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Goals of the Talk

@ Discuss applications of zeros of L-functions.
@ Explain old and new models for these zeros.
@ Highlight power of data and conjectures.

Joint with many colleagues and students over the years:

@ Faculty: Eduardo Duefiez, Frank W. K. Firk, Chris Hughes, Jon
Keating, Nina Snaith, Siman Wong.

@ Graduate Students: Scott Arms, Duc Khiem Huynh, Alvaro
Lozano-Robledo, Tim Novikoff, Anthony Sabelli.

@ Undergraduates: John Goes, Chris Hammond, Steven Jackson,
Gene Kopp, Murat Kologlu, Adam Massey, David Montague,
Ralph Morrison, Kesinee Ninsuwan, Ryan Peckner, Thuy Pham,

John Sinsheimer.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.

A
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Classical RMT
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 . energy eigenfunctions

TS HHSHHH
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = ] . . . = AT> ajj = aji
aiNn don A3n cc AnN
Fix p, define
Prob(A) = H p(ay)-
1<i<j<N
This means
Bu
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N Y Xij =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pan(x) = %i ( \/—))
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pan(X) = %i ( 2\/—))

/buA,N(x)dx AU L)

N
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Eigenvalue Distribution

d(X — Xo) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

/buA,N(x)dx _ #{A"A(A & b]}

N

ZiNzl Ai (A)k .

K" moment = .
2kN 2+l
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Wigner's Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1—x? if|x| <1

2
0 otherwise.

pan(X) — {
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues Aj(A). Then

Trace(A*) = > A(A)K,

where
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve(\(A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e.e]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=7—00
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Riemann Zeta Function

c(s) = Z% - 11 (1-%) . Re(s)> 1.

n=1 p prime
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Riemann Zeta Function

(s) = Z% = 11 (1—é> ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pf - --pfm.
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Riemann Zeta Function

(s) = Z% = 11 (1—é> ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pf - --pfm.

1 1\?
1+ —4+(=) +---

1 1\2
2s 2s 1+—4+ (=) +---

3 3s

VRS
'—\
|
AR
N———
N
Il

1
= 2
n
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:

@ limg_,1+ ((S) = 00, m(X) = 0.
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:
@ limg_,1+ ((S) = 00, m(X) = 0.
° C(Z):F, (x)—>oo.
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Riemann Zeta Function

n=1 p prime

Functional Equation:

£(s) = r(3)75c(s) = €@ -s)

Riemann Hypothesis (RH):

- : 1 .
All non-trivial zeros have Re(s) = =; can write zeros as §+w.

N[ -
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General L-functions

L(s,f) = iaf(n) = [] L(s.H)™. Re(s)>1

=1 p prime

=}

Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).

Generalized Riemann Hypothesis (GRH):

- 1 . 1 .
All non-trivial zeros have Re(s) = 51 can write zeros as 5T
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Elliptic Curves: Mordell-Weil Group

Elliptic curve y2 = x3 + ax + b with rational solutions
P = (X1,y1) and Q = (X2, y2) and connecting line
y =mx + b.

R L R L
Q P
P
E PaQ E
2P \
Addition of distinct points P and Q Adding a point P to itself

E(Q) =~ E(Qors © Z'
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Elliptic curve L-function

E :y2=x3+ax + b, associate L-function

LsE) = 2 W o ] L),

n=1 p prime

where

ag(p) = p — #{(x.y) € (Z/pZ)* : y* = x* + ax + b mod p}.
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Elliptic curve L-function

E :y2=x3+ax + b, associate L-function

LsE) = 2 W o ] L),

n=1 p prime

where

ag(p) = p — #{(x.y) € (Z/pZ)* : y* = x* + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of
vanishing of L(s,E) ats = 1/2.
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Properties of zeros of L-functions

@ infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.

1
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: m(X), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Katz-Sarnak Conj
©00

Measures of Spacings: n-Level Density and Families

Let g; be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f) an L-function
with zeros % + iyt and conductor Qg:

lo lo
Dnt(9) = 01 <’Yf,jlgTQf) - On (’Yf,jngTQf)
in

@ Properties of n-level density:
¢ Individual zeros contribute in limit
© Most of contribution is from low zeros
© Average over similar L-functions (family)
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n-Level Density

n-level density: F = UFy a family of L-functions ordered
by conductors, gy an even Schwartz function: D, #(g) =

.1 logQr log Qs
im0 () o ()

As N — oo, n-level density converges to

/9 )ongr) (X )dX = /9 )ong(r)(U)d T

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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1-Level Densities

Let G be one of the classical compact groups: Unitary,
Symplectic, Orthogonal (or SO(even), SO(odd)).
If supp(g) C (-1, 1), 1-level density of G is

60) ¢ 9,

where
0 GisUnitary
Cg = 1 G isSymplectic
—1 G isOrthogonal.
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Some Results

@ Orthogonal:
o Iwaniec-Luo-Sarnak, Hughes-Miller: n-level density
for HE(N), N square-free.
o Miller, Young: families of elliptic curves.
o Guloglu: 1-level for {Sym'f : f € Hc(1)}, r odd.
@ Symplectic:
¢ Gao, Rubinstein: n-level densities for L(s, xq)-
o Guloglu: 1-level for {Sym'f : f € Hc (1)}, r even.
o Fouvry-lwaniec, Miller-Peckner: 1-level for number
field L-functions.

@ Unitary:
© Hughes-Rudnick, Miller: families of primitive
Dirichlet characters.
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Identifying the Symmetry Groups

@ Often an analysis of the monodromy group in the
function field case suggests the answer.

@ All simple families studied to date are built from GL;
or GL, L-functions.

@ Tools: Explicit Formula, Orthogonality of Characters /
Petersson Formula.

@ How to identify symmetry group in general? One
possibility is by the signs of the functional equation:

@ Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)
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Explicit Formula

@ 7 cuspidal automorphic representation on GL,,.
@ Q, > 0: analytic conductor of L(s,7) = >_ A.(n)/n®.
@ By GRH the non-trivial zeros are 1 + i,;.
@ Satake parameters {o.i(p)}i,;
Ax(p”) = 3oLy ani(p)"”.
o L(s.m) = X0 *5 = [T, [Ty (1 — ami(P)p~) ™

logQx\ _ ~ o\ ~ (vlogp\ A(p”)logp
Zg(%” 2 )_g(o) ZZQ(IOQQW) pv/2log Qx

j p,v
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: ¢, = 0 (resp, 1 or -1) if family £ has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for

{OéﬂlXﬂ'z(k) Eil = {&Wl(i) 'Oéﬂz(j)} isizn .

1<j<m

Theorem (Duefiez-Miller)
If 7 and G are nice families of L-functions, then
Crxg = CF - Cg.

A



Katz-Sarnak Conj
.

Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels

Schwartz test function —— Neutron

Support of test function <+— Neutron Energy.

A1
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Zeros of ((s) vs GUE

06

04 P

02

0.0

0.0 0.5 1.0 15 20 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°™" zero (from Odlyzko) versus RMT prediction.

A
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Orthogonal Random Matrix Models

RMT: SO(2N): 2N eigenvalues in pairs e*%, probability
measure on [0, 7]N:

deo(f) o H (cos B — cos ;) 21_[d9
j<k

Independent Model:

Aonar = {('2“” g) :g € SO(2N —2r)}.

Interaction Model: Sub-ensemble of SO(2N) with the last
2r of the 2N eigenvalues equal +1: 1 < j,k < N —r:

des () o H (cos B — cos ) 2H — cosf)) ZerQJ,

j<k

A
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Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

jo(u) = 5(u) + Zn(u).

Fourier transform of 1-level density (Rank 2, Indep):
n 1
pZ,Independent(u) = |:5(U) + ETI(U) + 2:| .

Fourier transform of 1-level density (Rank 2, Interaction):

ﬁz,lnteraction(u) = [5(U) + %U(U) + 2} + 2(|U| - 1)77(U)-

A
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Comparing the RMT Models

Theorem: M- "'04

For small support, one-param family of rank r over Q(T):

log Cg,
deﬂ”§jzjw< ’mo

EieFn

- ‘/mmwwwx+ww)

where
g = SO(even) if all even

{ SO if half odd
SO(odd)  if all odd.

Sueeorts Katz-Sarnak, B-SD, and Ind%endent model in limit.
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Sketch of Proof

@ Explicit Formula: Relates sums over zeros to sums
over primes.

@ Averaging Formulas: Orthogonality of characters,
Petersson formula.

@ Control of conductors: Monotone.

A
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Explicit Formula (Contour Integration)

AR
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Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d —S
= E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).

A
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Explicit Formula (Contour Integration)

Contour Integration:

~¢(s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):
Io
C dS VS g P /‘b 'tIOdeS.

Knowledge of zeros gives |nfo on coefficients.
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1-Level Expansion

1 log Ce
Ds.5,(¢) S0 ( v)

| PN Ecry ] 27

1 ~
~ A ¢(0) + ¢i(0)

N EreFn
2 log p 1A(|ogp)

|‘FN| EZ]_. Z |Og CEt p (b |OgC Et(p)
2 log p iA( Iogp) ,

|‘FN| EtEZ Z |Og CEt p2 |0g CE Et(p)
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For many families

(1) : Ay x(p) = —r + O(p™Y)
(2): Ap7(p) = p + O(p*?)

Rational Elliptic Surfaces (Rosen and Silverman): If rank r
over Q(T):

.1
lim YZ—Alf(p)logp =

X—00
p<X

Surfaces with j(T ) non-constant (Michel):
A27(p) =p+0 (p'?).
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Interesting Families and Testing RMT Predictions

Let £ : y2 = x3+ A(T )x + B(T) be a one-parameter family
of elliptic curves of rank r over Q(T).

Know the right model for large conductors, want the
correct model for finite conductors. Must explain:

© ExcessRank: Rank r one-parameter family over
Q(T): observed percentages with rank > r + 2.

@ First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.
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@ All curves have log(cond) € [15, 16];

Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ 7 = imaginary part of j™" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves t-Statistic
Median z, — z; 1.28 1.30
Mean 2z, —z; 1.30 1.34 -1.60
StDev 7z, —7; 0.49 0.51
Median z3 — z; 1.22 1.19
Mean 2z3— 2, 1.24 1.22 0.80
StDev 73— 27, 0.52 0.47
Median z3 — z; 2.54 2.56
Mean z3—12z; 2.55 2.56 -0.38
StDev 73— 273 0.52 0.52

OGS




@ All curves have log(cond) € [15, 16];

Spacings b/w Norm Zeros: Rank 2 one-param families over

Q(T)

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);

@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves t-Statistic
Median z, — 73 1.26 1.27
Mean 2z, —z; 1.36 1.29 0.59
StDev 2z, — 23 0.50 0.42
Median z3 — z, 1.22 1.08
Mean z3—2z; 1.29 1.14 1.35
StDev 73— 27, 0.49 0.35
Median z3 — z; 2.66 2.46
Mean z3—2z; 2.65 2.43 2.05
StDev 73 — 27, 0.44 0.42




@ All curves have log(cond) € [15, 16];

Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T)

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves || t-Statistic
Median z, — z; 1.30 1.26
Mean 2z, —2z; 1.34 1.36 0.69
StDev 7z, —7; 0.51 0.50
Median z3 — z» 1.19 1.22
Mean 2z3— 2, 1.22 1.29 1.39
StDev 73— 27, 0.47 0.49
Median z3 — z; 2.56 2.66
Mean z3—12z; 2.56 2.65 1.93
StDev 73— 23 0.52 0.44

e




RMT: Theoretical Results ( N — o)

0.5

0.5 1 1.5 2
1st normalized evalue above 1: SO(even)




RMT: Theoretical Results ( N — o)

© o o o
N A O 0O B

0.5 1 1.5 2 2.5

1st normalized evalue above 1: SO(odd)

¢
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Rank O Curves: 1st Normalized Zero above Central Point

0.5 1 1.5 2

Figure 2a: 750 rank O curves from
y2 4+ aixy + azy = X3 + apx? + asX + as.
log(cond) € [3.2,12.6], median = 1.00 mean = 1.04,
o, = .32




Rank O Curves: 1st Normalized Zero above Central Point

1.5

0.75
0.5
0.25

0.5 1 1.5 2

Figure 2b: 750 rank O curves from
y2 4+ aixy + azy = X3 + apx? + asX + as.
log(cond) € [12.6, 14.9], median = .85, mean = .88,
o, = .27

¢




Rank 2 Curves: 1st Norm. Zero above the Central Point

1.5 2 2.5 3 3.5
Figure 3a: 665 rank 2 curves from
y2 +aixy + azy = X3+ ax? + a4X + as.
log(cond) € [10,10.3125], median = 2.29, mean = 2.30

¢




Rank 2 Curves: 1st Norm. Zero above the Central Point

1.5 2 2.5 3 3.5

Figure 3b: 665 rank 2 curves from
y2 +aixy + azy = X3+ ax? + a4X + as.
log(cond) € [16,16.5], median = 1.81, mean = 1.82

¢




Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

Figure 4a: 209 rank 0 curves from 14 rank O families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36

RE




Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

Figure 4b: 996 rank O curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.

AR




Rank 2 Curves from y? = x3 — T?x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

Figure 5a: 35 curves, log(cond) € [7.8,16.1], u = 1.85,
p=192, 0,=41

R7




Rank 2 Curves from y? = x3 — T?x + T2 (Rank 2 over Q(T))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

Figure 5b: 34 curves, log(cond) € [16.2,23.3], 1 = 1.37,
p=147,0,= .34

R




New Model for Finite Conductors

@ Replace conductor N with Neective-
o Arithmetic info, predict with L-function Ratios Conj.
© Do the number theory computation.

@ Discretize Jacobi ensembles.
o L(1/2,E) discretized.
o Study matrices in SO(2Neg ) with |[Aa(1)] > ceN.

@ Painlevé VI differential equation solver.
o Use explicit formulas for densities of Jacobi ensembles.
o Key input: Selberg-Aomoto integral for initial conditions.

RO
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Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

04 |
0.2 T4
0

Lowest zero for Lg,, (S, xq) (bar chart),'lowest eigenvalue
of SO(2N) with N (solid), standard Ng (dashed).

y




Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

Lowest zero for Lg,, (S, xa) (bar chart); lowest eigenvalue

of SO(2N): Ngt = 2 (solid) with discretisation, and
Negi = 2.32 (dashed) without discretisation.

05 1 15 2

y




Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants —d € [10'2,10'2 + 3.3 - 109]

0.8

0.6 -

0.2

Histogram of normalized zeros (v < 1, about 4 million).
o Red: main term. ¢ Blue: includes O(1/log X) terms.
o Green: al lower order terms.

y
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RH and the Prime Number Theorem

y

From((s)=>_n"°=][,(1 - p—s)fl, logarithmic derivative is

¢(s) _ A
«(s) 2

where A(n) = logp if n = pX and is 0 otherwise.

Take Mellin transform, integrate and shift contour. Find
XP
Z/\(n) = X = —
n<x P p
where p = 1/2 + i+ runs over non-trivial zeros of ¢(s).

Partial summation gives Prime Number Theorem (to first order, there
are x/logx primes at most x) if Rep < 1.

The smaller max %e(p) is, the better the error term in the Prime
Number Theorem. The Riemann Hypothesis (RH) says Re(p) = 1/2.
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Primes in Arithmetic Progression

To study number primes p = a mod g, use

P
Key sum: ¢(q) >y mod q X(N)is 1if n =1 mod g and O otherwise.

Similar arguments give

> P Y T + Goodls)

p=a mod q

Note: To understand {p = a mod g} need to understand all L(s, x);
see benefit of studying a family.

y
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GSH and Chebyshev'’s Bias

7T3,4(X) > 7T174(X) and 7T273(X) > 7T173(X) ‘most’ of the time. Use
analytic density:
dt

. 1
Dman(s) - I|msupm/S [ZT]T.
ni2,

Have 73 4(Xx) > m1.4(x) with analytic density .9959 (first flip at 26861);
m2.3(X) > m1 3(x) with analytic density .9990 (first flip ~ 6 - 10'1).

Non-residues beat residues. Key ingredient Generalized Simplicity
Hypothesis (GSH): the zeros of L(s, x) are linearly independent over

Q.

Structure of zeros important: GSH used to show a flow on a torus is
full (becomes equidistributed).

TR
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Class Number

Class number: measures failure of unique factorization (order of ideal
class group).

Imaginary quadratic field Q(v/D), fundamental discriminant D < 0, |
group of non-zero fractional ideals, P subgroup of principal ideals,
H =1/P class group, h(D) = #%H the class number. Dirichlet proved

27h(D)
L(1, = ;
( XD) WD\/E
where xp the quadratic characterand wp = 2ifD < —4,4ifD = -4

and 6if D = —3.

Theorem: h(D) =1« —-D € {3,4,7,8,11,19,43,67,163}.

y
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Class Number and Distribution of Zeros |

Expect % < h(D) <« +/|D|loglog |D|. Siegel proved

h(D) > c(¢)|D|*/2~< (but ineffective).

Goldfeld, Gross-Zagier: f primitive cusp form of weight k, level N,
trivial central character, suppose m = ords_; /oL (s, f)L(s, xp) > 3,
g=m-—1orm-—2so that (—1)% = w(f)w(f,,) (signs of fnal egs).
Then have effective bound

h(D) > (log |D|)* H (1 + 1)_3 (1 + A(p)\/ﬁ) _1.

bID p p+1

Good result from using an elliptic curve that vanishes to order 3 at
s = 1/2, application of many zeros at central point.

y
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Class Number and Distribution of Zeros Il

Assume a positive percent of zeros (or cT log T /(log |D|)*) of zeros
with v < T) of {(s) are at most 1/2 — ¢ of the average spacing from
the next zero ¢(s). Then h(D) > /|D]/(log |D|)B, all constants
computable.

See actual spacings between zeros are tied to number theory (have
positive percent are less than half the average spacing if GUE
Conjecture holds for adjacent spacings).

Instead of 1/2 — ¢, under RH have: .68 (Montgomery), .5179
(Montgomery-Odlyzko), .5171 (Conrey-Ghosh-Gonek), .5169
(Conrey-lwaniec) (Montgomery says led to pair correlation conjecture
by looking at gaps between zeros of {(s) and h(D)).

y
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Ratios Conjecture J




Ratios Conj
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History

@ Farmer (1993): Considered

gs+a (1-s+p)
C(s+7)¢(1—-s+90)

conjectured (for appropriate values)
(@+9)(B+7) t1-ap(@—=B)y—a)
(a+B)(y+9) (a+B8)(v+9)

@ Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over

families:
Z + v f)
f ;)

feF
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Uses of the Ratios Conjecture

@ Applications:
¢ n-level correlations and densities;
o mollifiers;
¢ moments;
© vanishing at the central point;

@ Advantages:
o RMT models often add arithmetic ad hoc;
o predicts lower order terms, often to square-root
level.
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Inputs for 1-level density

@ Approximate Functional Equation:

a a,
L(s.F) = 3t (s) 3 o

m<x n<y

© € sign of the functional equation,
o X (s) ratio of I'-factors from functional equation.

@ Explicit Formula: g Schwartz test function,

SaSo(H) A won

feF v

o RA(r) = 2Rx(a.7)

a=vy=r
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Procedure

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 pe(h)

L(s,f) 4= hs

where u¢(h) is the multiplicative function equaling 1
forh =1, —X\(p)ifn =p, xo(p) if h =p?and 0
otherwise.

@ Execute the sum over F, keeping only main
(diagonal) terms.

o Extend the m and n sums to infinity (complete the
products).

@ Differentiate with respect to the parameters.
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Procedure: Steps in red are invalid!

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 pe(h)

L(s,f) 4= hs

where u¢(h) is the multiplicative function equaling 1
forh =1, —X\(p)ifn =p, xo(p) if h =p?and 0
otherwise.

@ Execute the sum over F, keeping only main
(diagonal) terms.

@ Extend the m and n sums to infinity (complete the
products).

@ Differentiate with respect to the parameters.
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Symplectic Families

@ Fundamental discriminants: d square-free and 1
modulo 4, or d /4 square-free and 2 or 3 modulo 4.

@ Associated character yq:
o xd(—1) = 1 say d even;
o xd(—1) = —1 say d odd.
o even (resp., odd) if d > 0 (resp., d < 0).

Will study following families:

© even fundamental discriminants at most X;
o{8d: 0<d <X, dan odd, positive square-free
fundamental discriminant}.
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Prediction from Ratios Conjecture

1 log X 1 oo d 11’ /1 iTT
—*Z g(—yd—):T/ g(7)2|i|09—+——<—:t—>:|d7
X d<x g 2 X*logX J—oo
’ 4ri 2riT 2mi
+7Z/°° o | & (14 20T o (22T, 27T
X*Iong<>< —oo ¢ log X log X log X

1_

4

1,

4

_ g—2miTlog(d/)/ log X ( X) ¢ g AmiT Ao _2mir 27T dr + o(x~ 3+,
( 7—) log X log X " log X

with
1 1 1\t
e = o5t ()
5 (p+1)p2 p+1 p
logp
Aolrin) = D¢ TR
~ (P +1)(p*+* - 1)
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Prediction from Ratios Conjecture

Main term is
log X o sin(27x)
X * ZZ ( ) - / g(x) (1_ 27X )dX
d<X g o

1
+O('O@JX)’

which is the 1-level density for the scaling limit of
USp(2N). If supp(g) C (-1, 1), then the integral of g(x)
against — sin(27x)/2nx is —g(0)/2.
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Prediction from Ratios Conjecture

Assuming RH for ¢(s), for supp(g) C (—o,0) C (—1,1):

_ i logd/m) (L - =iz ; ; ;
2 Z /oe a(r)e 27T Tog X (4 Iogx) ef1- AmiT Ao _27r|7'; 2miT dr
X*logX (=3 /-0 I'(%Jrﬁ) log X log X ' log X

0
_g(2 ) + O(X_%(l_a)+e);

the error term may be absorbed into the O(X ~%/2%¢) error
if o <1/3.
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Main Results

Theorem (M- "07)

Let supp(g) C (—o, ), assume RH for ((s). 1-Level
Density agrees with prediction from Ratios Conjecture

@ up to O(X ~(1=9)/2+<) for the family of quadratic
Dirichlet characters with even fundamental
discriminants at most X;

@ up to O(X /2 4 X~(-30)+e 4 X ~i(1=o)+¢) for our
sub-family. If o < 1/3 then agrees up to O (X ~%/2+¢),

Have similar results with students for other ensembles.
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants —d € [10'2,10'2 + 3.3 - 109]

0.8

0.6 -

0.2

Histogram of normalized zeros (v < 1, about 4 million).
o Red: main term. ¢ Blue: includes O(1/log X) terms.
o Green: al lower order terms.
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