Generalizing Zeckendorf's Theorem to Homogeneous Linear Recurrences

Thomas C. Martinez Harvey Mudd College tmartinez@hmc.edu
19th International Fibonacci Conference

Joint Work with Clay Mizgerd, Chenyang Sun, and Steven J. Miller

Zeckendorf's Theorem

Theorem (Zeckendorf, 1972)

Every positive integer can be uniquely written as the sum of non-consecutive Fibonacci numbers.

Zeckendorf's Theorem

Theorem (Zeckendorf, 1972)

Every positive integer can be uniquely written as the sum of non-consecutive Fibonacci numbers.

Example

$$118 = 89 + 21 + 8 = F_{10} + F_7 + F_5.$$

Positive Linear Recurrence Sequence

Definition

A **Positive Linear Recurrence Sequence** (PLRS) is a sequence $\{H_n\}$ satisfying

$$H_n = c_1 H_{n-1} + c_2 H_{n-2} + \cdots + c_L H_{n-L}$$

with non-negative integer coefficients c_i with $c_1, c_L \ge 1$ and specified initial values.

Positive Linear Recurrence Sequence

Definition

A **Positive Linear Recurrence Sequence** (PLRS) is a sequence $\{H_n\}$ satisfying

$$H_n = c_1 H_{n-1} + c_2 H_{n-2} + \cdots + c_L H_{n-L}$$

with non-negative integer coefficients c_i with $c_1, c_L \ge 1$ and specified initial values.

Convention

To make it easier to write, we will define the coefficient tuple of H_n to be

$$[c_1,c_2,\ldots,c_L]$$

PLRS Legal Decomposition

Definition

Let $\{H_n\}$ be a PLRS and N a positive integer. Then,

$$N = \sum_{i=1}^{m} a_i H_{m+1-i} = (a_1, \dots, a_m)$$

is a **legal decomposition** if $a_1 > 0$, the other $a_i \ge 0$, and one of the following conditions hold:

- We have m < L and $a_i = c_i$ for $1 \le i \le m$.
- There exists $s \in \{1, \ldots, L\}$ such that $a_1 = c_1, a_2 = c_2, \ldots, a_s < c_s$, and $\{b_n\}_{i=1}^{m-s}$ (with $b_i = a_{s+i}$ either legal or empty.)

4

PLRS Legal Examples

Example

Consider the PLRS with coefficient tuple

[4, 3, 0, 3].

PLRS Legal Examples

Example

Consider the PLRS with coefficient tuple

Examples of NOT legal decompositions:

- N = (5, 0, 0, 0, 0).
- N = (4, 3, 1, 0, 0).
- N = (4, 3, 0, 3, 0).

PLRS Legal Examples

Example

Consider the PLRS with coefficient tuple

Examples of NOT legal decompositions:

- N = (5, 0, 0, 0, 0).
- N = (4, 3, 1, 0, 0).
- N = (4, 3, 0, 3, 0).

Examples of legal decompositions:

- N = (4, 3, 0, 1, 0).
- N = (1, 4, 1, 0, 3).

Generalized Zeckendorf's Theorem

Theorem (KKMW, 2010)

Let $\{H_n\}$ be a PLRS. Then there exists a **unique legal decomposition** for every positive integer N.

Motivating Question

Question

What if $c_1 = 0$?

s-deep Zero Linear Recurrence Sequence

Definition

An s-deep Zero Linear Recurrence Sequence (ZLRS) is a sequence $\{G_n\}$ satisfying

$$G_n = c_1 G_{n-1} + c_2 G_{n-2} + ... + c_{s+1} G_{n-s-1} + ... + c_L G_{n-L}$$

with non-negative integer coefficients c_i with $c_{s+1}, c_L \ge 1$, $c_i = 0$ for all $1 \le i \le s$, and $L \ge s \ge 0$.

s-deep Zero Linear Recurrence Sequence

Definition

An s-deep Zero Linear Recurrence Sequence (ZLRS) is a sequence $\{G_n\}$ satisfying

$$G_n = c_1 G_{n-1} + c_2 G_{n-2} + \dots + c_{s+1} G_{n-s-1} + \dots + c_L G_{n-L}$$

with non-negative integer coefficients c_i with $c_{s+1}, c_L \ge 1$, $c_i = 0$ for all $1 \le i \le s$, and $L \ge s \ge 0$. Moreover, let S be the set of indices of positive coefficients. We need $gcd\{S\} = 1$.

s-deep Zero Linear Recurrence Sequence

Definition

An s-deep Zero Linear Recurrence Sequence (ZLRS) is a sequence $\{G_n\}$ satisfying

$$G_n = c_1 G_{n-1} + c_2 G_{n-2} + ... + c_{s+1} G_{n-s-1} + ... + c_L G_{n-L}$$

with non-negative integer coefficients c_i with $c_{s+1}, c_L \ge 1$, $c_i = 0$ for all $1 \le i \le s$, and $L \ge s \ge 0$. Moreover, let S be the set of indices of positive coefficients. We need $\gcd\{S\} = 1$.

Remark

The final condition is to prevent sequences like

$$G_n = G_{n-2} + G_{n-4}$$
.

s-deep ZLRS Legal Decomposition

Definition

Let $\{G_n\}$ be an s-deep ZLRS and N a positive integer. Then

$$N = \sum_{i=1}^{m} a_i G_{m+1-i}$$

is a **legal decomposition** if $a_i \ge 0$ and one of the following conditions hold:

s-deep ZLRS Legal Decomposition

Definition

Let $\{G_n\}$ be an s-deep ZLRS and N a positive integer. Then

$$N = \sum_{i=1}^{m} a_i G_{m+1-i}$$

is a **legal decomposition** if $a_i \ge 0$ and one of the following conditions hold:

- 1. We have $a_1 = 1$ and $a_i = 0$ for $2 \le i \le m$.
- 2. We have s < m < L and $a_i = c_i$ for $1 \le i \le m$.
- 3. There exists $t \in \{s+1, \ldots, L\}$ such that

$$a_1 = c_1, a_2 = c_2, \ldots, a_{t-1} = c_{t-1}, a_t < c_t,$$

$$a_{t+1}, \ldots, a_{t+\ell} = 0$$
 for some $\ell \ge 0$, and $\{b_i\}_{i=1}^{m-t-\ell}$ (with $b_i = a_{t+\ell+i}$) is legal.

Examples

Example

Consider the 2-deep ZLRS with coefficient tuple

Examples

Example

Consider the 2-deep ZLRS with coefficient tuple

Suppose $G_5 < N < G_6$. Examples of NOT legal decompositions:

- N = [4, 2, 0, 0, 0].
- N = [0, 0, 5, 0, 0].

Examples

Example

Consider the 2-deep ZLRS with coefficient tuple

Suppose $G_5 < N < G_6$. Examples of NOT legal decompositions:

- N = [4, 2, 0, 0, 0].
- N = [0, 0, 5, 0, 0].

Examples of legal decompositions:

- N = [0, 0, 4, 2, 0].
- If instead $N = G_5$, this decomposition [1, 0, 0, 0, 0] would be legal.

Main Results

Theorem (MMMS, 2020)

Let $\{G_n\}$ be an s-deep ZLRS. Then there exists a legal decomposition for every positive integer N.

Theorem

Let $\{G_n\}$ be an s-deep ZLRS with $s \ge 1$. Then, uniqueness of decomposition is lost for at least one positive integer N.

Main Results

Theorem (MMMS, 2020)

Let $\{G_n\}$ be an s-deep ZLRS. Then there exists a legal decomposition for every positive integer N.

Theorem (?)

Let $\{G_n\}$ be an s-deep ZLRS with $s \ge 1$. Then, uniqueness of decomposition is lost for at least one positive integer N.

Initial Conditions

We construct two decompositions for a positive integer N. But first,

Important Facts about Initial Conditions

By construction, for every s-deep ZLRS $\{G_n\}$ with $s\geq 1$, we have

$$G_1 = 1$$
 and $G_2 = 2$.

Also, if $c_{s+1} = 1$, then

$$G_i = i$$
 for all $3 \le i \le L$.

• Case 1: Suppose $c_{s+1} \geq 2$. Note that $G_1 = 1$ and $G_2 = 2$.

- Case 1: Suppose $c_{s+1} \ge 2$. Note that $G_1 = 1$ and $G_2 = 2$.
- Consider $N = 2 + (c_L 1) G_{s+3} + c_{L-1} G_{s+4} + \cdots + c_{s+1} G_{L+2}$.

- Case 1: Suppose $c_{s+1} \ge 2$. Note that $G_1 = 1$ and $G_2 = 2$.
- Consider $N = 2 + (c_L 1) G_{s+3} + c_{L-1} G_{s+4} + \cdots + c_{s+1} G_{L+2}$.
- ullet If $G_{s+L+2} < N < G_{s+L+3}$, N has two legal decompositions. Namely,

$$(0,\ldots,0,c_{s+1},c_{s+2},\ldots,c_{L-1},c_L-1,0,\ldots,0,1,0)$$

and

$$(0,\ldots,0,c_{s+1},c_{s+2},\ldots,c_{L-1},c_L-1,0,\ldots,0,0,2).$$

- Case 1: Suppose $c_{s+1} \ge 2$. Note that $G_1 = 1$ and $G_2 = 2$.
- Consider $N = 2 + (c_L 1) G_{s+3} + c_{L-1} G_{s+4} + \cdots + c_{s+1} G_{L+2}$.
- If $G_{s+L+2} < N < G_{s+L+3}$, N has two legal decompositions. Namely,

$$(0,\ldots,0,c_{s+1},c_{s+2},\ldots,c_{L-1},c_L-1,0,\ldots,0,1,0)$$

and

$$(0,\ldots,0,c_{s+1},c_{s+2},\ldots,c_{L-1},c_L-1,0,\ldots,0,0,2).$$

• Suffices to show that $G_{s+L+2} < N < G_{s+L+3}$, but not hard by the definition of N.

• Case 2: Suppose $c_{s+1}=1$. Note that $G_i=i$ for all $1 \leq i \leq L$.

- Case 2: Suppose $c_{s+1} = 1$. Note that $G_i = i$ for all $1 \le i \le L$.
- Let c_{s+j} be the second positive coefficient. Note that 1 < j < L s. So,

$$1 < j + 1 < L - s + 1 \le L$$
.

- Case 2: Suppose $c_{s+1}=1$. Note that $G_i=i$ for all $1 \leq i \leq L$.
- Let c_{s+j} be the second positive coefficient. Note that 1 < j < L s. So,

$$1 < j + 1 < L - s + 1 \le L$$
.

• Consider $N = (j+1) + (c_L - 1) G_{j+2+s} + c_{L-1} G_{j+3+s} + \cdots + c_{s+1} G_{j+1+L}$.

- Case 2: Suppose $c_{s+1} = 1$. Note that $G_i = i$ for all $1 \le i \le L$.
- Let c_{s+j} be the second positive coefficient. Note that 1 < j < L s. So,

$$1 < j + 1 < L - s + 1 \le L$$
.

- Consider $N = (j+1) + (c_L 1) G_{j+2+s} + c_{L-1} G_{j+3+s} + \cdots + c_{s+1} G_{j+1+L}$.
- ullet If $G_{j+1+L+S} < N < G_{j+2+L+s}$, N has two legal decompositions. Namely,

$$(0,\ldots,0,c_{s+1},c_{s+2},\ldots,c_{L-1},c_L-1,0,\ldots,0,1,0,\ldots,0),$$

where the 1 is at position j + 1 and

$$(0,\ldots,0,c_{s+1},c_{s+2},\ldots,c_{L-1},c_L-1,0,\ldots,0,0,1,0,\ldots,0,1),$$

where the 1's are at positions j and 1.

Summary

- So, we have proved what we desired...
- But still a lot of unanswered questions!

Summary

- So, we have proved what we desired...
- But still a lot of unanswered questions!
- For example, Can we show something similar for infinitely many N?
- What is the distribution of the number of decompositions?
- What about allowing negative coefficients in our recurrence relation?

Summary

- So, we have proved what we desired...
- But still a lot of unanswered questions!
- \bullet For example, Can we show something similar for infinitely many N?
- What is the distribution of the number of decompositions?
- What about allowing negative coefficients in our recurrence relation?

Thanks for listening!