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Product and Quotient Sets

Let G be a finitely presented multiplicative group equipped with a word metric.
Let A = {a1, . . . , an} ⊆ G and let A−1 := {a−1

1 , . . . , a−1
n }. The product set

and the right and left difference sets of A are given, respectively, by
AA := {ai · aj : ai, aj ∈ A} ,

AA−1 :=
ai · a−1

j : ai, aj ∈ A
 ,

A−1A :=
a−1

i · aj : ai, aj ∈ A
 .

Following Lazarev-Miller-O’Bryant [1], we use graph theory as a framework to
compute the probability that AA or AA−1 contain a word of a specified length,
where A is random.

Condition Graphs

Let R ≥ 0 and BR be the set of words in G of length ≤ R. What can we say
about the size of a uniform random subset A of BR?

Definition

The condition graph C(w1, . . . , wk /∈ AA−1) is a graph with vertex set G
and edges (u, v) whenever uv−1 = wi or u−1v = wi for some i ∈ {1, . . . , k}.
Similarly, the condition graph C(w1, . . . , wk /∈ AA) is a graph with vertex set
G and edges (u, v) whenever uv = wi or vu = wi for some i ∈ {1, . . . , k}.

The condition graph C(w1, . . . , wk /∈ S) represents all the ways that the words
w1, . . . , wk could appear as an element of S through a specified random process. In
order to consider questions of probability, we restrict our attention to the subgraphs
CR(w1, . . . , wk /∈ S) induced by BR, the set of all words in G of length ≤ R.
The connected components of the condition graph C(w /∈ AA−1) are paths and
cycles.

Lemma. Structure of C(w /∈ AA−1).

Let X be a connected component of of C(w /∈ AA−1). Then, X is isomorphic
to one of the following.

(1) A cycle;
(2) A path of infinite length;
(3) A path of length 2;
(4) A singleton.

Case 3 occurs only when w is a square. Case 4 only occurs when w = e, in
which case every connected component is a singleton.

Counting the numbers of path and cycle connected components allows us to de-
termine the probability that w /∈ AA−1. Let p(k) be the number of length k path
components in CR(w /∈ S) and c(k) be the number of length k cycle components
in CR(w /∈ S). Then, we have the following formula in terms of the Fibonacci
numbers F1 = 1, F2 = 2, and Fk = Fk−1 + Fk−2.

P(w /∈ AA−1) = ∞∏
k=1


Fk+1

2k


p(k)

∞∏
k=1


Fk−2 + Fk

2k


c(k)

.

Condition Graphs for Z2 ∗ Z2

Words in Z2 ∗ Z2 are alternating strings of x, y. Any word can be encoded as a
pair (c, i) where c is the starting character (either x or y) and i is the length of
the string. In Z2 ∗ Z2, the condition graphs CR(w /∈ AA) have paths and cycles.
Example. If w = (x, i) and j ≥ 1 is odd, we have the cycle

(x, j − i)

(x, j) (x, 2i − j)

(x, i − j)

Theorem. CR(w /∈ AA) in Z2 ∗ Z2

Let w ∈ Z2 ∗ Z2. Then for AA,

(1) CR(e) consists of



2⌈R
2 ⌉ + 1 self-loops,

⌊R
2 ⌋ paths of length 1.

(2) if w is of even length i ≥ 2, write R = k( i
2) + j for j, k ∈ Z≥0

and j < i
2. Then,

(i) if 4 | i, CR(w) consists of



2⌈j
2⌉ paths of length k if k ≥ 1,

i
2 − 2⌈j

2⌉ paths of length k − 1 if k ≥ 2,
⌊2R−i−2

4 ⌋ paths of length 1 if R ≥ i
2,

1 self-loop if R ≥ i
2.

(ii) if 4 ∤ i, CR(w) consists of

j + 1 (resp. j) paths of length k if k ≥ 1, R odd (resp. even),
i
2 − j − 1 (r. i

2 − j) paths of length k − 1 if k ≥ 2, R odd (r. even),
⌊2R−i

4 ⌋ paths of length 1 if R ≥ i
2.

(3) if w is of odd length i, then CR(w) consists of

⌊R−i
2 ⌋ 4-cycles if R ≥ i,

R − ⌊ i
2⌋ paths of length 2 if ⌊ i

2⌋ < R < i,
⌊R

2 ⌋ − ⌊R−i
2 ⌋ paths of length 2 if R ≥ i,

1 path of length 1 if R ≥ i.

Figure 1:C5(xyxy) for AA.

Figure 2:C5(xyx) for AA.

Z2 ∗ Z2 Continued

Theorem. CR(w /∈ AA−1) in Z2 ∗ Z2)

Let w ∈ Z2 ∗ Z2. Then,
(1) CR(e /∈ AA−1) consists of 2R + 1 self-loops.
(2) if w is of even length i ≥ 2, write R = k( i

2) + j for j, k ∈ Z≥0
and j < i

2. Then, CR(w /∈ AA−1) consists of

2j + 1 paths of length k if k ≥ 1,
i − 2j − 1 paths of length k − 1 if k ≥ 2.

(3) if w is of odd length i, then CR(w /∈ AA−1) consists of R −⌊ i
2⌋ paths

of length 1 if R ≥ i
2.

Using the Lemma, we can find P(w /∈ AA−1) in each of these cases where A ⊆ BR

and R is sufficiently large.

Future Work

We hope to extend the condition graphs framework to
(1) Condition graphs C(w1, . . . , wk /∈ S) on Z2 ∗ Z2 involving multiple words;
(2) The free group F2 (partial progress);
(3) Random subsets A where each element is included indpendently with

probability p (not just p = 1/2).

On the free group on 2-generators F2, we have made progress when all elements of
A are of uniform length. In this case,

P(w /∈ AA−1) =



0 |w| odd
3
4

3R−|w|/2
|w| even and middle characters the same

3
4

2∗3R−|w|/2−1
|w| even and middle characters different.

This work also suggests ways to compute the expected sizes E|AA| and E|AA−1|
as well as the variances Var|AA| and Var|AA−1|.
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