment

E (YN o) = lim E(Y¥).

[
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The k-th moment of Y as a corner sum

o E(YF) =32 . (E(X,...X,)isasumovera

..., IkZO

k-dimensional hypercube.
@ Observation: A+ Ais “almost full” in the middle.

@ Conclusion: To compute E (Y*), we just need to sum
over the corners of the hypercube.

N TS -
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Summing over the corners

@ Observation: When j —i > N, events i ¢ A+ A and
j ¢ A+ A are independent. Therefore, the corners are
independent.

@ Result of calculations: the k-th moment of Yy_.« is

k

Jim E(Y9) =3 (g)E(YS)E (Y<=9).

s=0

[
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The finite case, reduced

@ Observation: The moments limy_, E (Y¥) are the
same as those of Y + Y’. Apply Carleman’s condition.

The probability distribution of Yy_,. is the same as that of
Y + Y, where Y’ is a copy of Y independent of it.

@ Intuition: Summands can be missing from the left and
right fringes, and these are independent for large N.

[
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Future Work

e Use Euler’s identity to calculate the even-odd
disparity: P (Y even) — P(Y odd) = E (V).

e Get tighter bounds on the asymptotic decay rate of
P(Y > n).

e Investigate A*%, the k-th additive power of A, as well
as At = {0} UAUA*2. ., the set of all possible
sums resulting from A.

SN EOGOSOSTSSSSSSSEE
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