Mind the Gap: Distribution of Gaps in
Generalized Zeckendorf Decompositions

Steven J. Miller (sim1@williams.edu)
http://ww. willians.edu/ Mathematics/sjmller/public_htn

CANT 2013: May 21, 2013

A



http://www.williams.edu/Mathematics/sjmiller/public_html

Introduction J




Goals of the Talk

@ Combinatorial perspective.

@ Asking for help: completing elementary proof.

@ New results on longest gap.

@ Techniques: Generating fns, partial fractions, Rouche.

Joint with Olivia Beckwith, lddo Ben-Ari, Amanda Bower, Louis
Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.




Previous Results

Fibonacci Numbers: Fniq = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377 + 34 4+ 5 = F16 + F13 + Fg + F4.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fry1) tends to ﬁ A .276n,

where ¢ = 1+2—‘@ is the golden mean.
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Old Results

Central Limit Type Theorem

As n — oo, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn, Fri1) is
Gaussian.
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 10%%°.




Theorem (Zeckendorf Gap Distribution)

Gap measures v,y COnverge to average gap measure where
P(k) =1/¢X fork > 2.
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Figure: Distribution of gaps in [F1o00, F1001); F2010 ~ 102%.
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around logn/ log 2.

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, F,1) has longest gap
less than or equal to f(n) converges to

Prob (Ln(m) < f(n)) =~ g—elosn—r(n-ogs

¢2
_ 'Og(«>2+1>”)

*ln="ogs = T Togs — % + Small Error.

e If f(n) grows slower (resp. faster) than logn/log ¢, then
Prob(Ln(m) < f(n)) goes to O (resp. 1).
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fnt1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.

(n—2k+1 + k—l) _ (n—k).

Cookie counting = pp i = k_1 k—1

= "™’
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.
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For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length k.
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length k.

What is P(k) = limp_c Pn(k)?
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length k.

What is P(k) = limp_c Pn(k)?

Can ask similar questions about binary or other expansions:
2012 =210 + 29 1 28 1 27 4 26 4 24 1 23 4 22,
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let Hy, 1 = ciHn + Cc2Hp—1 + -+ - + ¢ Hp 1 be a positive linear
recurrence of length L where c; > 1 forall1 <i < L. Then

(<;Lek)(2A;1 +a;t-3) :j=0
Pi) = { MM (e)al —2a1) +a1) 1j=1
<Ar1>2<cik)w 22
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B’%#, and for k > 1,
P(k) = cgB, with cg = B-D38-2),

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P (k) = 1/¢" for k > 2, with
¢ = 1+2—\/§ the golden mean.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn—lﬁ-
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn—lﬁ-

Let Xi; = #{m < [Fn,Fn;1): decomposition of m includes F;,
F;, but not Fq fori < q <j}.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn—lﬁ-
Let Xi; = #{m < [Fn,Fn;1): decomposition of m includes F;,

F;, but not Fq fori < q <j}.

n—k
f X ;
P(k) = lim 7%'—1 L
= Fpn_175.7
¢?+1
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj «?

OO 0OR8RR3—-- R0 - -0ORX@
Fy Ko b Firk Fiyprn  Foy B
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj «?

OO 0OR8RR3—-- R0 - -0ORX@
Fy Ko b Firk Firkr1  Fuoq Fa

For the indices less than i: Fj_; choices. Why? Have F; as
largest summand and follows by Zeckendorf:
#[Fi,Fiy1) = Fiqa — Fi = Fi1.
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj «?

OO 0OR8RR3—-- R0 - -0ORX@
Fy Ko b Firk Firkr1  Fuoq Fa

For the indices less than i: Fj_; choices. Why? Have F; as
largest summand and follows by Zeckendorf:
#[Fi,Fiy1) = Fiqa — Fi = Fi1.

For the indices greater than i + k: F,_x_i_» choices. Why?
Shift. Choose summands from {F, ..., F,_x_j 1} with
F1,Fn_k—i+1 chosen. Decompositions with largest summand
Fn_k_i+1 minus decompositions with largest summand F,_y_;.
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj «?

OO 0OR8RR3—-- R0 - -0ORX@
Fy Ko b Firk Firkr1  Fuoq Fa

For the indices less than i: Fj_; choices. Why? Have F; as
largest summand and follows by Zeckendorf:

#[Fi,Fit1) = Fiqa —Fi =Fi_1.

For the indices greater than i + k: F,_x_i_» choices. Why?
Shift. Choose summands from {F, ..., F,_x_j 1} with
F1,Fn_k—i+1 chosen. Decompositions with largest summand
Fn_k_i+1 minus decompositions with largest summand F,_y_;.

So total choices number of choices is Fr_x_>_iFi_1.
D
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Determining P (k)

Recall
n—k

n—oo anlﬁ

Use Binet's formula. Sums of geometric series: P(k) = 1/¢X.

n3f

Figure: Distribution of summands in [Figg0, F1001)-

OGS
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Main Result

@ Decomposition: m = ij:(T) Fi-
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Main Result

@ Decomposition: m = ij:(T) Fi-

@ Individual gap measure:
k L
Vm;n(X) = —k(ml)fl ZJ:(?) 1) (X — (Ij - Ij_l)).
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Main Result

@ Decomposition: m = ij:(T) Fi-

@ Individual gap measure:
k L
Vm;n(X) = —k(ml)fl ZJ:(?) 1) (X — (Ij - Ij_l)).

Theorem (Distribution of Individual Gaps (SMALL 2012))

Gap measures Vm:n CONVerge to average gap measure.
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Proof Sketch of Individual Gap Measures

k .
@ umn(t) = [Xidumn(x) = k(m) 12 (m)(_ |jil)t'
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Proof Sketch of Individual Gap Measures

k .
@ umn(t) = [Xidumn(x) = k(m) 12 (m)(_ |jil)t'

@ Show En[um:n(t)] equals average gap moments, p(t).
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Proof Sketch of Individual Gap Measures

k .
@ umn(t) = [Xidumn(x) = k(m) 12 (m)(_ |jil)t'
@ Show En[um:n(t)] equals average gap moments, p(t).

® Show Em[(1min(t) — 4(t))?] and Em[(umn(t) — u(t))*] tend
to zero.
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Proof Sketch of Individual Gap Measures

k .
@ umn(t) = [Xidumn(x) = k(m) 12 (m)(_ |jil)t'
@ Show En[um:n(t)] equals average gap moments, p(t).

® Show Em|[(smin(t) — 2(t))?] and Em[(pmn(t) — u(t))*] tend
to zero.
Key ideas:
(1) Replace k(m) with average (Gaussianity);
(2) use Xii1q,jj+g,-
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Future Research

Future Research
@ Finish elementary proof of convergence of individual gap
measures (maybe probabilities instead of moments).
Email siml@williams.edu if interested.

@ Extend to recurrences with coefficients that can be zero:
SMALL "13.

@ Generalize to signed decompositions, ¢ largest gaps, ....
SMALL '13.
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Fibonacci Case Generating Function

Gn ki be the number of m € [Fp, F,41) with k nonzero
summands and all gaps less than f(n).




Longest Gap
[ ]

Fibonacci Case Generating Function

Gn ki be the number of m € [Fp, F,41) with k nonzero
summands and all gaps less than f(n).

Ghk f is the coefficient of x" for the generating function

fm—2 1K1

1 .
1-—x Z X

j=2
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Fibonacci Case Generating Function

Gn ki be the number of m € [Fp, F,41) with k nonzero
summands and all gaps less than f(n).

Ghk f is the coefficient of x" for the generating function

. [io-2 k=1

1-—x Z X

j=2

Letm =Fp + Fn_g; + Fn—g,—g, + - + Fn—g;—...—g,_,, then
@ Eachgapis > 2.
@ Eachgapis < f(n).
@ The sum of the gaps of x is < n.

Gaps uniquely identify m by Zeckendorf’'s Theorem.

AR
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The Combinatorics

Gp ks is the n'™ coefficient of
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The Combinatorics

Gp ks is the n'™ coefficient of

k—1
K1 2(k—1) o f(n)-3
1 {X2+...+Xf(n)fz] _X (1 X ) |

1-—x 1-—x

For fixed k hard to analyze, but only care about sum over k.
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The Generating Function

Sum over k gives number of m € [Fy, Fn11) with longest gap
< f(n), call it G 4.
It's the n" coefficient (up to potentially small algebra errors!) of

1 & /x2 o xt-2\* X
F(X):lle< 1-x > T 1-ox-—xZ4x{M
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The Generating Function

Sum over k gives number of m € [Fy, Fn11) with longest gap

< f(n), call it G 4.

It's the n" coefficient (up to potentially small algebra errors!) of
k—1

1 & /x2—xfi-2 X
F(X):lle< 1-x > T 1-x

—x2 4 xfm)”

Use partial fractions and Rouché’s Theorem to find CDF
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Partial Fractions

Write the roots of x" — x? —x — 1 as {a;}[_,, generating
function is

f(n) 00

—Q X J
F(X):l_x_;(2+xf(n)zz Z<E>'

f
i1 f(n)ey " 20‘i2 — i =1

A1
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Partial Fractions

Write the roots of x" — x? —x — 1 as {a;}[_,, generating
function is

f(n) 00

—a j
FX) = 1 = O > (%)

— f(n)aif(n) — 2ai2 — i i Qj

Take the n" coefficient to find the number of m with gaps less
than f(n).

A7
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Partial Fractions

Divide the number of m € [Fy, Fn11) with longest gap < f(n) by
the number of m, which is

FnJrl*Fn = Fn,]_ = 1/2( (1/¢)n l)

The proportion of m € [Fn, Fr11) with L(x) < f(n) is exactly

f(n) n+1
—V5(a) 1\ 1
Z f(n) 2 <ai> (o" = (=1/9)")

i1 f(N)a," — 208 — o

Now study the roots of x — x? — x + 1.

A
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Rouché and Roots

When f(n) is large, z'(" is very small for |z| < 1. Thus, by
Rouché’s theorem:

Forf € Nand f > 4, the polynomial p;(z) = zf —2z2 —z + 1 has
exactly one root z; with |z;| < .9. Further, z; € R and

Z = % + soasf — oo, Z; converges to %.

7
Zi+¢ |’

We only care about the smallest root .

A
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Getting the CDF

As f grows, only one root goes to 1/¢. The other roots don't
matter. So,

AT
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Getting the CDF

As f grows, only one root goes to 1/¢. The other roots don't
matter. So,

If limp_, o f(N) = oo, the proportion of m with L(m) < f(n) is, as
n — oo

¢Z:(n)
¢+ z;

Take logarithms, Taylor expand, result follows from algebra.

. —Nn _ .
n“—>moo (¢Zf) - nll—>moo <1 o

If f(n) is bounded, then P; = 0.

Algebra increases greatly for general recurrence.

AR
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Generalizations
°

Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences : linear recurrences with non-negative
coefficients:

Hni1 = CiHn_(,=0) + C2Hn—j, +--- + CLHnj .

Theorem (Zeckendorf's Theorem for  PLRS recurrences)

Any b € N has a unique legal decomposition into sums of Hp,
b :alHil+---+aikH

i

Here legal reduces to non-adjacency of summands in the
Fibonacci case.




Generalizations
°

Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:
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Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:

(C]_ — 1+C2Xt2 + - +C|_Xt") X

1-—x
Xs+l—xf
—)xt (o — 1)xY) ([ —— X
xkz;)[ e x4 (o= 1) () +
+xt1 _X57+t2_tl+l—xf +-..+Xt|__1 XS—HL_tL*lﬁLl*Xf k
1-x 1-x '




Generalizations
°

Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:

(C]_ — 1+C2Xt2 + - +C|_Xt") X

1-—x
Xs+l—xf
—)xt (o — 1)xY) ([ —— X
xkz;)[ e x4 (o= 1) () +
+xt1 _X57+t2_tl+l—xf +-..+Xt|__1 XS—HL_tL*lﬁLl*Xf k
1-x 1-x '

A geometric series!




Generalizations
°

Letf > j_. The number of x € [Hpn, Hny1), with longest gap < f
is given by the coefficient of s" in the generating function

1-—sh
F8) = Me s Re)
where
M(s) =1—c1s —Cpsltt — ... — ¢ sttt
and

R(S) = Cj, 418" + Cj, 1282 + -+ + (¢j 41 — 1)s.

and ¢; and j; are defined as above .




Generalizations
°

The coefficients in the partial fraction expansion might blow
up from multiple roots.
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The coefficients in the partial fraction expansion might blow
up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn, Hy11), the mean longest gap un and
the variance of the longest gap o2 are given by

R(x7)
<L (g(g) n> v 1
L - = IIE
T og 2 + Small Error + €1(n),

Hn =

and
2

2 T 1
=_——— — — 1+ Small Error n
"= Blogh, 12 i +e2(n),

where € (n) tends to zero in the limit, and Small Error comes
from the Euler-Maclaurin Formula.
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