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Spring Test

Figure: xkcd: Convincing: https://xkcd.com/833/ (Extra text:
And if you labeled your axes, I could tell you exactly how MUCH
better.)
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Spring Test (continued)

Our value of b is significantly off: a = 4.99 and b = .48.

Using absolute values for errors gives best fit value of a is
5.03 and the best fit value of b is less than 10−10 in
absolute value.

The difference between these values and those from the
Method of Least Squares is in the best fit value of b (the
least important of the two parameters), and is due to the
different ways of weighting the errors.
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Regression

See https://web.williams.edu/Mathematics/
sjmiller/public_html/probabilitylifesaver/
MethodLeastSquares.pdf
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Overview

Idea is to find best-fit parameters: choices that minimize
error in a conjectured relationship.

Say observe yi with input xi , believe yi = axi + b. Three
choices:

E1(a,b) =
N∑

n=1

(yi − (axi + b))

E2(a,b) =
N∑

n=1

|yi − (axi + b)|

E3(a,b) =
N∑

n=1

(yi − (axi + b))2 .

Use sum of squares as calculus available.
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Linear Regression

Explicit formula for values of a,b minimizing error E3(a,b).
From

∂E3(a,b)/∂a = ∂E3(a,b)/∂b = 0 :

After algebra:(
â
b̂

)
=

( ∑N
n=1 x2

i
∑N

n=1 xi∑N
n=1 xi

∑N
n=1 1

)( ∑N
n=1 xiyi∑N

n=1 yi

)
or

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn∑N

n=1 1
∑N

n=1 x2
n −

∑N
n=1 xn

∑N
n=1 xn

b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x2

n
∑N

n=1 yn∑N
n=1 xn

∑N
n=1 xn −

∑N
n=1 x2

n
∑N

n=1 1
.
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Theory
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Theoretical Aside: Derivation

See https://web.williams.edu/Mathematics/sjmiller/
public_html/341Fa18/handouts/MethodLeastSquares.pdf

E3(a,b) =
N∑

n=1

(yi − (axi + b))2
.

Error a function of two variables, the unknown parameters a and b.

Note x , y are the data NOT the variables.

The goal is to find values of a and b that minimize the error.
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Theoretical Aside: Derivation: II

One-Variable Calculus: candidates for max/min from
boundary points and critical points (places where
derivative vanishes).

Multivariable Calculus: Similar, need partial derivatives to
vanish (partial is hold all variables fixed but one).

∇E =

(
∂E
∂a

,
∂E
∂b

)
= (0,0),

or
∂E
∂a

= 0,
∂E
∂b

= 0.

Do not have to worry about boundary points: as |a| and
|b| become large, the fit gets worse and worse.
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Theoretical Aside: Derivation: III

Differentiating E(a, b) yields

∂E
∂a

=
N∑

n=1

2 (yn − (axn + b)) · (−xn)

∂E
∂b

=
N∑

n=1

2 (yn − (axn + b)) · (−1).

Setting ∂E/∂a = ∂E/∂b = 0 (and dividing by -2) yields

N∑
n=1

(yn − (axn + b)) · xn = 0

N∑
n=1

(yn − (axn + b)) = 0.

Note we can divide both sides by -2 as it is just a constant; we cannot divide
by xi as that varies with i .
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Theoretical Aside: Derivation: IV

Rewrite as (
N∑

n=1

x2
n

)
a +

(
N∑

n=1

xn

)
b =

N∑
n=1

xnyn(
N∑

n=1

xn

)
a +

(
N∑

n=1

1

)
b =

N∑
n=1

yn.

Values of a and b which minimize the error satisfy the following matrix
equation: ∑N

n=1 x2
n
∑N

n=1 xn∑N
n=1 xn

∑N
n=1 1

 a

b

 =

 ∑N
n=1 xnyn∑N

n=1 yn

 . (1)
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Theoretical Aside: Derivation: V

Inverse of a matrix A is the matrix B such that AB = BA = I, where I is the
identity matrix.

If A =

(
α β
γ δ

)
is a 2× 2 matrix where detA = αδ − βγ 6= 0, then A is

invertible and

A−1 =
1

αδ − βγ

(
δ −γ
−β α

)
. (2)

In other words, AA−1 =

(
1 0
0 1

)
here.

For example, if A =

(
1 2
3 7

)
then detA = 1 and A−1 =

(
7 −2
−3 1

)
; we

can check this by noting (through matrix multiplication) that(
1 2
3 7

)(
7 −2
−3 1

)
=

(
1 0
0 1

)
. (3)
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Theoretical Aside: Derivation: VI

 a

b

 =

 ∑N
n=1 x2

n
∑N

n=1 xn∑N
n=1 xn

∑N
n=1 1

−1  ∑N
n=1 xnyn∑N

n=1 yn

 . (4)

Denote the matrix from (1) by M. The determinant of M is

detM =
N∑

n=1

x2
n ·

N∑
n=1

1−
N∑

n=1

xn ·
N∑

n=1

xn.

As

x =
1
N

N∑
n=1

xn,

we find that

detM = N
N∑

n=1

x2
n − (Nx)2 = N2 · 1

N

N∑
n=1

(xn − x)2,

where the last equality follows from algebra. If the xn are not all equal, detM
is non-zero and M is invertible.
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Theoretical Aside: Derivation: VII

We rewrite (4) in a simpler form. Using the inverse of the matrix and the
definition of the mean and variance, we find a

b

 =
1

N2σ2
x

(
N −Nx
−Nx

∑N
n=1 x2

n

)  ∑N
n=1 xnyn∑N

n=1 yn

 . (5)

Expanding gives

a =
N
∑N

n=1 xnyn − Nx
∑N

n=1 yn

N2σ2
X

b =
−Nx

∑N
n=1 xnyn +

∑N
n=1 x2

n
∑N

n=1 yn

N2σ2
X

x =
1
N

N∑
n=1

xi

σ2
x =

1
N

N∑
n=1

(xi − x)2. (6)
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Theoretical Aside: Derivation: VIII

As the formulas for a and b are so important, it is worth giving

another expression for them. We also have

a =

∑N
n=1 1

∑N
n=1 xnyn −

∑N
n=1 xn

∑N
n=1 yn∑N

n=1 1
∑N

n=1 x2
n −

∑N
n=1 xn

∑N
n=1 xn

b =

∑N
n=1 xn

∑N
n=1 xnyn −

∑N
n=1 x2

n
∑N

n=1 yn∑N
n=1 xn

∑N
n=1 xn −

∑N
n=1 x2

n
∑N

n=1 1
.
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Theoretical Aside: Derivation: Remarks

Formulas for a and b are reasonable, as can be seen by a unit
analysis. Imagine x in meters and y in seconds. Then if y = ax + b
we would need b and y to have the same units (seconds), and a to
have units seconds per meter. If we substitute we do see a and b
have the correct units. Not a proof that we have not made a mistake,
but a great reassurance. No matter what you are studying, you
should always try unit calculations such as this.
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Theoretical Aside: Derivation: Remarks

There are other, equivalent formulas for a and b, arranging the
algebra in a slightly different sequence of steps. Essentially what we
are doing is the following: image we are given

4 = 3a + 2b
5 = 2a + 5b.

If we want to solve, we can proceed in two ways. We can use the first
equation to solve for b in terms of a and substitute in, or we can
multiply the first equation by 5 and the second equation by 2 and
subtract; the b terms cancel and we obtain the value of a. Explicitly,

20 = 15a + 10b
10 = 4a + 10b,

which yields
10 = 11a,

or
a = 10/11.
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Regression Extensions
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Beyond the Best Fit Line

Did y = ax + b.

All that matters is linear in the unknown parameters.

Could do

y = a1f1(x) + a2f2(x) + · · ·+ ak fk(x);

do not need the functions f to be linear.
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Non-linear Relations

Most relations are not linear.

Newton’s law of gravity: F = Gm1m2/r 2.

If guess force is proportional to a power of the distance:
F = Br a.

Take logarithms: log(F ) = a log(r) + b with b = logB.

Note the linear relation between log(F ) and log(r).

26



Introduction Regression Theory Regression Extensions Examples

City Populations

The twenty-five most populous cities (I believe this is
American cities from a few years ago):

8,363,710 1,540,351 912,062 754,885 620,535
3,833,995 1,351,305 808,976 703,073 613,190
2,853,114 1,279,910 807,815 687,456 604,477
2,242,193 1,279,329 798,382 669,651 598,707
1,567,924 948,279 757,688 636,919 598,541
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City Populations
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Figure: Plot of rank versus population
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City Populations
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Figure: Plot of rank versus log(population)
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City Populations

14.0 14.5 15.0 15.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure: Plot of log(rank) versus log(population)
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City Populations

Figure: Plot of rank versus population
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City Populations

Figure: Plot of log(rank) versus log(population)
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Word Counts
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Figure: Plot of rank versus occurrences
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Word Counts
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Figure: Plot of log(rank) versus log(occurrences)
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Examples:
Chapter 70 Aid, Kepler’s Laws, Birthday Problem
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Framework

Real World Challenge: Need to assign $3,500,000 to
three schools (LES, WES, MtG).

Pre-regionalization know how much state gives each;
post regionalization only know sum.

State has formula, lots of variables, secret.

What is the goal? How do we accomplish it?
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Objectives

Fair formula that predicts well.

Transparent, seems fair.

Can be explained.
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Solution

Solution: Method of Least Squares / Linear Regression.

Inputs: Population of Schools (LES(pop), WES(pop),
MtG(pop)), Assessment of Towns (EQV(L), EQV(W)).

Formula: If −→y = X
−→
β then

−→
β =

(
XTX

)−1 XT−→y .

What properties do we want the solution to have?
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Properties of Solution

Want solution to exist – will it?

Want values to be between 0 and 1 – will it?

Want values to be stable under small changes – will
it?

Want the sum of the three percentages to add to 1 –
will it?
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Theory vs Reality

Predicted, Actual and Errors for Schools:
LES: 21.7826 22.0248 -0.242194
WES: 27.8397 27.8767 -0.0369861
MtG: 50.3776 50.0984 0.279181
Sum of three predictions is 100%

Total chapter 70 funds in 2018: 3,489,437.
1% of total is 34,894.40.
.3% of total is 10,468.31.

School budgets (roughly): LES $2.7 million, WES $6.6
million, MtG $11 million.
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Logarithms and Applications

Many non-linear relationships are linear after applying
logarithms:

Y = BX a then log(Y ) = a log(X ) + b, b = logB.
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Logarithms and Applications

Many non-linear relationships are linear after applying
logarithms:

Y = BX a then log(Y ) = a log(X ) + b, b = logB.

Kepler’s Third Law: if T is the orbital period of a planet
traveling in an elliptical orbit about the sun (and no other
objects exist), then T 2 = B̃L3, where L is the length of the
semi-major axis.

Assume do not know this – can we discover through
statistics?
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Y = BX a then log(Y ) = a log(X ) + b, b = logB.

Kepler’s Third Law: if T is the orbital period of a planet
traveling in an elliptical orbit about the sun (and no other
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Kepler’s Third Law: Can see the 1.5 exponent!

Data: Semi-major axis: Mercury 0.387, Venus 0.723,
Earth 1.000, Mars 1.524, Jupiter 5.203, Saturn 9.539,
Uranus 19.182, Neptune 30.06 (the units are astronomical
units, where one astronomical unit is 1.496 ·108 km).

Data: orbital periods (in years) are 0.2408467,
0.61519726, 1.0000174, 1.8808476, 11.862615,
29.447498, 84.016846 and 164.79132.

If T = BLa, what should B equal with this data? Units:
bruno, millihelen, slug, smoot, .... See
https://en.wikipedia.org/wiki/List_of_
humorous_units_of_measurement
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Kepler’s Third Law: Can see the 1.5 exponent!

If try logT = a log L + b: best fit values are...?
HOMEWORK!

-1 1 2 3

-1

1

2

3

4

Figure: Plot of logP versus log L for planets. Is it surprising b ≈ 0 (so
B ≈ 1 or b ≈ 0?
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Units: Goal: find good statistics to describe the world.

Figure: Harvard Bridge, about 620.1 meters.
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Units: Goal: find good statistics to describe the world.

Figure: Harvard Bridge, 364.1 Smoots (± one ear).
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Units: Goal: find good statistics to describe the world.

Sieze opportunities: Never know where they will lead.

Oliver Smoot: Chairman of the American National
Standards Institute (ANSI) from 2001 to 2002, President
of the International Organization for Standardization (ISO)
from 2003 to 2004.

50



Introduction Regression Theory Regression Extensions Examples

Birthday Problem

Birthday Problem: Assume a year with D days, how many
people do we need in a room to have a 50% chance that
at least two share a birthday, under the assumption that
the birthdays are independent and uniformly distributed
from 1 to D?

An analysis shows the answer is approximately
D1/2√log 4.

Can do simulations and try and see the correct exponent;
will look not for 50% chance but the expected number of
people in room for the first collision.
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Birthday Problem (cont)

Try P = BDa, take logs so logP = a logD + b (b = logB).
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Figure: Plot of best fit line for P as a function of D. We twice ran
10,000 simulations with D chosen from 10,000 to 100,000. Best fit
values were a ≈ 0.506167,b ≈ −0.0110081 (left) and a ≈ 0.48141,
b ≈ 0.230735 (right).
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