From the Manhattan Project to Number Theory: How Nuclear Physics Helps Us Understand Primes

Steven J Miller
Williams College

Steven.J.Miller@williams.edu
http://www.williams.edu/go/math/sjmiller/

Bronfman Science Lunch
Williams College, June 23, 2009
Introduction
Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t_1, t_2, t_3, \ldots.
Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t_1, t_2, t_3, \ldots.

Question: What rules govern the spacings between the t_i?
Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t_1, t_2, t_3, \ldots.

Question: What rules govern the spacings between the t_i?

Examples:
- Spacings b/w Energy Levels of Nuclei.
- Spacings b/w Eigenvalues of Matrices.
- Spacings b/w Primes.
Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t_1, t_2, t_3, \ldots.

Question: What rules govern the spacings between the t_i?

Examples:
- Spacings b/w Energy Levels of Nuclei.
- Spacings b/w Eigenvalues of Matrices.
- Spacings b/w Primes.
- Bus routes in Cuernavaca, Mexico.
- Scandinavian trees?
Eigenvalue, Eigenvector

Say \(\vec{v} \neq \vec{0} \) is an eigenvector of \(A \) with eigenvalue \(\lambda \) if \(A \vec{v} = \lambda \vec{v} \).
Eigenvalue, Eigenvector

Say \(\vec{v} \neq \vec{0} \) is an eigenvector of \(A \) with eigenvalue \(\lambda \) if
\[A \vec{v} = \lambda \vec{v}. \]

Example:
\[
\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
1
\end{pmatrix}
= 3 \begin{pmatrix}
1 \\
1
\end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
-1
\end{pmatrix}
= -1 \begin{pmatrix}
1 \\
-1
\end{pmatrix}.
\]
Background Material: Probability

Probability Density

A random variable X has a probability density $p(x)$ if

1. $p(x) \geq 0$;
2. $\int_{-\infty}^{\infty} p(x) dx = 1$;
3. $\text{Prob}(X \in [a, b]) = \int_{a}^{b} p(x) dx$.
Background Material: Probability

Probability Density

A random variable X has a probability density $p(x)$ if

- $p(x) \geq 0$;
- $\int_{-\infty}^{\infty} p(x) \, dx = 1$;
- $\text{Prob}(X \in [a, b]) = \int_{a}^{b} p(x) \, dx$.

Examples:

1. **Exponential:** $p(x) = e^{-x/\lambda} / \lambda$ for $x \geq 0$;
2. **Normal:** $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2 / 2\sigma^2}$;
3. **Uniform:** $p(x) = \frac{1}{b-a}$ for $a \leq x \leq b$ and 0 otherwise.
Background Material: Central Limit Theorem

\[k^{th \text{ moment}}: \int_{-\infty}^{\infty} x^k p(x) \, dx. \]

Central Limit Theorem

Let \(X_1, X_2, \ldots \) be independent, identically distributed random variables with mean \(\mu \), standard deviation \(\sigma \) and finite higher moments. Then

\[
Y_n = \frac{X_1 + \cdots + X_N}{N} - \mu \quad \frac{1}{\sigma/\sqrt{N}}, \quad \lim_{N \to \infty} Y_N = N(0, 1).
\]

- Universality.
- Rate of convergence depends on higher moments.
Classical Random Matrix Theory
Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!
Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus, see what comes out.
Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus, see what comes out.

Fundamental Equation:

\[H \psi_n = E_n \psi_n \]

- \(H \): matrix, entries depend on system
- \(E_n \): energy levels
- \(\psi_n \): energy eigenfunctions
Origins (continued)

- Nuclear physics: choose matrix at random, calculate eigenvalues, average over matrices (real Symmetric $A = A^T$, complex Hermitian $\overline{A}^T = A$).
Random Matrix Ensembles

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\
 a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN}
\end{pmatrix}
= A^T, \quad a_{ij} = a_{ji}
\]
Random Matrix Ensembles

\[A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix} = A^T, \quad a_{ij} = a_{ji} \]

Fix \(p \), define

\[
\text{Prob}(A) = \prod_{1 \leq i \leq j \leq N} p(a_{ij}).
\]
Random Matrix Ensembles

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix} = A^T, \quad a_{ij} = a_{ji}$$

Fix p, define

$$\text{Prob}(A) = \prod_{1 \leq i \leq j \leq N} p(a_{ij}).$$

This means

$$\text{Prob}(A : a_{ij} \in [\alpha_{ij}, \beta_{ij}]) = \prod_{1 \leq i \leq j \leq N} \int_{x_{ij} = \alpha_{ij}}^{\beta_{ij}} p(x_{ij}) \, dx_{ij}.$$
Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.
Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.

Eigenvalue Trace Lemma

Let A be an $N \times N$ matrix with eigenvalues $\lambda_i(A)$. Then

$$\text{Trace}(A^k) = \sum_{n=1}^{N} \lambda_i(A)^k,$$

where

$$\text{Trace}(A^k) = \sum_{i_1=1}^{N} \cdots \sum_{i_k=1}^{N} a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_N i_1}.$$
Density of States
Wigner’s Semi-Circle Law

$N \times N$ real symmetric matrices, entries i.i.d.r.v. from a fixed $p(x)$ with mean 0, variance 1, and other moments finite. Then for almost all A, as $N \to \infty$

\[
\mu_{A,N}(x) \to \begin{cases}
\frac{2}{\pi} \sqrt{1 - x^2} & \text{if } |x| \leq 1 \\
0 & \text{otherwise.}
\end{cases}
\]
Numerical example: Gaussian density

500 Matrices: Gaussian 400×400

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
Numerical example: Cauchy density $\rho(x) = \frac{1}{\pi(1 + x^2)}$
Numerical example: Cauchy density \(p(x) = \frac{1}{\pi(1 + x^2)} \)

Cauchy Distribution: \(p(x) = \frac{1}{\pi(1 + x^2)} \)

The eigenvalues of the Cauchy distribution are NOT semicircular.
Spacings between events
GOE Conjecture:

As $N \to \infty$, the probability density of the spacing between consecutive normalized eigenvalues approaches a limit independent of p.
GOE Conjecture:

As \(N \to \infty \), the probability density of the spacing b/w consecutive normalized eigenvalues approaches a limit independent of \(p \).

Only known if \(p \) is a Gaussian.

\[
\text{GOE}(x) \approx \frac{\pi}{2} xe^{-\pi x^2/4}.
\]
Numerical Experiment: Uniform Distribution

Let \(p(x) = \frac{1}{2} \) for \(|x| \leq 1 \).

5000: 300 \times 300 uniform on \([-1, 1]\)
Let \(p(x) = \frac{1}{\pi (1 + x^2)} \).

The local spacings of the central 3/5 of the eigenvalues of 5000 100x100 Cauchy matrices, normalized in batches of 20.
Cauchy Distribution

Let \(p(x) = \frac{1}{\pi(1+x^2)} \).

The local spacings of the central 3/5 of the eigenvalues of 5000 300x300 Cauchy matrices, normalized in batches of 20.
Random Graphs

Degree of a vertex = number of edges leaving the vertex. Adjacency matrix: \(a_{ij} = \text{number of edges b/w Vertex } i \text{ and Vertex } j \).

\[
A = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 2 \\
1 & 0 & 2 & 0
\end{pmatrix}
\]

These are Real Symmetric Matrices.
McKay’s Law (Kesten Measure) with $d = 3$

Density of Eigenvalues for d-regular graphs

$$f(x) = \begin{cases} \frac{d}{2\pi(d^2-x^2)} \sqrt{4(d-1)-x^2} & |x| \leq 2\sqrt{d-1} \\ 0 & \text{otherwise.} \end{cases}$$
McKay’s Law (Kesten Measure) with $d = 6$

Fat Thin: fat enough to average, thin enough to get something different than Semi-circle.
3-Regular, 2000 Vertices and GOE

Spacings between eigenvalues of 3-regular graphs and the GOE:
Introduction to L-Functions
Riemann Zeta Function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1. \]
Riemann Zeta Function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s} \right)^{-1}, \quad \text{Re}(s) > 1. \]

Unique Factorization: \(n = p_1^{r_1} \cdots p_m^{r_m} \).
Riemann Zeta Function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1. \]

Unique Factorization: \(n = p_1^{r_1} \cdots p_m^{r_m}. \)

\[\prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1} = \left[1 + \frac{1}{2^s} + \left(\frac{1}{2^s}\right)^2 + \cdots \right] \left[1 + \frac{1}{3^s} + \left(\frac{1}{3^s}\right)^2 \right] = \sum_{n} \frac{1}{n^s}. \]
Riemann Zeta Function (cont)

\[\zeta(s) = \sum_n \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1 \]

\[\pi(x) = \#\{p : p \text{ is prime}, p \leq x\} \]

Properties of \(\zeta(s) \) and Primes:
Riemann Zeta Function (cont)

\[
\zeta(s) = \sum_{n} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1
\]

\[
\pi(x) = \#\{p : p \text{ is prime, } p \leq x\}
\]

Properties of \(\zeta(s)\) and Primes:

- \(\lim_{s \to 1^+} \zeta(s) = \infty, \pi(x) \to \infty.\)
\[\zeta(s) = \sum_{n} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1 \]

\[\pi(x) = \#\{p : p \text{ is prime, } p \leq x\} \]

Properties of \(\zeta(s) \) and Primes:

- \(\lim_{s \to 1^+} \zeta(s) = \infty, \pi(x) \to \infty. \)
- \(\zeta(2) = \frac{\pi^2}{6}, \pi(x) \to \infty. \)
Riemann Zeta Function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\rho \text{ prime}} \left(1 - \frac{1}{\rho^s}\right)^{-1}, \quad \text{Re}(s) > 1. \]

Functional Equation:

\[\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1 - s). \]

Riemann Hypothesis (RH):

All non-trivial zeros have \(\text{Re}(s) = \frac{1}{2} \); can write zeros as \(\frac{1}{2} + i\gamma \).

Observation: Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices \(\overline{A}^T = A \).
Zeros of $\zeta(s)$ vs GUE

70 million spacings b/w adjacent zeros of $\zeta(s)$, starting at the 10^{20}th zero (from Odlyzko)
Bibliography

