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Summary

@ History of the problem.
@ Examples.
@ Main results and proofs.

@ Describe open problems.
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Statement

A finite set of integers, |A| its size. Form
o Sumset: A+ A= {a +a;: g,a c A}
o Difference set: A-A={a,— g;: g, € A}.
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Statement

A finite set of integers, |A| its size. Form
o Sumset: A+ A= {a +a;: g,a c A}
o Difference set: A-A={a,— g;: g, € A}.

Definition

We say A is difference dominated if |A — Al > |[A+ A|,
balanced if |A — A] = |A+ A| and sum dominated (or an
MSTD set) if A+ Al > |A—A|.
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Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x, y) gives 1 sum, 2 differences.
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Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x, y) gives 1 sum, 2 differences.

@ Do there exist sum-dominated sets?

o If yes, how many?

TS HSHHSEE




Examples J




Examples
[ ]

Examples

o Conway: {0,2,3,4,7,11,12,14}.
o Marica (1969): {0,1,2,4,7,8,12,14,15}.

@ Freiman and Pigarev (1973): {0,1,2,4,5,9,12,13,
14,16,17, 21,24 ,25,26,28,29}.

@ Computer search of random subsets of {1,...,100}:
{2,6,7,9,13,14,16,18,19,22, 23, 25, 30, 31, 33, 37, 39,
41,42 45,46,47,48,49,51,52,54,57,58,59, 61,64, 65,
66,67,68,72,73,74,75,81,83,84,87,88,91,93,94, 95,
98,100}.

@ Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation
If Ais an arithmetic progression, |A+ Al = |A—A|.
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Infinite Families

Key observation
If Ais an arithmetic progression, |A+ Al = |A—A|.

Proof:

o WLOG, A={0,1,....,n} as A— oA+ [ doesn’t
change A+ A|, |A-A.
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Infinite Families

Key observation
If Ais an arithmetic progression, |A+ Al = |A—A|.

Proof:

o WLOG, A={0,1,....,n} as A— oA+ [ doesn’t
change A+ A|, |A-A.

e A+A=1{0,...,2n}, A—A={—n,..., n}, both of size
2n+1. O
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Previous Constructions

Most constructions perturb an arithmetic progression.

Example:
© MSTD set A=1{0,2,3,4,7,11,12,14}.

o A={0,2}U{3,7,11} U (14 — {0,2)) U {4}.
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Example (Nathanson)

Theorem
md keNwithm>4,1<d<m-1,d#m/2, k >3 if
d<m/2else k > 4. Let
e B=1[0,m—1]\{d}.
oL={m-d,2m—d,...,.km—d}.
0 g =(k+1)m-—2d.
o AA=BULU (a" - B).
o A=A"uU{m}.
Then A is an MSTD set.
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New Construction: Notation

o[abl={keZ:a<k<bhb}

@ Ais a P,-set if its sumset and its difference set
contain all but the first and last n possible elements
(and of course it may or may not contain some of
these fringe elements).
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New Construction

Theorem (Miller-Scheinerman ’09)

@ A=LURbeaP,, MSTD set where L C [1,n],
R c[n+1,2n],and1,2n € A.

@ Fix ak > n and let m be arbitrary.

@ M any subset of [n+ k + 1,n+ k + m] st no run of
more than k missing elements. Assume
n+k+1¢M.

o Set AIM)=LUO;UMU O,U R, where
Oi=[n+1,n+k], Oo=[n+k+m+1,n+2k + m],
and R = R+ 2k + m.

Then A(M) is an MSTD set, and 3C > 0 st the
percentage of subsets of {0, . .., r} that are in this family
(and thus are MSTD sets) is at least C/r*.
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Probability Review

X random variable with density f(x) means
e f(x)>0;
° [T f(x)=1;
@ Prob(X € [a,b]) = [2 f(x)dx.

Key quantities:
@ Expected (Average) Value: E[X] = [ xf(x)dXx.
@ Variance: o2 = [(x — E[X])?f(x)dx.




Binomial model

Binomial model, parameter p(n)
Each k € {0,..., n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

o Let Ac {0,...,n}. Most elements in {0,...,2n} in
A+Aandin{—n,....n}in A— A

o E[[A+A]=2n—11,E[|A—A]=2n—7.




Results
[ ]

Martin and O’Bryant '06

Let A be chosen from {0, ..., N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp.,2N*! subsets are sum
dominated.
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Results
[ ]

Martin and O’Bryant '06

Let A be chosen from {0, ..., N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp.,2N*! subsets are sum
dominated.

@ Ksp;1/2 > 1077, expect about 1073.

@ Proof (p = 1/2): Generically |A| = ¥ + O(V'N).
o about ¥ — WK \ways write k € A+ A.
o about ¥ — M ways write k € A — A.
o Almost all numbers that can be in A+ A are.

o Win by controlling fringes.




Notation

@ X ~ f(N) means Ve, ep > 0, IN,, ., StYN > N, ,

1,€2

Prob (X & [(1 — e)f(N), (1 + e1)f(N)]) < ee.




Notation

@ X ~ f(N) means Ve, ep > 0, IN,, ., StYN > N, ,
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0 S=|A+A,D=|A-A
S =2N+1-8 D =2N+1-D.




Notation

@ X ~ f(N) means Ve, ep > 0, IN,, ., StYN > N, ,

1,€2

Prob (X & [(1 — e)f(N), (1 + e1)f(N)]) < ee.

0 S=A+A,D=|A-A,
S=2N+1-§5,D°=2N+1-1D.
New model: Binomial with parameter p(N):
© 1/N = o(p(N)) and p(N) = o(1);

@ Prob(k € A) = p(N).

Conjecture (Martin-O’Bryant)
As N — oo, Ais a.s. difference dominated.

c




Main Result

p(N) as above, g(x) = 204,
® p(N) = o(N~72): D ~ 28 ~ (Np(N))?;
@ p(N)=cN-"2: D~ g(c®)N,S ~ g (%) N
(c—0,D/S —2;¢c— 00,D/S —1);
o N-/2 = o(p(N)): 8¢ ~ 2D° ~ 4/p(N)2.

Can generalize to binary linear forms, still have critical
threshold.




Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).
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Example (Chernoff): t; iid binary random variables,
Y =>T".t,then

YA >0: Prob <|Y—E[Y]| > \//\n) < 2672,
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Need to allow dependent random variables.




Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): t; iid binary random variables,
Y =>T".t,then

YA >0: Prob <|Y—E[Y]| > \//\n) < 2672,

Need to allow dependent random variables.
Sketch of proofs: X € {S, D, 8¢, D¢}.

@ Prove E[X] behaves asymptotically as claimed;
© Prove X is strongly concentrated about mean.
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Setup

Note: only need strong concentration for N='/2 = o(p(N)).
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Note: only need strong concentration for N='/2 = o(p(N)).

Will assume p(N) = o(N~1/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k2)).




Setup

Note: only need strong concentration for N='/2 = o(p(N)).

Will assume p(N) = o(N~1/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k2)).

For convenience let p(N) = N7, 6 € (1/2,1).
[ID binary indicator variables:

1 with probability N—°
Xn-N = . - 5
0 with probability 1 — N—°.

X =N Xon, E[X] = N9,
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Proof

Lemma

Pi(N) = 4N-(-9),
O=#{mn):-m<ne{l,... NNA.
With probability at least 1 — P;(N) have
Q Xe [IN'° 3N,

1N1—5(1—N1—5—1) §N1—6(§N1—6_1)
2 2 2" 2
g 2 S O S 2 *




Proof

Lemma

Pi(N) = 4N-(-9),
O=#{mn):-m<ne{l,... NNA.
With probability at least 1 — P;(N) have
Q Xe [IN'° 3N,

1N1—5(1—N1—5—1) §N1—6(§N1—6_1)
2 2 2" 2
g 2 S O S 2 *

Proof:

@ (1) is Chebyshev: Var(X) = NVar(X,n) < N'°.
@ (2) follows from (1) and () ways to choose 2 from r.




Concentration

e f(6) =min (1,%%), g(é) any function st
0 < g(0) < f(9).

@ p(N)=N=,6¢€(1/2,1), Pi(N) = 4N-(1=9),
P>(N) = CN-(f(9)-9())

With probability at least 1 — P;(N) — P>(N) have
D/S =2+ O(N-90).

.




Concentration

e f(6) =min (1,%%), g(é) any function st
0 < g(d) < £(9).
@ p(N)=N=,6¢€(1/2,1), Pi(N) = 4N-(1=9),
P>(N) = CN~(7(9)=9(%))
With probability at least 1 — P;(N) — P>(N) have
D/S =2+ O(N-99).

Proof: Show D ~ 20 + O(N3=%9), S ~ O + O(N3~%),

As O is of size N?=2% with high probability, need
2-20>3—46o0ro>1/2.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m, n) and (n, ) could yield same differences.

Notation:- m<n,m <n', m<m,

v 1 fn—m=n-m
MM 0 otherwise.

E[Y] < N3 N4 4 N2. N-3 <2N3% As§>1/2,
#{bad pairs} <« O.

Claim: oy < N"®with r(§) = 1 max(3 — 46,5 — 74). This
and Chebyshev conclude proof of theorem.
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Cannot use CLT as Y, nm » are not independent.




Proof of claim

Cannot use CLT as Y, nm » are not independent.

Use Var(U + V) < 2Var(U) + 2Var( V).
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Proof of claim

Cannot use CLT as Y, nm » are not independent.
Use Var(U + V) < 2Var(U) + 2Var( V).
Write

E Ym,n,m’,n’ - E Um,n,m’,n"f‘g Vm,n,n’

with all indices distinct (at most one in common, if so must
be n= n).

Var( U) - Z Var( Um7n7m/7n/ )"—2 Z COVar( Um7n7m/7n/, Uﬁ,’ﬁ’ﬁ»’/’ﬁ/)

(mna oty
(m,n,m’ ')




Analyzing Var(Up n ny )

At most N3 tuples.
Each has variance N~ — N=80 < N—49,

ThUS ZVar(Um7n7m/7n/) S N3_46

A7




Analyzing CoVar( Um,n,m’,n/ 5 Ufn,ﬁ,ﬁl’,ﬁ’)

@ All 8 indices distinct: independent, covariance of 0.

@ 7 indices distinct: At most N2 choices for first tuple, at
most N2 for second, get

E[U1)Ue) —E[Un)E[Ug)] = NP = NN~ < N7

@ Argue similarly for rest, get << N5=70 - N3=49,
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Open Problems
°

Probability k in an MSTD set (uniform model)

~v(k,n) := Prob(k € A: AC [1,n] is an MSTD set)
Observed y(k.n)

060 | I
0ssf | I
|
. / A A
osof | NV'\VA”»’Mv\y/”“\ﬂ/\f’\ AN S M|
\
[ \

[ \

04sF | N | |
| \

|/ L

f . . . . Ly
f 20 40 60 80 ! 100

Figure: Observed ~(k, 100), random sample 4458 MSTD sets.

Fix a constant 0 < a < 1. Then lim,_, v(k, n) = 1/2 for
lan] <k <n-—|an|.
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Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter p(N) as
before, u, v be non-zero integers with u > |v|, ged(u, v) = 1 and
(u,v) # (1,1). Put f(x, y) := ux + vy and let Dy denote the random
variable |f(A)|. Then the following three situations arise:

@ p(N) =0o(N-1/2) : Then
~ (N -p(N))?.
Q p(N) =c-N~1/2for some ¢ € (0, 00) : Define the function
Guv: (0,00) — (0,u + |v|) by

Qo) = (u+ V)~ 2Vl (57 ) = (0= vhe™

Then

© N2 =0o(p(N)) : Let Df := (u +|v|)N — Dr. Then Df ~ 204

;
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Generalization of main results (cont)

Let f, g be two binary linear forms. Say f dominates g for the
parameter p(N) if, as N — oo, |f(A)| > |g(A)| almost surely when A is
a random subset (binomial model with parameter p(N)).

Theorem (Hegarty-M): f(x, y) = uyx + Wby and g(x, y) = tsX + goy,
where u; > |vi| > 0, gcd(u;, vi) = 1 and (U2, Vo) # (uq, £vq). Let

(UV)'—l M+U_|V| _3U—|V|
WSV =12 '3 2 )T e

The following two situations can be distinguished :

@ ur + |vi| > U2 + |v2| and a(uq, vq) < a(uz, v2). Then f dominates
g for all p such that N=3/% = o(p(N)) and p(N) = o(1). In
particular, every other difference form dominates the form x — y
in this range.

@ uy + |vq| > U2 + |vo] and a(uq, vi) > a(u2, v2). Then there exists
cr.g > 0 such that one form dominates for p(N) < cN~"/2
(c < ¢r.4) and other dominates for p(N) > cN="/2 (¢ > ¢ 4).
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Open Problems

;

@ One unresolved matter is the comparison of arbitrary difference
forms in the range where N=3/4 = O(p) and p = O(N—3%/%).
Note that the property of one binary form dominating another is
not monotone, or even convex.

@ A very tantalizing problem is to investigate what happens while
crossing a sharp threshold.

@ One can ask if the various concentration estimates can be
improved (i.e., made explicit).
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Mathematica Code: Computing Sum/Difference Set

L

setA={1,2,5,7,11,13,17,19};

sumset = {};

diffset = {};

n = Length[setA];

For[i=1,i<=n, i++,

For[j=1,j<=n, j++,

{

sum = setA[[i]] + setA[[jl];

diff = setA[[i]] - setA[[j]];

If[MemberQ[sumset, sum] == False, sumset = AppendTo[sumset, sum]];
If[MemberQ[diffset, diff] == False, diffset = AppendTo[diffset, diff]];

HI

sumset = Sort[sumset];

diffset = Sort[diffset];

Print[sumset];

Print[diffset];

Print["Size of sumset =", Length[sumset], " and size of difference set =",
Length[diffset], "."];

Yy s
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