When Almost All Sets Are Difference Dominated

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/

Williams College, September 12, 2008

Summary

- History of the problem.
- Examples.
- Main results and proofs.
- Describe open problems.

Introduction

Statement

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_i : a_i, a_i \in A\}.$
- Difference set: $A A = \{a_i a_i : a_i, a_i \in A\}$.

Programs

Bibliography

Statement

Introduction

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_i : a_i, a_i \in A\}.$
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}$.

Definition

We say A is difference dominated if |A - A| > |A + A|, balanced if |A - A| = |A + A| and sum dominated (or an MSTD set) if |A + A| > |A - A|.

-

Questions

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

Expect generic set to be difference dominated:

- addition is commutative, subtraction isn't:
- Generic pair (x, y) gives 1 sum, 2 differences.

Questions

- Do there exist sum-dominated sets?
- If yes, how many?

Examples

Examples

- Conway: {0, 2, 3, 4, 7, 11, 12, 14}.
- Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.
- Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29}.
- Computer search of random subsets of {1,...,100}: {2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39,41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65,66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95,98,100}.
- Recently infinite families (Hegarty, Nathanson).

Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A - A|.

Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A - A|.

Proof:

• WLOG, $A = \{0, 1, ..., n\}$ as $A \rightarrow \alpha A + \beta$ doesn't change |A + A|, |A - A|.

Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A - A|.

Proof:

- WLOG, $A = \{0, 1, ..., n\}$ as $A \rightarrow \alpha A + \beta$ doesn't change |A + A|, |A A|.
- $A + A = \{0, ..., 2n\}, A A = \{-n, ..., n\}$, both of size 2n + 1.

Previous Constructions

Most constructions perturb an arithmetic progression.

Example:

- MSTD set $A = \{0, 2, 3, 4, 7, 11, 12, 14\}.$
- $A = \{0,2\} \cup \{3,7,11\} \cup (14 \{0,2\}) \cup \{4\}.$

Example (Nathanson)

Theorem

 $m, d, k \in \mathbb{N}$ with $m \ge 4$, $1 \le d \le m-1$, $d \ne m/2$, $k \ge 3$ if d < m/2 else $k \ge 4$. Let

- $B = [0, m-1] \setminus \{d\}.$
- $L = \{m d, 2m d, \dots, km d\}.$
- $a^* = (k+1)m 2d$.
- $A^* = B \cup L \cup (a^* B)$.
- $A = A^* \cup \{m\}.$

Then A is an MSTD set.

New Construction: Notation

- $[a, b] = \{k \in \mathbb{Z} : a \le k \le b\}.$
- A is a P_n -set if its sumset and its difference set contain all but the first and last n possible elements (and of course it may or may not contain some of these fringe elements).

New Construction

Introduction

Theorem (Miller-Scheinerman '09)

- $A = L \cup R$ be a P_n , MSTD set where $L \subset [1, n]$, $R \subset [n + 1, 2n]$, and $1, 2n \in A$.
- Fix a $k \ge n$ and let m be arbitrary.
- M any subset of [n + k + 1, n + k + m] st no run of more than k missing elements. Assume n + k + 1 ∉ M.
- Set $A(M) = L \cup O_1 \cup M \cup O_2 \cup R'$, where $O_1 = [n+1, n+k]$, $O_2 = [n+k+m+1, n+2k+m]$, and R' = R + 2k + m.

Then A(M) is an MSTD set, and $\exists C > 0$ st the percentage of subsets of $\{0, ..., r\}$ that are in this family (and thus are MSTD sets) is at least C/r^4 .

Results

Probability Review

X random variable with density f(x) means

- f(x) > 0;
- $\bullet \int_{-\infty}^{\infty} f(x) = 1;$
- Prob $(X \in [a, b]) = \int_a^b f(x) dx$.

Key quantities:

- Expected (Average) Value: $\mathbb{E}[X] = \int x f(x) dx$.
- Variance: $\sigma^2 = \int (x \mathbb{E}[X])^2 f(x) dx$.

Binomial model

Binomial model, parameter p(n)

Each $k \in \{0, ..., n\}$ is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

- Let $A \in \{0, ..., n\}$. Most elements in $\{0, ..., 2n\}$ in A + A and in $\{-n, ..., n\}$ in A A.
- $\mathbb{E}[|A+A|] = 2n-11$, $\mathbb{E}[|A-A|] = 2n-7$.

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, \ldots, N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text{SD};p}2^{N+1}$ subsets are sum dominated.

Martin and O'Bryant '06

Theorem

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text{SD};p}2^{N+1}$ subsets are sum dominated.

• $k_{\text{SD};1/2} \ge 10^{-7}$, expect about 10^{-3} .

Bibliography

Martin and O'Bryant '06

Theorem

Introduction

Let A be chosen from $\{0, ..., N\}$ according to the binomial model with constant parameter p (thus $k \in A$ with probability p). At least $k_{\text{SD};p}2^{N+1}$ subsets are sum dominated.

- $k_{SD;1/2} \ge 10^{-7}$, expect about 10^{-3} .
- Proof (p = 1/2): Generically $|A| = \frac{N}{2} + O(\sqrt{N})$.
 - \diamond about $\frac{N}{4} \frac{|N-k|}{4}$ ways write $k \in A + A$.
 - \diamond about $\frac{N}{4} \frac{|k|}{4}$ ways write $k \in A A$.
 - \diamond Almost all numbers that can be in $A \pm A$ are.
 - Win by controlling fringes.

22

Notation

• $X \sim f(N)$ means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \geq N_{\epsilon_1, \epsilon_2}$

Prob
$$(X \notin [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2.$$

Notation

Introduction

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \geq N_{\epsilon_1, \epsilon_2}$
Prob $(X \not\in [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2$.

•
$$S = |A + A|$$
, $D = |A - A|$,
 $S^{c} = 2N + 1 - S$, $D^{c} = 2N + 1 - D$.

Notation

Introduction

•
$$X \sim f(N)$$
 means $\forall \epsilon_1, \epsilon_2 > 0$, $\exists N_{\epsilon_1, \epsilon_2}$ st $\forall N \geq N_{\epsilon_1, \epsilon_2}$
Prob $(X \not\in [(1 - \epsilon_1)f(N), (1 + \epsilon_1)f(N)]) < \epsilon_2$.

•
$$S = |A + A|$$
, $D = |A - A|$,
 $S^{c} = 2N + 1 - S$, $D^{c} = 2N + 1 - D$.

New model: Binomial with parameter p(N):

- 1/N = o(p(N)) and p(N) = o(1);
- $\bullet \ \operatorname{Prob}(k \in A) = p(N).$

Conjecture (Martin-O'Bryant)

As $N \to \infty$, A is a.s. difference dominated.

Main Result

Introduction

Theorem (Hegarty-Miller)

$$p(N)$$
 as above, $g(x) = 2\frac{e^{-x} - (1-x)}{x}$.

•
$$p(N) = o(N^{-1/2})$$
: $\mathcal{D} \sim 2S \sim (Np(N))^2$;

$$\begin{array}{l} \bullet \ \ p(N) = cN^{-1/2} \colon \mathcal{D} \sim g(c^2)N, \, \mathcal{S} \sim g\left(\frac{c^2}{2}\right)N \\ (c \to 0, \, \mathcal{D}/\mathcal{S} \to 2; \, c \to \infty, \, \mathcal{D}/\mathcal{S} \to 1); \end{array}$$

•
$$N^{-1/2} = o(p(N))$$
: $S^c \sim 2D^c \sim 4/p(N)^2$.

Can generalize to binary linear forms, still have critical threshold.

26

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > 0 : \operatorname{Prob}\left(|Y - \mathbb{E}[Y]| \ge \sqrt{\lambda n}\right) \le 2e^{-\lambda/2}.$$

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > 0 : \operatorname{Prob}\left(|Y - \mathbb{E}[Y]| \ge \sqrt{\lambda n}\right) \le 2e^{-\lambda/2}.$$

Need to allow dependent random variables.

Introduction

Key input: recent strong concentration results of Kim and Vu (Applications: combinatorial number theory, random graphs, ...).

Example (Chernoff): t_i iid binary random variables, $Y = \sum_{i=1}^{n} t_i$, then

$$\forall \lambda > 0 : \operatorname{Prob}\left(|Y - \mathbb{E}[Y]| \ge \sqrt{\lambda n}\right) \le 2e^{-\lambda/2}.$$

Need to allow dependent random variables. Sketch of proofs: $\mathcal{X} \in \{\mathcal{S}, \mathcal{D}, \mathcal{S}^c, \mathcal{D}^c\}$.

- Prove $\mathbb{E}[\mathcal{X}]$ behaves asymptotically as claimed;
- **2** Prove \mathcal{X} is strongly concentrated about mean.

Proofs

Setup

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Setup

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Will assume $p(N) = o(N^{-1/2})$ as proofs are elementary (i.e., Chebyshev: $\text{Prob}(|Y - \mathbb{E}[Y]| \ge k\sigma_Y) \le 1/k^2)$).

Setup

Introduction

Note: only need strong concentration for $N^{-1/2} = o(p(N))$.

Will assume $p(N) = o(N^{-1/2})$ as proofs are elementary (i.e., Chebyshev: $\text{Prob}(|Y - \mathbb{E}[Y]| \ge k\sigma_Y) \le 1/k^2)$).

For convenience let $p(N) = N^{-\delta}$, $\delta \in (1/2, 1)$.

IID binary indicator variables:

$$X_{n;N} = \begin{cases} 1 & \text{with probability } N^{-\delta} \\ 0 & \text{with probability } 1 - N^{-\delta}. \end{cases}$$

$$X = \sum_{i=1}^{N} X_{n;N}, \mathbb{E}[X] = N^{1-\delta}.$$

Proof

Lemma

$$P_1(N) = 4N^{-(1-\delta)},$$

 $\mathcal{O} = \#\{(m,n) : m < n \in \{1,\ldots,N\} \cap A\}.$

With probability at least $1 - P_1(N)$ have

35

Proof

Introduction

Lemma

$$P_1(N)=4N^{-(1-\delta)},$$

$$\mathcal{O} = \#\{(m, n) : m < n \in \{1, \dots, N\} \cap A\}.$$

With probability at least $1 - P_1(N)$ have

Proof:

- (1) is Chebyshev: $Var(X) = NVar(X_{n:N}) \le N^{1-\delta}$.
- (2) follows from (1) and $\binom{r}{2}$ ways to choose 2 from r.

Concentration

Lemma

- $f(\delta) = \min(\frac{1}{2}, \frac{3\delta 1}{2})$, $g(\delta)$ any function st $0 < g(\delta) < f(\delta)$.
- $p(N) = N^{-\delta}$, $\delta \in (1/2, 1)$, $P_1(N) = 4N^{-(1-\delta)}$, $P_2(N) = CN^{-(f(\delta)-g(\delta))}$.

With probability at least $1 - P_1(N) - P_2(N)$ have $\mathcal{D}/\mathcal{S} = 2 + O(N^{-g(\delta)})$.

37

Concentration

Introduction

Lemma

- $f(\delta) = \min(\frac{1}{2}, \frac{3\delta-1}{2})$, $g(\delta)$ any function st $0 < g(\delta) < f(\delta)$.
- $p(N) = N^{-\delta}$, $\delta \in (1/2, 1)$, $P_1(N) = 4N^{-(1-\delta)}$, $P_2(N) = CN^{-(f(\delta)-g(\delta))}$.

With probability at least $1 - P_1(N) - P_2(N)$ have $\mathcal{D}/\mathcal{S} = 2 + O(N^{-g(\delta)})$.

Proof: Show $\mathcal{D} \sim 2\mathcal{O} + O(N^{3-4\delta})$, $\mathcal{S} \sim \mathcal{O} + O(N^{3-4\delta})$.

As \mathcal{O} is of size $N^{2-2\delta}$ with high probability, need $2-2\delta>3-4\delta$ or $\delta>1/2$.

Contribution from 'diagonal' terms lower order, ignore.

Contribution from 'diagonal' terms lower order, ignore.

Difficulty: (m, n) and (m', n') could yield same differences.

Contribution from 'diagonal' terms lower order, ignore.

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

Introduction

Contribution from 'diagonal' terms lower order, ignore.

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbb{E}[Y] \le N^3 \cdot N^{-4\delta} + N^2 \cdot N^{-3\delta} \le 2N^{3-4\delta}$$
. As $\delta > 1/2$, #{bad pairs} $\iff \mathcal{O}$.

42

Analysis of \mathcal{D}

Introduction

Contribution from 'diagonal' terms lower order, ignore.

Difficulty: (m, n) and (m', n') could yield same differences.

Notation: $m < n, m' < n', m \le m'$,

$$Y_{m,n,m',n'} = \begin{cases} 1 & \text{if } n-m=n'-m' \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathbb{E}[Y] \le N^3 \cdot N^{-4\delta} + N^2 \cdot N^{-3\delta} \le 2N^{3-4\delta}$$
. As $\delta > 1/2$, #{bad pairs} $\iff \mathcal{O}$.

Claim: $\sigma_Y \leq N^{r(\delta)}$ with $r(\delta) = \frac{1}{2} \max(3 - 4\delta, 5 - 7\delta)$. This and Chebyshev conclude proof of theorem.

Proof of claim

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Proof of claim

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Use
$$Var(U + V) \leq 2Var(U) + 2Var(V)$$
.

Proof of claim

Cannot use CLT as $Y_{m,n,m',n'}$ are not independent.

Use
$$Var(U + V) \leq 2Var(U) + 2Var(V)$$
.

Write

$$\sum Y_{m,n,m',n'} = \sum U_{m,n,m',n'} + \sum V_{m,n,n'}$$

with all indices distinct (at most one in common, if so must be n = m').

$$\operatorname{Var}(U) = \sum \operatorname{Var}(U_{m,n,m',n'}) + 2 \sum_{\substack{(m,n,m',n') \neq \\ (\widetilde{m},\widetilde{n},\widetilde{m'},\widetilde{n'})}} \operatorname{CoVar}(U_{m,n,m',n'}, U_{\widetilde{m},\widetilde{n},\widetilde{m'},\widetilde{n'}})$$

46

Analyzing $Var(U_{m,n,m',n'})$

At most N^3 tuples.

Each has variance $N^{-4\delta} - N^{-8\delta} \le N^{-4\delta}$.

Thus $\sum \operatorname{Var}(U_{m,n,m',n'}) \leq N^{3-4\delta}$.

Analyzing $CoVar(U_{m,n,m',n'},U_{\widetilde{m},\widetilde{n},\widetilde{m}',\widetilde{n}'})$

- All 8 indices distinct: independent, covariance of 0.
- 7 indices distinct: At most N³ choices for first tuple, at most N² for second, get

$$\mathbb{E}[U_{(1)}U_{(2)}] - \mathbb{E}[U_{(1)}]\mathbb{E}[U_{(2)}] = N^{-7\delta} - N^{-4\delta}N^{-4\delta} \le N^{-7\delta}.$$

• Argue similarly for rest, get $\ll N^{5-7\delta} + N^{3-4\delta}$.

Open Problems

Probability *k* in an MSTD set (uniform model)

$$\gamma(k, n) := \text{Prob}(k \in A : A \subset [1, n] \text{ is an MSTD set})$$

Figure: Observed $\gamma(k, 100)$, random sample 4458 MSTD sets.

Conjecture

Fix a constant $0 < \alpha < 1$. Then $\lim_{n \to \infty} \gamma(k, n) = 1/2$ for $|\alpha n| < k < n - |\alpha n|$.

Introduction

Generalization of main result

Introduction

Theorem (Hegarty-M): Binomial model with parameter p(N) as before, u, v be non-zero integers with $u \ge |v|$, gcd(u, v) = 1 and $(u, v) \ne (1, 1)$. Put f(x, y) := ux + vy and let \mathcal{D}_f denote the random variable |f(A)|. Then the following three situations arise:

$$\mathcal{D}_f \sim (N \cdot p(N))^2$$
.

 $p(N) = c \cdot N^{-1/2}$ for some $c \in (0, \infty)$: Define the function $g_{u,v}: (0, \infty) \to (0, u + |v|)$ by

$$g_{u,v}(x) := (u+|v|)-2|v|\left(\frac{1-e^{-x}}{x}\right)-(u-|v|)e^{-x}.$$

Then

$$\mathcal{D}_f \sim g_{u,v}\left(\frac{c^2}{u}\right) N.$$

3 $N^{-1/2} = o(p(N))$: Let $\mathcal{D}_f^c := (u + |v|)N - \mathcal{D}_f$. Then $\mathcal{D}_f^c \sim \frac{2u|v|}{p(N)^2}$.

Generalization of main results (cont)

Let f, g be two binary linear forms. Say f dominates g for the parameter p(N) if, as $N \to \infty$, |f(A)| > |g(A)| almost surely when A is a random subset (binomial model with parameter p(N)).

Theorem (Hegarty-M): $f(x, y) = u_1x + u_2y$ and $g(x, y) = u_2x + g_2y$, where $u_i \ge |v_i| > 0$, $gcd(u_i, v_i) = 1$ and $(u_2, v_2) \ne (u_1, \pm v_1)$. Let

$$\alpha(u,v) := \frac{1}{u^2} \left(\frac{|v|}{3} + \frac{u - |v|}{2} \right) = \frac{3u - |v|}{6u^2}.$$

The following two situations can be distinguished:

- $u_1 + |v_1| \ge u_2 + |v_2|$ and $\alpha(u_1, v_1) < \alpha(u_2, v_2)$. Then f dominates g for all p such that $N^{-3/5} = o(p(N))$ and p(N) = o(1). In particular, every other difference form dominates the form x y in this range.
- $u_1 + |v_1| > u_2 + |v_2|$ and $\alpha(u_1, v_1) > \alpha(u_2, v_2)$. Then there exists $c_{f,g} > 0$ such that one form dominates for $p(N) < cN^{-1/2}$ $(c < c_{f,g})$ and other dominates for $p(N) > cN^{-1/2}$ $(c > c_{f,g})$.

Introduction

Open Problems

- One unresolved matter is the comparison of arbitrary difference forms in the range where N^{-3/4} = O(p) and p = O(N^{-3/5}).
 Note that the property of one binary form dominating another is not monotone, or even convex.
- A very tantalizing problem is to investigate what happens while crossing a sharp threshold.
- One can ask if the various concentration estimates can be improved (i.e., made explicit).

Programs

Mathematica Code: Computing Sum/Difference Set

```
setA = \{1, 2, 5, 7, 11, 13, 17, 19\};
sumset = \{\};
diffset = \{\};
n = Length[setA]:
For[i = 1, i <= n, i++,
For [i = 1, i <= n, i++,
sum = setA[[i]] + setA[[i]];
diff = setA[[i]] - setA[[i]]:
If[MemberQ[sumset, sum] == False, sumset = AppendTo[sumset, sum]];
If[MemberQ[diffset, diff] == False, diffset = AppendTo[diffset, diff]];
}]];
sumset = Sort[sumset];
diffset = Sort[diffset]:
Print[sumset];
Print[diffset];
Print["Size of sumset = ", Length[sumset], " and size of difference set = ",
Length[diffset], "."];
```

Introduction

- N. Alon and J. H. Spencer, *The Probabilistic Method*, Wiley, 1992.
- G. A. Freiman and V. P. Pigarev, The relation between the invariants R and T, Numbertheoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gos. Univ., Moscow, 1973, 172–174.
- A. P. Godbole, S. Janson, N. W. Locantore Jr. and R. Rapoport, Random Sidon sequences, J. Number Theory 75 (1999), no. 1, 7–22.
- P. V. Hegarty, Some explicit constructions of sets with more sums than differences (2007). To appear in Acta Arithmetica.
- P. V. Hegarty and S. J. Miller, When almost all sets are difference dominated, preprint. http://arxiv.org/abs/0707.3417
- J. H. Kim and V. H. Vu, Concentration of multivariate polynomials and its applications, Combinatorica 20 (2000), 417–434.
- J. Marica, On a conjecture of Conway, Canad. Math. Bull. 12 (1969), 233–234.

Bibliography (cont)

- G. Martin and K. O'Bryant, Many sets have more sums than differences. To appear in: Proceedings of CRM-Clay Conference on Additive Combinatorics, Montréal 2006.
- S. J. Miller and D. Scheinerman, Explicit constructions of infinite families of MSTD sets, preprint.
- M. B. Nathanson, Problems in additive number theory, 1. To appear in: Proceedings of CRM-Clay Conference on Additive Combinatorics, Montréal 2006.
- M. B. Nathanson, Sets with more sums than differences, Integers: Electronic Journal of Combinatorial Number Theory 7 (2007), Paper A5 (24pp).
- M. B. Nathanson, K. O'Bryant, B. Orosz, I. Ruzsa and M. Silva, Binary linear forms over finite sets of integers (2007). To appear in Acta Arithmetica.
- I. Z. Ruzsa, On the cardinality of A + A and A A, Combinatorics year (Keszthely, 1976), vol. 18, Coll. Math. Soc. J. Bolyai, North-HollandBolyai Tarsulat, 1978, 933–938.

Bibliography (cont)

- I. Z. Ruzsa, Sets of sums and differences, Seminaire de Theorie des Nombres de Paris 1982-1983 (Boston), Birkhauser, 1984, 267–273.
- I. Z. Ruzsa, On the number of sums and differences, Acta Math. Sci. Hungar. 59 (1992), 439–447.
- V. H. Vu, New bounds on nearly perfect matchings of hypergraphs: Higher codegrees do help, Random Structures and Algorithms 17 (2000), 29–63.
- V. H. Vu, Concentration of non-Lipschitz functions and Applications, Random Structures and Algorithms 20 (2002), no. 3, 262-316.