Chains of distributions and Benford’s Law

Dennis Jang (Dennis_Jang@brown.edu)
Jung Uk Kang (Jung_Uk_Kang@brown.edu)
Alex Kruckman (Alex_Kruckman@brown.edu)
Jun Kudo (Jun_Kudo@brown.edu)
Steven J. Miller (sjmiller@math.brown.edu)

Mathematics Department, Brown University

http://www.math.brown.edu/~sjmiller/197

Workshop on Theory and Applications of Benford’s Law
Santa Fe, NM, December 2007
Alex Kossovsky conjectured that many chains of distributions approach Benford’s law.
Alex Kossovsky conjectured that many chains of distributions approach Benford’s law.

Consider $X_1 \sim \text{Unif}(0, k)$, $X_2 \sim \text{Unif}(0, X_1)$, ..., $X_n \sim \text{Unif}(0, X_{n-1})$.
Alex Kossovsky conjectured that many chains of distributions approach Benford’s law. Consider $X_1 \sim \text{Unif}(0, k), X_2 \sim \text{Unif}(0, X_1), \ldots, X_n \sim \text{Unif}(0, X_{n-1})$. If $f_{n,k}(x_n)$ is the probability density for X_n, then

$$f_{n,k}(x_n) = \begin{cases}
\frac{\log^{n-1}(k/x_n)}{k^{n-1}(n)} & \text{if } x_n \in [0, k] \\
0 & \text{otherwise.}
\end{cases}$$
Alex Kossovsky conjectured that many chains of distributions approach Benford’s law.

Consider $X_1 \sim \text{Unif}(0, k)$, $X_2 \sim \text{Unif}(0, X_1)$, ..., $X_n \sim \text{Unif}(0, X_{n-1})$.

If $f_{n,k}(x_n)$ is the probability density for X_n, then

$$f_{n,k}(x_n) = \begin{cases} \frac{\log^{n-1}(k/x_n)}{k^{n}(n)} & \text{if } x_n \in [0, k] \\ 0 & \text{otherwise.} \end{cases}$$

Theorem (JKKKM)

As $n \to \infty$ the distribution of digits of X_n rapidly tends to Benford’s Law.
Uniform Density Example: $n = 10$ with 10,000 trials

$\chi^2 = 7.35$ (critical threshold at 5% with 8 d.f. is 15.5)

<table>
<thead>
<tr>
<th>Digit</th>
<th>Observed Probability</th>
<th>Expected Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.298</td>
<td>0.301</td>
</tr>
<tr>
<td>2</td>
<td>0.180</td>
<td>0.176</td>
</tr>
<tr>
<td>3</td>
<td>0.127</td>
<td>0.125</td>
</tr>
<tr>
<td>4</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>5</td>
<td>0.080</td>
<td>0.079</td>
</tr>
<tr>
<td>6</td>
<td>0.071</td>
<td>0.067</td>
</tr>
<tr>
<td>7</td>
<td>0.056</td>
<td>0.058</td>
</tr>
<tr>
<td>8</td>
<td>0.048</td>
<td>0.051</td>
</tr>
<tr>
<td>9</td>
<td>0.044</td>
<td>0.046</td>
</tr>
</tbody>
</table>
Sketch of the proof

- First prove the claim for density $f_{n,k}$ by induction.

- Use Mellin Transforms and Poisson Summation to analyze probability.
Proof by Induction: Base Case: Calculating CDF

\[F_{2,k}(x_2) = \int_0^k \text{Prob} \left(X_{2,k} \in [0, x_2] | X_{1,k} = x_1 \right) \text{Prob}(X_{1,k} = x_1) \, dx_1 \]
Proof by Induction: Base Case: Calculating CDF

\[F_{2,k}(x_2) = \int_0^k \text{Prob}(X_{2,k} \in [0, x_2] \mid X_{1,k} = x_1) \text{Prob}(X_{1,k} = x_1) \, dx_1 \]

\[= \int_0^{x_2} \text{Prob}(X_2 \in [0, x_2] \mid X_1 = x_1) \frac{dx_1}{k} \]

\[+ \int_{x_2}^k \text{Prob}(X_2 \in [0, x_2] \mid X_1 = x_1) \frac{dx_1}{k} \]
Proof by Induction: Base Case: Calculating CDF

\[F_{2,k}(x_2) = \int_0^k \text{Prob} \left(X_{2,k} \in [0, x_2] | X_{1,k} = x_1 \right) \text{Prob}(X_{1,k} = x_1) \, dx_1 \]

\[= \int_0^{x_2} \text{Prob}(X_2 \in [0, x_2] | X_1 = x_1) \frac{dx_1}{k} \]

\[+ \int_{x_2}^k \text{Prob}(X_2 \in [0, x_2] | X_1 = x_1) \frac{dx_1}{k} \]

\[= \int_0^{x_2} \frac{dx_1}{k} + \int_{x_2}^k \frac{x_2 \, dx_1}{x_1 \, k} = \frac{x_2}{k} + \frac{x_2 \log(k/x_2)}{k}. \]
Proof by Induction: Base Case: Calculating CDF

\[F_{2,k}(x_2) = \int_0^k \text{Prob}(X_{2,k} \in [0, x_2] | X_{1,k} = x_1) \text{Prob}(X_{1,k} = x_1) dx_1 \]

\[= \int_0^{x_2} \text{Prob}(X_2 \in [0, x_2] | X_1 = x_1) \frac{dx_1}{k} \]

\[+ \int_{x_2}^k \text{Prob}(X_2 \in [0, x_2] | X_1 = x_1) \frac{dx_1}{k} \]

\[= \int_0^{x_2} \frac{dx_1}{k} + \int_{x_2}^k \frac{x_2}{x_1} \frac{dx_1}{k} = \frac{x_2}{k} + \frac{x_2 \log(k/x_2)}{k}. \]

Differentiating yields \(f_{2,k}(x_2) = \frac{\log(k/x_2)}{k} \).
Further Comments

- Other distributions: exponential, one-sided normal.

- Densities of the form $f(x; \theta) = \theta^{-1} g(x/\theta)$.

- Weibull distribution: $f(x; \gamma) = \gamma x^{\gamma - 1} \exp(-x^\gamma)$.

- Weibull distribution: $f(x; \theta, \gamma) = \frac{\gamma}{\theta} \left(\frac{x}{\theta}\right)^{\gamma - 1} \exp \left(-\left(\frac{x}{\theta}\right)^\gamma\right)$.

- Further areas of research - Two parameter distribution, closed form for other single variable distributions.
Proof of Kossovsky’s Chain Conjecture for certain densities

Conditions

- \(\{D_i(\theta)\}_{i \in I} \): one-parameter distributions, densities \(f_{D_i(\theta)} \)
on \([0, \infty)\).
Proof of Kossovsky’s Chain Conjecture for certain densities

Conditions

- \(\{D_i(\theta)\}_{i \in I} \): one-parameter distributions, densities \(f_{D_i(\theta)} \) on \([0, \infty)\).
- \(p : I \rightarrow \mathbb{N}, X_1 \sim D_{p(1)}(1), X_m \sim D_{p(m)}(X_{m-1}) \).
Proof of Kossovsky’s Chain Conjecture for certain densities

Conditions

1. \{\mathcal{D}_i(\theta)\}_{i \in I}: one-parameter distributions, densities \(f_{\mathcal{D}_i(\theta)} \) on \([0, \infty)\).
2. \(p : I \to \mathbb{N}, X_1 \sim \mathcal{D}_{p(1)}(1), X_m \sim \mathcal{D}_{p(m)}(X_{m-1}) \).
3. \(m \geq 2 \),

\[
f_m(x_m) = \int_0^\infty f_{\mathcal{D}_{p(m)}(1)} \left(\frac{x_m}{x_{m-1}} \right) f_{m-1}(x_{m-1}) \frac{dx_{m-1}}{x_{m-1}}
\]
Proof of Kossovsky’s Chain Conjecture for certain densities

Conditions

• \(\{D_i(\theta)\}_{i \in I} \): one-parameter distributions, densities \(f_{D_i(\theta)} \) on \([0, \infty)\).
• \(p : I \rightarrow \mathbb{N}, X_1 \sim D_{p(1)}(1), X_m \sim D_{p(m)}(X_{m-1}). \)
• \(m \geq 2, \)

\[
f_m(x_m) = \int_0^\infty f_{D_{p(m)}(1)} \left(\frac{x_m}{x_{m-1}} \right) f_{m-1}(x_{m-1}) \frac{dx_{m-1}}{x_{m-1}}
\]

•

\[
\lim_{n \to \infty} \sum_{\ell = -\infty, \ell \neq 0}^{\infty} \prod_{m=1}^{n} (M f_{D_{p(m)}(1)}) \left(1 - \frac{2\pi i \ell}{\log B} \right) = 0
\]
Theorem (JKKKM)

- If conditions hold, as $n \rightarrow \infty$ the distribution of leading digits of X_n tends to Benford’s law.
- The error is a nice function of the Mellin transforms: if $Y_n = \log_B X_n$, then

$$
|\text{Prob}(Y_n \mod 1 \in [a, b]) - (b + a)| \leq
(b - a) \cdot \left| \sum_{\substack{\ell = -\infty \atop \ell \neq 0}}^{\infty} \prod_{m=1}^{n} (\mathcal{Mf}_{D_p(m)}(1)) \left(1 - \frac{2\pi i \ell}{\log B}\right) \right|.
$$
Proof of Kossovsky’s Chain Conjecture for certain densities

Theorem (JKKKM)

If conditions hold, as $n \to \infty$ the distribution of leading digits of X_n tends to Benford’s law.

The error is a nice function of the Mellin transforms: if $Y_n = \log_B X_n$, then

$$| \text{Prob}(Y_n \mod 1 \in [a, b]) - (b + a)| \leq \left| (b - a) \cdot \sum_{\ell = -\infty}^{\infty} \prod_{m=1}^{n} (\mathcal{M}f_{D_{p(m)}(1)}) \left(1 - \frac{2\pi i \ell}{\log B} \right) \right|. $$

Follow Mellin transform proof of CLT mod 1 for product independent random variables.