MSTD Subsets and Properties of Divots in the Distribution of Missing Sums

Steven J Miller, Williams College
sjml@williams.edu
Victor Xu, Carnegie Mellon University
vzx@andrew.cmu.edu
Xiaorong Zhang, Carnegie Mellon University
xiaoronz@andrew.cmu.edu

Combinatorial and Additive Number Theory, May 26, 2016
http://web.williams.edu/Mathematics/sjmiller/public_html/
MSTD Subsets
A finite set of integers, $|A|$ its size. Form

- Sumset: $A + A = \{a_i + a_j : a_j, a_j \in A\}$.
- Difference set: $A - A = \{a_i - a_j : a_j, a_j \in A\}$.

Definition

We say A is difference dominated if $|A - A| > |A + A|$, balanced if $|A - A| = |A + A|$ and sum dominated (or an MSTD set) if $|A + A| > |A - A|$.
Questions

Expect **generic** set to be difference dominated:

- addition is commutative, subtraction isn’t:
- Generic pair \((x, y)\) gives 1 sum, 2 differences.
Questions

Expect generic set to be difference dominated:
- addition is commutative, subtraction isn’t:
- Generic pair \((x, y)\) gives 1 sum, 2 differences.

Questions
- Do there exist sum-dominated sets?
- If yes, how many?
Examples

- Conway: \(\{0, 2, 3, 4, 7, 11, 12, 14\} \).

- Computer search of random subsets of \(\{1, \ldots, 100\} \):
 \(\{2, 6, 7, 9, 13, 14, 16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39, 41, 42, 45, 46, 47, 48, 49, 51, 52, 54, 57, 58, 59, 61, 64, 65, 66, 67, 68, 72, 73, 74, 75, 81, 83, 84, 87, 88, 91, 93, 94, 95, 98, 100\} \).

- Many infinite families (Hegarty, Miller - Orosz - Scheinerman, Nathanson, ...).

- If \(A \) chosen uniformly at random positive probability it is MSTD (Martin-O’Bryant).
Subsets and MSTD Sets: General Results

Theorem

Let $A := \{a_k\}_{k=1}^{\infty}$ be a sequence of natural numbers. If there exists a positive integer r such that

1. $a_k > a_{k-1} + a_{k-r}$ for all $k \geq r + 1$, and
2. a_k does not contain any MSTD set S with $|S| \leq 2r + 1$,

then A contains no MSTD set.

Immediate corollary: No subset of the Fibonacci numbers is an MSTD set.

Proof: MSTD set must have at least 8 elements, show gain more differences than sums as add elements.
Subsets and MSTD Sets: Preliminaries

Hardy-Littlewood Conjecture

Let \(b_1, b_2, \ldots, b_m \) be \(m \) distinct integers, \(P(x; b_1, b_2, \ldots, b_m) \) the number of integers at most \(x \) such that \(\{ n+b_1, n+b_2, \ldots, n+b_m \} \) consists wholly of primes, \(\nu \) the number of distinct residues of \(b_1, b_2, \ldots, b_m \) mod \(p \),

\[
G(b_1, b_2, \ldots, b_m) = \prod_{p \geq 2} \left(\left(\frac{p}{p-1} \right)^{m-1} \frac{p - \nu}{p - 1} \right).
\]

Then as \(x \to \infty \)

\[
P(x) \sim G(b_1, b_2, \ldots, b_m) \int_{2}^{x} \frac{du}{(\log u)^m}.
\]
Subsets and MSTD Sets: Primes

Theorem

The Hardy-Littlewood conjecture implies there are infinitely many MSTD subsets of the primes.

Proof (sketch):

- Smallest MSTD set is $S = \{0, 2, 3, 4, 7, 11, 12, 14\}$.

- $\{p, p + 2s, p + 3s, p + 4s, p + 7s, p + 11s, p + 12s, p + 14s\}$ is an MSTD set for all positive integers p, s.

- Set $s = 30$. Hardy-Littlewood Conjecture implies $\{p, p + 60, p + 90, p + 120, p + 210, p + 330, p + 360, p + 420\}$ are all primes for infinitely many prime p.
Distribution of Divots: Introduction and Background
Let S be a subset of $I_n = \{0, \ldots, n - 1\}$, let $S + S = \{x + y : x, y \in S\}$.
Definitions

- Let S be a subset of $I_n = \{0, \ldots, n - 1\}$, let $S + S = \{x + y : x, y \in S\}$.

- For each $i \in I_n$, choose independently that $i \notin S$ with probability q.
Defineds

- Let S be a subset of $I_n = \{0, \ldots, n - 1\}$, let $S + S = \{x + y : x, y \in S\}$.

- For each $i \in I_n$, choose independently that $i \notin S$ with probability q.

- What’s the distribution of $|S + S|$? Instead, we can look at $2n - 1 - |S + S|$.
Definitions

- Let S be a subset of $I_n = \{0, \ldots, n-1\}$, let $S + S = \{x + y : x, y \in S\}$.

- For each $i \in I_n$, choose independently that $i \notin S$ with probability q.

- What’s the distribution of $|S + S|$? Instead, we can look at $2n - 1 - |S + S|$.

- Let $M = I_n \setminus S$.

- Let $T = (I_n + I_n) \setminus (S + S)$.
Previous Results

Distribution of Missing sums for $q = .5$.
Previous Results

Lazarev, Miller, O’Bryant (2012)

For \(q = .5 \), let \(m(n) \) denote the probability that \(|T| = n \), then \(m(7) < m(6) < m(8) \).
Previous Results

Lazarev, Miller, O’Bryant (2012)

For $q = .5$, let $m(n)$ denote the probability that $|T| = n$, then $m(7) < m(6) < m(8)$.

- Used massive computation of 2^{28} sets to prove result.
- The “divot” in the probabilities is interesting.
- Recall $T = (I_n + I_n) \setminus (S + S)$.
Problem

What about for different q, $q \neq .5$?
Problem

- What about for different q, $q \neq .5$?

- If q is close to 0, then S will have many elements and $|T|$ will usually be small.
What about for different q, $q \neq .5$?

If q is close to 0, then S will have many elements and $|T|$ will usually be small.

This seems easier than the general case.
What about for different q, $q \neq .5$?

If q is close to 0, then S will have many elements and $|T|$ will usually be small.

This seems easier than the general case.

Are there any divots for q close to 0?
Behavior of the Divot
Distribution of $|T|$:

Distribution of the Number of Missing Sums

Computer simulation of 1,000,000 subsets of $\{0, 1, \ldots, 255\}$.
Observations and Problems

- We show existence of a divot at 1 for $q < 0.034$; this result is very loose.
Observations and Problems

- We show existence of a divot at 1 for $q < 0.034$; this result is very loose.

- How does the position of the divot depend on q?
We show existence of a divot at 1 for $q < .034$; this result is very loose.

How does the position of the divot depend on q?

Also, at $q = .3$ there appear two divots at 1 and 3; for what values of q are there more than one divot?
Observations and Problems

- We show existence of a divot at 1 for $q < 0.034$; this result is very loose.

- How does the position of the divot depend on q?

- Also, at $q = 0.3$ there appear two divots at 1 and 3; for what values of q are there more than one divot?

- Lastly, for $q = 0.6$ the divot disappears. Where is this phase transition point where the divot disappears?
Divot for Small q
The Divot for Small q

- There is a divot at 1 when q is small ($< .034$), for $n > 20$.
The Divot for Small q

- There is a divot at 1 when q is small ($< .034$), for $n > 20$.

- $T = \{0, 1, \ldots, 2n - 2\} \setminus (S + S)$ is the set of missing sums.

- To show this, we can split up $T = B + C + E$ as follows:
The Divot for Small q

- There is a divot at 1 when q is small ($< .034$), for $n > 20$.

- $T = \{0, 1, \ldots, 2n - 2\} \setminus (S + S)$ is the set of missing sums.

- To show this, we can split up $T = B + C + E$ as follows:

 - $B = T \cap \{0, 1, \ldots, \lfloor n/2 \rfloor - 1\}$.
 - $C = T \cap \{\lfloor n/2 \rfloor, n + 1, \ldots, 2n - 3 - \lfloor n/2 \rfloor\}$.
 - $E = T \cap \{2n - 2 - \lfloor n/2 \rfloor, 2n - 1 - \lfloor n/2 \rfloor, \ldots, 2n - 2\}$.
Intuition

| Largest Sum Missing | $|B| = 1$ | $|B| = 2$ |
|---------------------|---------|---------|
| 0 | | |
| 1 | {1} | {0} |
| 2 | {2, 3} | {1, 2} |
| 3 | {2, 3} | {1, 3} |
| 4 | | {2, 3, 4} |
| 5 | {2, 4, 5}, {3, 4, 5} | |
| ... | ... | ... |
Intuition

| Largest Sum Missing | $|B| = 1$ | $|B| = 2$ |
|---------------------|------------|------------|
| 0 | | |
| 1 | $\{1\}$ | $\{0\}$ |
| 2 | $\{1, 2\}$ | |
| 3 | $\{2, 3\}$ | $\{1, 3\}$ |
| 4 | | $\{2, 3, 4\}$ |
| 5 | $\{2, 4, 5\}, \{3, 4, 5\}$ | |
| ... | ... | ... |

- Recall q is the probability that any element $i \notin S$.
- $\mathbb{P}[|B| = 1] \sim q + q^2 + O(q^3)$.
- $\mathbb{P}[|B| = 2] \sim q + 2q^2 + O(q^3)$.
Finding Bounds

Example: $\Pr(6 \in T)$

<table>
<thead>
<tr>
<th>Sums</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+6</td>
<td>$\Pr(0 \notin S \lor 6 \notin S) < \Pr(0 \notin S) + \Pr(6 \notin S) < 2q$</td>
</tr>
<tr>
<td>1+5</td>
<td>$\Pr(1 \notin S \lor 5 \notin S) < \Pr(1 \notin S) + \Pr(5 \notin S) < 2q$</td>
</tr>
<tr>
<td>2+4</td>
<td>$\Pr(2 \notin S \lor 4 \notin S) < \Pr(2 \notin S) + \Pr(4 \notin S) < 2q$</td>
</tr>
<tr>
<td>3+3</td>
<td>$\Pr(3 \notin S \lor 3 \notin S) < \Pr(3 \notin S) + \Pr(3 \notin S) < 2q$</td>
</tr>
</tbody>
</table>
Finding Bounds

Example: $\mathbb{P}(6 \in T)$

<table>
<thead>
<tr>
<th>Sums</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+6</td>
<td>$\mathbb{P}(0 \notin S \lor 6 \notin S) < \mathbb{P}(0 \notin S) + \mathbb{P}(6 \notin S) < 2q$</td>
</tr>
<tr>
<td>1+5</td>
<td>$\mathbb{P}(1 \notin S \lor 5 \notin S) < \mathbb{P}(1 \notin S) + \mathbb{P}(5 \notin S) < 2q$</td>
</tr>
<tr>
<td>2+4</td>
<td>$\mathbb{P}(2 \notin S \lor 4 \notin S) < \mathbb{P}(2 \notin S) + \mathbb{P}(4 \notin S) < 2q$</td>
</tr>
<tr>
<td>3+3</td>
<td>$\mathbb{P}(3 \notin S \lor 3 \notin S) < \mathbb{P}(3 \notin S) + \mathbb{P}(3 \notin S) < 2q$</td>
</tr>
</tbody>
</table>

- $\mathbb{P}[i \in T] < (2q)^{\lfloor \frac{i}{2} \rfloor + 1}$.
- For $k \leq n$,

$$\sum_{i=k}^{n} \mathbb{P}[i \in T] < \sum_{i=k}^{n} (2q)^{\lfloor \frac{i}{2} \rfloor + 1} < \frac{2(2q)^{\lfloor \frac{i}{2} \rfloor + 1}}{1 - 2q}.$$
We show that $|C| = 0$ is very likely.
We show that $|C| = 0$ is very likely.

$|B|$ and $|E|$ have the same distribution.
We show that $|C| = 0$ is very likely.

- $|B|$ and $|E|$ have the same distribution.

Then, we find bounds on $\mathbb{P}(|B| = 1)$ and $\mathbb{P}(|B| = 2)$ in terms of q.

For $q < 0.34$ and $n > 20$.

Explanation
We show that $|C| = 0$ is very likely.

$|B|$ and $|E|$ have the same distribution.

Then, we find bounds on $P(|B| = 1)$ and $P(|B| = 2)$ in terms of q.

Examining the cases for $|T| = 1$ and $|T| = 2$ leads to

$$P(|T| = 0) > P(|T| = 1) < P(|T| = 2)$$

for $q < .034$ and $n > 20$.
Distribution of $|\mathcal{T}|$

Distribution of the Number of Missing Sums

Computer simulation of 1,000,000 subsets of $\{0, 1, \ldots, 255\}$.
Questions?