Generalizing Zeckendorf’s Theorem to Homogeneous Linear Recurrences

Thomas C. Martinez
Harvey Mudd College
tmartinez@hmc.edu

19th International Fibonacci Conference

Joint Work with Clay Mizgerd, Chenyang Sun, and Steven J. Miller
Zeckendorf’s Theorem

Theorem (Zeckendorf, 1972)

Every positive integer can be uniquely written as the sum of non-consecutive Fibonacci numbers.
Zeckendorf’s Theorem

Theorem (Zeckendorf, 1972)

Every positive integer can be uniquely written as the sum of non-consecutive Fibonacci numbers.

Example

$$118 = 89 + 21 + 8 = F_{10} + F_{7} + F_{5}.$$
Definition

A **Positive Linear Recurrence Sequence** (PLRS) is a sequence \(\{H_n\} \) satisfying

\[
H_n = c_1 H_{n-1} + c_2 H_{n-2} + \cdots + c_L H_{n-L}
\]

with non-negative integer coefficients \(c_i \) with \(c_1, c_L \geq 1 \) and specified initial values.
Positive Linear Recurrence Sequence

Definition
A Positive Linear Recurrence Sequence (PLRS) is a sequence \(\{H_n\} \) satisfying

\[
H_n = c_1 H_{n-1} + c_2 H_{n-2} + \cdots + c_L H_{n-L}
\]

with non-negative integer coefficients \(c_i \) with \(c_1, c_L \geq 1 \) and specified initial values.

Convention
To make it easier to write, we will define the coefficient tuple of \(H_n \) to be

\[
[c_1, c_2, \ldots, c_L]
\]
Definition

Let \(\{H_n\} \) be a PLRS and \(N \) a positive integer. Then,

\[
N = \sum_{i=1}^{m} a_i H_{m+1-i} = (a_1, \ldots, a_m)
\]

is a **legal decomposition** if \(a_1 > 0 \), the other \(a_i \geq 0 \), and one of the following conditions hold:

- We have \(m < L \) and \(a_i = c_i \) for \(1 \leq i \leq m \).
- There exists \(s \in \{1, \ldots, L\} \) such that \(a_1 = c_1, a_2 = c_2, \ldots, a_s < c_s \), and \(\{b_n\}_{i=1}^{m-s} \)
 (with \(b_i = a_{s+i} \) either legal or empty.)
Example
Consider the PLRS with coefficient tuple

\[[4, 3, 0, 3]. \]
Example

Consider the PLRS with coefficient tuple

\[[4, 3, 0, 3]. \]

Examples of NOT legal decompositions:

- \(N = (5, 0, 0, 0, 0). \)
- \(N = (4, 3, 1, 0, 0). \)
- \(N = (4, 3, 0, 3, 0). \)
Example

Consider the PLRS with coefficient tuple

\[[4, 3, 0, 3]. \]

Examples of NOT legal decompositions:

- \(N = (5, 0, 0, 0, 0). \)
- \(N = (4, 3, 1, 0, 0). \)
- \(N = (4, 3, 0, 3, 0). \)

Examples of legal decompositions:

- \(N = (4, 3, 0, 1, 0). \)
- \(N = (1, 4, 1, 0, 3). \)
Theorem (KKMW, 2010)

Let \(\{H_n\} \) be a PLRS. Then there exists a unique legal decomposition for every positive integer \(N \).
Motivating Question

Question

What if $c_1 = 0$?
An s-deep Zero Linear Recurrence Sequence (ZLRS) is a sequence $\{G_n\}$ satisfying

$$G_n = c_1 G_{n-1} + c_2 G_{n-2} + \ldots + c_{s+1} G_{n-s-1} + \ldots + c_L G_{n-L}$$

with non-negative integer coefficients c_i with $c_{s+1}, c_L \geq 1,$ $c_i = 0$ for all $1 \leq i \leq s,$ and $L \geq s \geq 0.$
An **s-deep Zero Linear Recurrence Sequence (ZLRS)** is a sequence $\{G_n\}$ satisfying

$$G_n = c_1 G_{n-1} + c_2 G_{n-2} + \ldots + c_{s+1} G_{n-s-1} + \ldots + c_L G_{n-L}$$

with non-negative integer coefficients c_i with $c_{s+1}, c_L \geq 1$, $c_i = 0$ for all $1 \leq i \leq s$, and $L \geq s \geq 0$. Moreover, let S be the set of indices of positive coefficients. We need $\gcd\{S\} = 1$.
s-deep Zero Linear Recurrence Sequence

Definition

An *s*-deep *Zero Linear Recurrence Sequence* (ZLRS) is a sequence \(\{G_n\} \) satisfying

\[
G_n = c_1 G_{n-1} + c_2 G_{n-2} + \ldots + c_{s+1} G_{n-s-1} + \ldots + c_L G_{n-L}
\]

with non-negative integer coefficients \(c_i \) with \(c_{s+1}, c_L \geq 1 \), \(c_i = 0 \) for all \(1 \leq i \leq s \), and \(L \geq s \geq 0 \). Moreover, let \(S \) be the set of indices of positive coefficients. We need \(\gcd\{S\} = 1 \).

Remark

The final condition is to prevent sequences like

\[
G_n = G_{n-2} + G_{n-4}.
\]
Definition

Let \(\{ G_n \} \) be an \(s \)-deep ZLRS and \(N \) a positive integer. Then

\[
N = \sum_{i=1}^{m} a_i G_{m+1-i}
\]

is a \textbf{legal decomposition} if \(a_i \geq 0 \) and one of the following conditions hold:
Definition

Let \(\{G_n\} \) be an \(s \)-deep ZLRS and \(N \) a positive integer. Then

\[
N = \sum_{i=1}^{m} a_i G_{m+1-i}
\]

is a **legal decomposition** if \(a_i \geq 0 \) and one of the following conditions hold:

1. We have \(a_1 = 1 \) and \(a_i = 0 \) for \(2 \leq i \leq m \).
2. We have \(s < m < L \) and \(a_i = c_i \) for \(1 \leq i \leq m \).
3. There exists \(t \in \{s + 1, \ldots, L\} \) such that

\[
\begin{align*}
 a_1 &= c_1, \quad a_2 = c_2, \quad \ldots, \quad a_{t-1} = c_{t-1}, \quad a_t < c_t, \\
 a_{t+1}, \ldots, a_{t+\ell} &= 0 \text{ for some } \ell \geq 0, \text{ and } \{b_i\}_{i=1}^{m-t-\ell} \text{ (with } b_i = a_{t+\ell+i} \text{) is legal.}
\end{align*}
\]
Example

Consider the 2-deep ZLRS with coefficient tuple

\[0, 0, 4, 3, 0, 3].\]
Example
Consider the 2-deep ZLRS with coefficient tuple

$$[0, 0, 4, 3, 0, 3].$$

Suppose $G_5 < N < G_6$. Examples of NOT legal decompositions:

- $N = [4, 2, 0, 0, 0]$.
- $N = [0, 0, 5, 0, 0]$.
Consider the 2-deep ZLRS with coefficient tuple

$$[0, 0, 4, 3, 0, 3].$$

Suppose $G_5 < N < G_6$. Examples of NOT legal decompositions:

- $N = [4, 2, 0, 0, 0]$.
- $N = [0, 0, 5, 0, 0]$.

Examples of legal decompositions:

- $N = [0, 0, 4, 2, 0]$.
- If instead $N = G_5$, this decomposition $[1, 0, 0, 0, 0]$ would be legal.
Theorem (MMMS, 2020)

Let \(\{G_n\} \) be an \(s \)-deep ZLRS. Then there exists a legal decomposition for every positive integer \(N \).

Theorem

Let \(\{G_n\} \) be an \(s \)-deep ZLRS with \(s \geq 1 \). Then, uniqueness of decomposition is lost for at least one positive integer \(N \).
Main Results

Theorem (MMMS, 2020)

Let \(\{G_n\} \) be an \(s \)-deep ZLRS. Then there exists a legal decomposition for every positive integer \(N \).

Theorem (?)

Let \(\{G_n\} \) be an \(s \)-deep ZLRS with \(s \geq 1 \). Then, uniqueness of decomposition is lost for at least one positive integer \(N \).
We construct two decompositions for a positive integer N. But first,

Important Facts about Initial Conditions

By construction, for every s-deep ZLRS $\{G_n\}$ with $s \geq 1$, we have

$$G_1 = 1 \text{ and } G_2 = 2.$$

Also, if $c_{s+1} = 1$, then

$$G_i = i \text{ for all } 3 \leq i \leq L.$$
Proof Sketch: Case 1

- Case 1: Suppose $c_{s+1} \geq 2$. Note that $G_1 = 1$ and $G_2 = 2$.
Proof Sketch: Case 1

- Case 1: Suppose $c_{s+1} \geq 2$. Note that $G_1 = 1$ and $G_2 = 2$.
- Consider $N = 2 + (c_L - 1) G_{s+3} + c_{L-1} G_{s+4} + \cdots + c_{s+1} G_{L+2}$.
Case 1: Suppose \(c_{s+1} \geq 2 \). Note that \(G_1 = 1 \) and \(G_2 = 2 \).

Consider \(N = 2 + (c_L - 1)G_{s+3} + c_{L-1}G_{s+4} + \cdots + c_{s+1}G_{L+2} \).

If \(G_{s+L+2} < N < G_{s+L+3} \), \(N \) has two legal decompositions. Namely,

\[
(0, \ldots, 0, c_{s+1}, c_{s+2}, \ldots, c_{L-1}, c_L - 1, 0, \ldots, 0, 1, 0)
\]

and

\[
(0, \ldots, 0, c_{s+1}, c_{s+2}, \ldots, c_{L-1}, c_L - 1, 0, \ldots, 0, 0, 2).
\]
Proof Sketch: Case 1

• Case 1: Suppose $c_{s+1} \geq 2$. Note that $G_1 = 1$ and $G_2 = 2$.

• Consider $N = 2 + (c_L - 1)G_{s+3} + c_{L-1}G_{s+4} + \cdots + c_{s+1}G_{L+2}$.

• If $G_{s+L+2} < N < G_{s+L+3}$, N has two legal decompositions. Namely,

$$(0, \ldots, 0, 0, c_{s+1}, c_{s+2}, \ldots, c_{L-1}, c_L - 1, 0, \ldots, 0, 1, 0)$$

and

$$(0, \ldots, 0, 0, c_{s+1}, c_{s+2}, \ldots, c_{L-1}, c_L - 1, 0, \ldots, 0, 0, 2).$$

• Suffices to show that $G_{s+L+2} < N < G_{s+L+3}$, but not hard by the definition of N.
Case 2: Suppose $c_{s+1} = 1$. Note that $G_i = i$ for all $1 \leq i \leq L$.
Proof Sketch: Case 2

- Case 2: Suppose \(c_{s+1} = 1 \). Note that \(G_i = i \) for all \(1 \leq i \leq L \).
- Let \(c_{s+j} \) be the second positive coefficient. Note that \(1 < j < L - s \). So,

\[
1 < j + 1 < L - s + 1 \leq L.
\]
Proof Sketch: Case 2

- Case 2: Suppose $c_{s+1} = 1$. Note that $G_i = i$ for all $1 \leq i \leq L$.
- Let c_{s+j} be the second positive coefficient. Note that $1 < j < L - s$. So,

$$1 < j + 1 < L - s + 1 \leq L.$$

- Consider $N = (j + 1) + (c_L - 1) G_{j+2+s} + c_{L-1} G_{j+3+s} + \cdots + c_{s+1} G_{j+1+L}$.

Proof Sketch: Case 2

• Case 2: Suppose $c_{s+1} = 1$. Note that $G_i = i$ for all $1 \leq i \leq L$.

• Let c_{s+j} be the second positive coefficient. Note that $1 < j < L - s$. So,

$$1 < j + 1 < L - s + 1 \leq L.$$

• Consider $N = (j + 1) + (c_L - 1) G_{j+2+s} + c_{L-1} G_{j+3+s} + \cdots + c_{s+1} G_{j+1+L}$.

• If $G_{j+1+L+s} < N < G_{j+2+L+s}$, N has two legal decompositions. Namely,

$$(0, \ldots, 0, c_{s+1}, c_{s+2}, \ldots, c_{L-1}, c_L - 1, 0, \ldots, 0, 1, 0, \ldots, 0),$$

where the 1 is at position $j + 1$ and

$$(0, \ldots, 0, c_{s+1}, c_{s+2}, \ldots, c_{L-1}, c_L - 1, 0, \ldots, 0, 0, 1, 0, \ldots, 0, 1),$$

where the 1’s are at positions j and 1.
Summary

- So, we have proved what we desired...
- But still a lot of unanswered questions!
Summary

- So, we have proved what we desired...
- But still a lot of unanswered questions!
- For example, Can we show something similar for infinitely many N?
- What is the distribution of the number of decompositions?
- What about allowing negative coefficients in our recurrence relation?
Summary

• So, we have proved what we desired...
• But still a lot of unanswered questions!
• For example, Can we show something similar for infinitely many N?
• What is the distribution of the number of decompositions?
• What about allowing negative coefficients in our recurrence relation?

Thanks for listening!