Mind the Gap: Distribution of Gaps in Generalized Zeckendorf Decompositions

Steven J. Miller (sjm1@williams.edu)

http://www.williams.edu/Mathematics/sjmiller/public_html

CANT 2013: May 21, 2013

Introduction

Goals of the Talk

Intro

- Combinatorial perspective.
- Asking for help: completing elementary proof.
- New results on longest gap.
- Techniques: Generating fns, partial fractions, Rouche.

Joint with Olivia Beckwith, Iddo Ben-Ari, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.

Previous Results

Gaps (Bulk)

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4$$
.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ tends to $\frac{n}{c^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Old Results

Intro

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ is Gaussian.

Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = \frac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x - (i_j - i_{j-1})\right).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

Figure: Distribution of gaps in $[F_{1000}, F_{1001})$; $F_{2010} \approx 10^{208}$.

New Results: Longest Gap

Fair coin: largest gap tightly concentrated around $\log n / \log 2$.

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

Prob
$$(L_n(m) \le f(n)) \approx e^{-e^{\log n - f(n) \cdot \log \phi}}$$

•
$$\mu_n = \frac{\log\left(\frac{\phi^2}{\phi^2+1}\right)n}{\log\phi} + \frac{\gamma}{\log\phi} - \frac{1}{2} + \text{Small Error.}$$

• If f(n) grows **slower** (resp. **faster**) than $\log n/\log \phi$, then $\operatorname{Prob}(L_n(m) \leq f(n))$ goes to **0** (resp. **1**).

Gaps (Bulk)

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{N \in [F_n, F_{n+1}): \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$ $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$ $d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$ $d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$ Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}.$

Ω

Gaps in the Bulk

Distribution of Gaps

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Distribution of Gaps

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

Gaps (Bulk)

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

Gaps (Bulk)

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Can ask similar questions about binary or other expansions: $2012=2^{10}+2^9+2^8+2^7+2^6+2^4+2^3+2^2.$

112

Main Result

Gaps (Bulk)

00000

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_l H_{n+1-l}$ be a positive linear recurrence of length L where $c_i > 1$ for all 1 < i < L. Then

$$P(j) = \begin{cases} 1 - (\frac{a_1}{C_{Lek}})(2\lambda_1^{-1} + a_1^{-1} - 3) & : j = 0 \\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & : j = 1 \\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & : j \ge 2. \end{cases}$$

Special Cases

Gaps (Bulk)

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions,
$$P(0) = \frac{(B-1)(B-2)}{B^2}$$
, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k) = 1/\phi^k$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{d^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i,$ F_i , but not F_q for i < q < j.

Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k} ?

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}.$$

How many decompositions contain a gap from F_i to F_{i+k} ?

$$F_1 \qquad F_{i-1} F_i \qquad F_{i+k} F_{i+k+1} \qquad F_{n-1} F_n$$

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\#[F_i,F_{i+1})=F_{i+1}-F_i=F_{i-1}.$$

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1, \ldots, F_{n-k-i+1}\}$ with $F_1, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i} .

How many decompositions contain a gap from F_i to F_{i+k} ?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\#[F_i,F_{i+1})=F_{i+1}-F_i=F_{i-1}.$$

For the indices greater than i + k: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1, \ldots, F_{n-k-i+1}\}$ with $F_1, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i} .

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

Generalizations

Determining P(k)

Recall

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Use Binet's formula. Sums of geometric series: $P(k) = 1/\phi^k$.

Figure: Distribution of summands in $[F_{1000}, F_{1001})$.

Individual Gaps

Main Result

• Decomposition: $m = \sum_{j=1}^{k(m)} F_{i_j}$.

Main Result

- Decomposition: $m = \sum_{i=1}^{k(m)} F_{i_i}$.
- Individual gap measure:

$$\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (i_j - i_{j-1})).$$

References

Generalizations

Main Result

- Decomposition: $m = \sum_{j=1}^{k(m)} F_{i_j}$.
- Individual gap measure:

$$\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta(x - (i_j - i_{j-1})).$$

Theorem (Distribution of Individual Gaps (SMALL 2012))

Gap measures $\nu_{m;n}$ converge to average gap measure.

•
$$\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$$
.

•
$$\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$$
.

• Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.

- $\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j i_{j-1})^t$.
- Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m,n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m,n}(t) \mu(t))^4]$ tend to zero.

•
$$\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$$
.

- Show $\mathbb{E}_m[\mu_{m;n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m;n}(t) \mu(t))^4]$ tend to zero.

Key ideas:

- (1) Replace k(m) with average (Gaussianity);
- (2) use $X_{i,i+g_1,j,j+g_2}$.

Future Research

Future Research

- Finish elementary proof of convergence of individual gap measures (maybe probabilities instead of moments).
 Email sjm1@williams.edu if interested.
- Extend to recurrences with coefficients that can be zero: SMALL '13.
- Generalize to signed decompositions, ℓ largest gaps,
 SMALL '13.

Longest Gap

Fibonacci Case Generating Function

 $G_{n,k,f}$ be the number of $m \in [F_n, F_{n+1})$ with k nonzero summands and all gaps less than f(n).

Fibonacci Case Generating Function

 $G_{n,k,f}$ be the number of $m \in [F_n, F_{n+1})$ with k nonzero summands and all gaps less than f(n).

 $G_{n,k,f}$ is the coefficient of x^n for the generating function

$$\frac{1}{1-x}\left[\sum_{j=2}^{f(n)-2}x^j\right]^{k-1}.$$

Fibonacci Case Generating Function

 $G_{n,k,f}$ be the number of $m \in [F_n, F_{n+1})$ with k nonzero summands and all gaps less than f(n).

 $G_{n,k,f}$ is the coefficient of x^n for the generating function

$$\frac{1}{1-x}\left[\sum_{j=2}^{f(n)-2}x^j\right]^{k-1}.$$

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$, then

- Each gap is ≥ 2 .
- Each gap is < f(n).
- The sum of the gaps of x is $\leq n$.

Gaps uniquely identify m by Zeckendorf's Theorem.

The Combinatorics

 $G_{n,k,f}$ is the n^{th} coefficient of

$$\frac{1}{1-x}\left[x^2+\cdots+x^{f(n)-2}\right]^{k-1}=\frac{x^{2(k-1)}}{1-x}\left(\frac{1-x^{f(n)-3}}{1-x}\right)^{k-1}.$$

 $G_{n,k,f}$ is the n^{th} coefficient of

$$\frac{1}{1-x}\left[x^2+\cdots+x^{f(n)-2}\right]^{k-1}=\frac{x^{2(k-1)}}{1-x}\left(\frac{1-x^{f(n)-3}}{1-x}\right)^{k-1}.$$

For fixed k hard to analyze, but only care about sum over k.

Sum over k gives number of $m \in [F_n, F_{n+1})$ with longest gap < f(n), call it $G_{n,f}$.

It's the n^{th} coefficient (up to potentially small algebra errors!) of

$$F(x) = \frac{1}{1-x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1-x} \right)^{k-1} = \frac{x}{1-x-x^2 + x^{f(n)}}.$$

The Generating Function

Sum over k gives number of $m \in [F_n, F_{n+1})$ with longest gap $\langle f(n), \text{ call it } G_{n,f}.$

It's the nth coefficient (up to potentially small algebra errors!) of

$$F(x) = \frac{1}{1-x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1-x} \right)^{k-1} = \frac{x}{1-x-x^2 + x^{f(n)}}.$$

Use partial fractions and Rouché's Theorem to find CDF.

Partial Fractions

Write the roots of $x^f - x^2 - x - 1$ as $\{\alpha_i\}_{i=1}^f$, generating function is

$$F(x) = \frac{x}{1 - x - x^2 + x^{f(n)}} = \sum_{i=1}^{f(n)} \frac{-\alpha_i}{f(n)\alpha_i^{f(n)} - 2\alpha_i^2 - \alpha_i} \sum_{j=1}^{\infty} \left(\frac{x}{\alpha_i}\right)^j.$$

Partial Fractions

Write the roots of $x^f - x^2 - x - 1$ as $\{\alpha_i\}_{i=1}^f$, generating function is

$$F(x) = \frac{x}{1 - x - x^2 + x^{f(n)}} = \sum_{i=1}^{f(n)} \frac{-\alpha_i}{f(n)\alpha_i^{f(n)} - 2\alpha_i^2 - \alpha_i} \sum_{j=1}^{\infty} \left(\frac{x}{\alpha_i}\right)^j.$$

Take the n^{th} coefficient to find the number of m with gaps less than f(n).

Partial Fractions

Divide the number of $m \in [F_n, F_{n+1})$ with longest gap < f(n) by the number of m, which is

$$F_{n+1} - F_n = F_{n-1} = 5^{-1/2} \left(\phi^{n-1} - (1/\phi)^{n-1} \right).$$

Theorem

The proportion of $m \in [F_n, F_{n+1})$ with L(x) < f(n) is exactly

$$\sum_{i=1}^{f(n)} \frac{-\sqrt{5}(\alpha_i)}{f(n)\alpha_i^{f(n)} - 2\alpha_i^2 - \alpha_i} \left(\frac{1}{\alpha_i}\right)^{n+1} \frac{1}{(\phi^n - (-1/\phi)^n)}$$

Now study the roots of $x^f - x^2 - x + 1$.

Rouché and Roots

When f(n) is large, $z^{f(n)}$ is very small for |z| < 1. Thus, by Rouché's theorem:

Lemma

For $f \in \mathbb{N}$ and $f \geq 4$, the polynomial $p_f(z) = z^f - z^2 - z + 1$ has exactly one root z_f with $|z_f| < .9$. Further, $z_f \in \mathbb{R}$ and $z_f = \frac{1}{\phi} + \left|\frac{z_f^f}{z_f + \phi}\right|$, so as $f \to \infty$, z_f converges to $\frac{1}{\phi}$.

We only care about the smallest root.

Getting the CDF

As f grows, only one root goes to $1/\phi$. The other roots don't matter. So,

Getting the CDF

As f grows, only one root goes to $1/\phi$. The other roots don't matter. So,

Theorem

If $\lim_{n\to\infty} f(n) = \infty$, the proportion of m with L(m) < f(n) is, as $n\to\infty$

$$\lim_{n\to\infty} (\phi z_f)^{-n} = \lim_{n\to\infty} \left(1 + \left|\frac{\phi z_f^{f(n)}}{\phi + z_f}\right|\right)^{-n}.$$

If f(n) is bounded, then $P_f = 0$.

Take logarithms, Taylor expand, result follows from algebra.

Algebra increases greatly for general recurrence.

References

References

References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions: The Fibonacci Quarterly 51 (2013), 13–27.

```
http://arxiv.org/abs/1208.5820
```

- Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions: Fibonacci Quarterly 49 (2011), no. 2, 116–130. http://arxiv.org/pdf/1008.3204
- Miller Wang: From Fibonacci numbers to Central Limit Type Theorems: Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398–1413. http://arxiv.org/pdf/1008.3202
- Miller Wang: Survey: Gaussian Behavior in Generalized Zeckendorf Decompositions: To appear in CANT 2011 Proceedings. http://arxiv.org/pdf/1107.2718

Generalizations

Positive Linear Recurrence Sequences

This method can be greatly generalized to **Positive Linear Recurrence Sequences**: linear recurrences with non-negative coefficients:

Generalizations

$$H_{n+1} = c_1 H_{n-(j_1=0)} + c_2 H_{n-j_2} + \cdots + c_L H_{n-j_L}.$$

Theorem (Zeckendorf's Theorem for PLRS recurrences)

Any $b \in \mathbb{N}$ has a unique **legal** decomposition into sums of H_n , $b = a_1 H_{i_1} + \cdots + a_{i_k} H_{i_k}$.

Here **legal** reduces to non-adjacency of summands in the Fibonacci case.

Messier Combinatorics

The **number** of $b \in [H_n, H_{n+1})$, with longest gap < f is the coefficient of x^{n-s} in the generating function:

Messier Combinatorics

The **number** of $b \in [H_n, H_{n+1})$, with longest gap < f is the coefficient of x^{n-s} in the generating function:

$$\frac{1}{1-x} \left(c_1 - 1 + c_2 x^{t_2} + \dots + c_L x^{t_L} \right) \times \\ \times \sum_{k \geq 0} \left[\left((c_1 - 1) x^{t_1} + \dots + (c_L - 1) x^{t_L} \right) \left(\frac{x^{s+1} - x^f}{1-x} \right) + \\ + x^{t_1} \left(\frac{x^{s+t_2 - t_1 + 1} - x^f}{1-x} \right) + \dots + x^{t_{L-1}} \left(\frac{x^{s+t_L - t_{L-1}} + 1 - x^f}{1-x} \right) \right]^k.$$

The **number** of $b \in [H_n, H_{n+1})$, with longest gap < f is the coefficient of x^{n-s} in the generating function:

$$\frac{1}{1-x} \left(c_1 - 1 + c_2 x^{t_2} + \dots + c_L x^{t_L} \right) \times \\ \times \sum_{k \geq 0} \left[\left((c_1 - 1) x^{t_1} + \dots + (c_L - 1) x^{t_L} \right) \left(\frac{x^{s+1} - x^f}{1-x} \right) + \\ + x^{t_1} \left(\frac{x^{s+t_2 - t_1 + 1} - x^f}{1-x} \right) + \dots + x^{t_{L-1}} \left(\frac{x^{s+t_L - t_{L-1}} + 1 - x^f}{1-x} \right) \right]^k.$$

A geometric series!

Let $f > j_L$. The number of $x \in [H_n, H_{n+1})$, with longest gap < f is given by **the coefficient of** s^n in the generating function

$$F(s) = \frac{1 - s^{j_L}}{\mathcal{M}(s) + s^f \mathcal{R}(s)},$$

where

$$\mathcal{M}(s) = 1 - c_1 s - c_2 s^{j_2+1} - \cdots - c_L s^{j_L+1},$$

and

$$\mathcal{R}(s) = c_{j_1+1}s^{j_1} + c_{j_2+1}s^{j_2} + \cdots + (c_{j_L+1}-1)s^{j_L}.$$

and c_i and j_i are defined as above.

The **coefficients** in the **partial fraction** expansion might blow up from multiple roots.

The coefficients in the partial fraction expansion might blow up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval $[H_n, H_{n+1}]$, the mean longest gap μ_n and the variance of the longest gap σ_n^2 are given by

$$\mu_n = \frac{\log\left(\frac{\mathcal{R}(\frac{1}{\lambda_1})}{\mathcal{G}(\frac{1}{\lambda_1})}n\right)}{\log \lambda_1} + \frac{\gamma}{\log \lambda_1} - \frac{1}{2} + Small\ \textit{Error} + \epsilon_1(n),$$

and

$$\sigma_n^2 = \frac{\pi^2}{6\log\lambda_1} - \frac{1}{12} + Small\ Error + \epsilon_2(n),$$

where $\epsilon_i(n)$ tends to zero in the limit, and Small Error comes from the Euler-Maclaurin Formula.