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Product and Quotient Sets

Let G be a finitely presented multiplicative group equipped with a word metric.
Let A = {ai,...,a,} € G and let A~ = {a;',...,a;'}. The product set
and the right and left difference sets of A are given, respectively, by
AA = {CL@'CLJ' LAy, Q5 € A},
AAL = {ai : aj_l LG, @ € A},

A7'A=la " a;:ai,a5 € A}

Following Lazarev-Miller-O'Bryant [1], we use graph theory as a framework to
compute the probability that AA or AA™! contain a word of a specified length,
where A is random.

Condition Graphs

Let R > 0 and Bpg be the set of words in G of length < R. What can we say
about the size of a uniform random subset A of Bp?

Definition

The condition graph C(wy, ..., w; ¢ AA™!) is a graph with vertex set G

and edges (u,v) whenever uv™! = w; or v v = w; for some 7 € {1,...,k}.

Similarly, the condition graph C(wy, ..., w; ¢ AA) is a graph with vertex set
G and edges (u,v) whenever uv = w; or vu = w; for some ¢ € {1,...,k}.

The condition graph C(wy,...,wy ¢ S) represents all the ways that the words
wy, . .., W could appear as an element of S through a specified random process. In
order to consider questions of probability, we restrict our attention to the subgraphs

Cr(wy,...,w; € S) induced by Bpg, the set of all words in GG of length < R.

The connected components of the condition graph C(w ¢ AA™1) are paths and
cycles.

Lemma. Structure of C(w & AA™).

Let X be a connected component of of C(w ¢ AA™!). Then, X is isomorphic
to one of the following.

(1) A cycle;

(2) A path of infinite length;

(3) A path of length 2;

(4) A singleton.
Case 3 occurs only when w is a square. Case 4 only occurs when w = e, in
which case every connected component is a singleton.

Counting the numbers of path and cycle connected components allows us to de-
termine the probability that w & AA~!. Let p(k) be the number of length k path
components in Cr(w ¢ S) and c(k) be the number of length k cycle components

in Cr(w ¢ §). Then, we have the following formula in terms of the Fibonacci
numbers F1 =1, Fy =2, and Fj, = Fj._1 + Fj._o.
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Condition Graphs for Z, x Z-

Words in Zs x Z9 are alternating strings of x,y. Any word can be encoded as a
pair (c,1) where c¢ is the starting character (either x or y) and ¢ is the length of
the string. In Zs *x Zs, the condition graphs C'r(w ¢ AA) have paths and cycles.

Example. If w = (x,7) and 7 > 1 is odd, we have the cycle

Theorem. Cr(w ¢ AA) in Zy *x Zs

Let w € Zs % Z5. Then for AA,

2[4 + 1 self-loops,

'] paths of length 1.

(2) if w is of even length i > 2, write R = k(2) + j for 4,k € Zsg
and 7 < 5. Then,

(1) Cr(e) consists of

2[1] paths of length k if k > 1,

i _oi PN
) if 4 | 4, Cp(w) consists of |2 22| paths of length & =1 if & =2
LZRZL_QJ paths of length 1 it R > 2,

1 selt-loop if R > %

(ii) if 4 1 2, C'r(w) consists of

J + 1 (resp. j) paths of length k if £ > 1, R odd (resp. even),

! —j—1(r. 5 —j) paths of length k — 1 if £ > 2, R odd (r. even),
|21="| paths of length 1 if R > £.

(3) if w is of odd length i, then Cr(w) consists of

|| d-cycles if R > i,

R — |!| paths of length 2 if || < R < i,
|| — | %] paths of length 2 if R > i,

1 path of length 1 if R > 1.
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Figure 1:.C5(zyzy) for AA.
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Figure 2:C5(xyx) for AA.
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Theorem. Cr(w & AA™Y) in Zo * Z»)

Let w € Zo x Zy. Then,
(1) Crle ¢ AA™!) consists of 2R + 1 self-loops.

(2) if w is of even length ¢ > 2, write R = k(%) + g for 3,k € Z>y

and j < L. Then, Cr(w ¢ AA™!) consists of
29 + 1 paths of length kit £ > 1,

1 — 27 — 1 paths of length £k — 1 if & > 2.

(3) if w is of odd length 4, then Cr(w ¢ AA™Y) consists of R— | 2] paths
of length 1if R > 7.

Using the Lemma, we can find P(w € AA™!) in each of these cases where A C Bp
and R is sufficiently large.

Future Work

We hope to extend the condition graphs framework to
(1) Condition graphs C'(wy,...,wy & S) on Zs * Z involving multiple words;
(2) The free group F, (partial progress);
(3) Random subsets A where each element is included indpendently with
probability p (not just p = 1/2).

On the free group on 2-generators F5, we have made progress when all elements of
A are of uniform length. In this case,

0 w!| odd
1 g 3ATwl/2 S
Plw ¢ AA™") = (4) w| even and middle characters the same
3 2*3R—\w|/2—1 _ L - .
(4) w!| even and middle characters different.

This work also suggests ways to compute the expected sizes E|AA| and E|AA™Y
as well as the variances Var|AA| and Var|AA™Y.
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