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Introduction

Given A ⊆ Z, define its sumset
A + A := {a1 + a2 | a1,a2 ∈ A}.
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Setting

Fix N ≥ 0. Fix p ∈ (0,1), and let q := 1 − p.

Select A ⊆ [0,N] by a Bernoulli process: for each
k ∈ [0,N], independently include k in A with
probability p.

Recent research in |A + A| as a random variable.

Martin and O’Bryant’s seminal paper [MO] compared
|A + A| to |A − A| when p = 1/2.
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Why study sumsets?

Prove patterns seen from Monte Carlo simulations.

Might potentially aid other number-theoretic work.

5



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Observed: Divots and Concentration

(a) Large p (b) Small p

Figure: Point distribution function P (|(A + A)c | = m) for several
values of p, for N very large.

For large p, missing an even number appears more
likely.
For small p, we see concentration around the mean.

6



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Observed: Divots and Concentration

(a) Large p (b) Small p

Figure: Point distribution function P (|(A + A)c | = m) for several
values of p, for N very large.

For large p, missing an even number appears more
likely.
For small p, we see concentration around the mean.

7



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Observed: Exponential Decay

Figure: Point distribution function P (|(A + A)c | = m) and cumulative
distribution function P (|(A + A)c | ≥ m) for several values of p, for N
very large.

CDF appears to decay exponentially.
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Prior Work: Mean and Variance

Theorem (Martin and O’Bryant ’06 [MO])

If p = 1
2 , then E[|(A + A)c|] = 10 + O((3/4)N/2).

Theorem (Lazarev, Miller, and O’Bryant ’13 [LMO])

If p = 1
2 , then for i < j ≤ N with i , j odd,

P(i and j /∈ A + A) =
1

2j+1 F r
q+2F r ′

q+4

for q, r , r ′ depending on i and j, and similar formulations
hold for the other 3 parity cases.
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Prior Work: Exponential Decay

Theorem (Lazarev, Miller, and O’Bryant ’13 [LMO])

If p = 1
2 , then

m (3/4)m/2 ≪ P (|(A + A)c| = m) ≪ (ϕ/2)m/2 (1)
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Prior Work

When p ̸= 1/2, not all subsets are equally likely, and
previous methods become hard to implement.

Chu, King, Luntzlara, Martinez, Miller, Shao, Sun, and
Xu [CKLMMSSX] study sumsets for generic p.

[CKLMMSSX] and [LMO] both use graph-theoretic
approaches, particularly the notion of a condition
graph.
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Prior Work

Theorem (King, Martinez, Miller, Sun ’19)

For p ∈ [0,1] and q := 1 − p,

E[|A + A|] =
n∑

r=0

pr qn−r
(

n
r

)(
2

n−1∑
k=0

(
1 − f (k)(n

r

) )−

(
1 − f (n − 1)(n

r

) ))
,

where n = N + 1 and

f (k) =


∑k+1

i= k+1
2

2k+1−i
( k+1

2
i− k+1

2

)(n−k−1
r−i

)
for k odd∑k

i= k
2

2k−i
( k

2
i− k

2

)(n−k−1
r−1−i

)
for k even.

In particular, where the LHS holds for p > 1
2 ,

2n − 1 − 2
1

1 −
√

2q
− (2q)

n−1
2 ≤ E[|A + A|] ≤ 2n − 1 − 2

1 − q
n−1

2

1 −√
q

.
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Prior Work

Theorem (King, Martinez, Miller, Sun ’19)

For p ∈ (0,1) and q := 1 − p,

Var(|A + A|) =
n∑

r=0

(
n
r

)
pr qn−r

×
(

2
∑

0≤i<j≤2n−2

1 − Pr (i , j) +
∑

0≤i≤2n−2

1 − Pr (i)
)

− E[|A + A|]2,

where n = N + 1,

Pr (i) = P(i ̸∈ A + A
∣∣ |A| = r),

and
Pr (i , j) = P(i and j ̸∈ A + A

∣∣ |A| = r).
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Our Results

Calculated the mean of P (|(A + A)c| = m) exactly for
generic p.

Calculated the second moment of P (|(A + A)c| = m)
to leading order in 1/p.

Proved concentration in the limit p → 0, thanks to a
cancellation of leading terms.

Proved exponential bounds for P (|(A + A)c| = m) for
generic p.

This is all in the limit N → ∞.

16



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Our Results

Calculated the mean of P (|(A + A)c| = m) exactly for
generic p.

Calculated the second moment of P (|(A + A)c| = m)
to leading order in 1/p.

Proved concentration in the limit p → 0, thanks to a
cancellation of leading terms.

Proved exponential bounds for P (|(A + A)c| = m) for
generic p.

This is all in the limit N → ∞.

17



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Our Results

Calculated the mean of P (|(A + A)c| = m) exactly for
generic p.

Calculated the second moment of P (|(A + A)c| = m)
to leading order in 1/p.

Proved concentration in the limit p → 0, thanks to a
cancellation of leading terms.

Proved exponential bounds for P (|(A + A)c| = m) for
generic p.

This is all in the limit N → ∞.

18



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Our Results

Calculated the mean of P (|(A + A)c| = m) exactly for
generic p.

Calculated the second moment of P (|(A + A)c| = m)
to leading order in 1/p.

Proved concentration in the limit p → 0, thanks to a
cancellation of leading terms.

Proved exponential bounds for P (|(A + A)c| = m) for
generic p.

This is all in the limit N → ∞.
19



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Our Setup
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Setup

Instead of considering A ⊆ [0,N] for some natural
number N, consider A ⊆ Z≥0 chosen randomly via a
Bernouli process.

For any k ∈ Z≥0, include k in A with probability p.

With probability 1, A and Ac both include infinitely
many elements.

How does A+ A behave?
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Motivation for A ⊆ Z≥0

Only one fringe to worry about.

Infinite sums are nice to evaluate.

Easy to convert to the original “finite case.”

To check if n ∈ A+ A, only need to know about the
first n + 1 elements: {0,1,2, . . . ,n}.
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Mean and variance
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Probability of Missing a Specific Summand

Define Y := |Z≥0\(A+ A)|, the number of missing
summands.

For each i ≥ 0, let Xi be the indicator variable for
i /∈ A+ A:

Xi :=

{
1 i /∈ A+ A
0 i ∈ A+ A.

Then

Y =
∞∑

i=0

Xi .

To calculate E (Y), need E (Xi) = P (i ̸∈ A+ A).

28



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Probability of Missing a Specific Summand

Define Y := |Z≥0\(A+ A)|, the number of missing
summands.
For each i ≥ 0, let Xi be the indicator variable for
i /∈ A+ A:

Xi :=

{
1 i /∈ A+ A
0 i ∈ A+ A.

Then

Y =
∞∑

i=0

Xi .

To calculate E (Y), need E (Xi) = P (i ̸∈ A+ A).

29



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Probability of Missing a Specific Summand

Define Y := |Z≥0\(A+ A)|, the number of missing
summands.
For each i ≥ 0, let Xi be the indicator variable for
i /∈ A+ A:

Xi :=

{
1 i /∈ A+ A
0 i ∈ A+ A.

Then

Y =
∞∑

i=0

Xi .

To calculate E (Y), need E (Xi) = P (i ̸∈ A+ A).

30



Introduction Our Setup Mean and variance Higher Moments Exponential Decay Back to the Finite Case Conclusion

Probability of Missing a Specific Summand

Like [LMO], for odd n,

{n ̸∈ A+A} = {(0 /∈ A or n /∈ A) and · · · and
(n − 1

2
/∈ A or

n + 1
2

/∈ A
)
}

and for even n,

{n /∈ A+ A} = {(0 /∈ A or n /∈ A) and · · · and n/2 ̸∈ A}.

Hence,

P (n ̸∈ A+ A) =

{
(1 − p2)

n+1
2 n odd

(1 − p)(1 − p2)
n
2 n even.
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Calculating E (Y)

By the Monotone Convergence Theorem,

E (Y) =
∞∑

n=0

E (Xn) =
∑
n odd

(1 − p2)(n+1)/2+
∑

n even

(1 − p)(1 − p2)n/2.

Proposition
For p ∈ (0,1),

E (Y) =
2
p2 − 1

p
− 1.
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Probability of Missing Two Specific Summands

Let n < m ≤ N.

Let l = ⌈ n+1
m−n⌉ be the “degree of twistedness”.

Proposition
If m,n, l are all odd,

P (m,n /∈ A + A) = (a2l+2)
(m+1)−l(m−n)

2 (a2l)
l(m−n)−(n+1)

2 .

Similar formulas hold for other parities.

Here, a1 = 1, a2 = 1 − p2, and

ak = (1 − p)ak−1 + p(1 − p)ak−2. (2)
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E
(
Y2) as an infinite sum

Proposition

E
(
Y2) = −

(
2
p2 − 1

p
− 1
)
+

+ 2
∞∑

l=1

a2l + (1 − p)al−1 + (1 − p)ala2l + (1 − p)2alal−1

(1 − a2l+2)(1 − a2l)
.

(3)

Here, a1 = 1, a2 = 1 − p2, and

ak = (1 − p)ak−1 + p(1 − p)ak−2.
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Asymptotics of the second moment

Proposition
For p ∈ (0,1),

E
(
Y2) = 4

p4 + o(p−4).

Figure: Exact values and asymptotic estimate for E
(
Y2
)
.
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Proving concentration

Recall:

Proposition
For p ∈ (0,1),

E
(
Y2) = 4

p4 + o(p−4).

Proposition
For p ∈ (0,1),

E (Y) =
2
p2 − 1

p
− 1.
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Proving concentration

Therefore, the standard deviation σ,

σ =

√
E (Y2)− E (Y)2 = o(p−2) (4)

grows asymptotically slower than E (Y ) ∼ 2/p2.

Figure: The cumulative distribution function of Y , normalized by
E (Y ), for N = 800 and p = 0.05,0.08,0.16,0.24,0.32. (Monte Carlo
simulation.)
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Higher Moments
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A Problem with Dependencies

To calculate E
(
Y2
)
, need P (i , j /∈ A+ A).

Unlike P (i /∈ A+ A), P (i , j ̸∈ A+ A) is laden with
dependencies.

Example: P (0 ̸∈ A+ A) = 1 − p and
P (1 ̸∈ A+ A) = 1− p2, but P (0,1 ̸∈ A+ A) = 1− p2.

For higher moments, E
(
Yk
)
, even more dependency.
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A Workaround

Instead of an exact expression, we find a bound:

E
(
Yk) =

∞∑
n1=0

· · ·
∞∑

nk=0

P(n1, . . . ,nk /∈ A+ A)

≤
∞∑

n1=0

· · ·
∞∑

nk=0

P(max{n1, . . . ,nk} /∈ A+ A).

We know the probability of n /∈ A+ A:

E
(
Yk) ≤ ∞∑

n1=0

· · ·
∞∑

nk=0

(1 − p2)(max{n1,...,nk}+1)/2.

Intuitively may not be too much loss; if
max{n1, . . . ,nk} /∈ A+ A, many elements are missing
from A, so other values are probably also missing
from A+ A.
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The bound

Evaluating the “almost-geometric” sum yields

E
(
Yk) ≤ (1 +

α√
2π

)
k !
αk ,

where

α := log
1√

1 − p2
=
∣∣∣log√1 − p2

∣∣∣ .
O(k !/αk) moments correspond to f (x) = e−αx .
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Exponential Decay
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Proving exponential decay

Since E
(
Yk
)
= O(k !/αk), Chernoff’s inequality yields

P (Y ≥ n) = O
(

n
(
1 − p2)n/2

)
.

If 0, . . . ,n/2 are missing from A, then 0, . . . ,n are
missing from A+ A. Therefore,

P (Y ≥ n) ≥ (1 − p)n/2+1.

Bounded above and below by exponential functions,
P (Y ≥ n) is “approximately exponential.”
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Back to the Finite Case
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Review of the finite case

A ⊆ [0,N] selected at random such that P (i ∈ A) = p
for all i independently.

Define Y := 2N + 1 − |A + A| and Xi := [i /∈ A + A].

Object of interest: random variable YN→∞,

P (YN→∞ = n) := lim
N→∞

P (Y = n).

What we will compute: the k -th moment

E
(
Y k

N→∞
)
= lim

N→∞
E
(
Y k).
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The k -th moment of Y as a corner sum

E
(
Y k
)
=
∑2N

i1,...,ik=0 E (Xi1 . . .Xik ) is a sum over a
k -dimensional hypercube.

Observation: A + A is “almost full” in the middle.

Conclusion: To compute E
(
Y k
)
, we just need to sum

over the corners of the hypercube.
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Summing over the corners

Observation: When j − i > N, events i /∈ A + A and
j /∈ A + A are independent. Therefore, the corners are
independent.

Result of calculations: the k -th moment of YN→∞ is

lim
N→∞

E
(
Y k) = k∑

s=0

(
k
s

)
E (Ys)E

(
Yk−s).
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The finite case, reduced

Observation: The moments limN→∞ E
(
Y k
)

are the
same as those of Y+ Y′. Apply Carleman’s condition.

Theorem

The probability distribution of YN→∞ is the same as that of
Y+ Y′, where Y′ is a copy of Y independent of it.

Intuition: Summands can be missing from the left and
right fringes, and these are independent for large N.
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Future Work

Use Euler’s identity to calculate the even-odd
disparity: P (Y even)− P (Y odd) = E

(
eiπY

)
.

Get tighter bounds on the asymptotic decay rate of
P (Y ≥ n).

Investigate A+k , the k -th additive power of A, as well
as A+∞ = {0} ∪ A ∪ A+2 . . . , the set of all possible
sums resulting from A.
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