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Introduction
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Goals of the Talk

Combinatorial perspective.

Asking for help: completing elementary proof.

New results on longest gap.

Techniques: Generating fns, partial fractions, Rouche.

Joint with Olivia Beckwith, Iddo Ben-Ari, Amanda Bower, Louis
Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377 + 34 + 5 = F16 + F13 + F8 + F4.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Old Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is
Gaussian.
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n
∑

j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)
∑

j=2

δ
(

x − (ij − ij−1)
)

.

Theorem (Zeckendorf Gap Distribution)

Gap measures νm;n converge to average gap measure where
P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around log n/ log 2.

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)·logφ

• µn =
log

(

φ2

φ2+1)
n
)

logφ + γ
logφ − 1

2 + Small Error.

• If f (n) grows slower (resp. faster) than log n/ logφ, then
Prob(Ln(m) ≤ f (n)) goes to 0 (resp. 1).
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Gaps in the Bulk
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other expansions:
2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn+1−L be a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then

P(j) =















1 − ( a1
CLek

)(2λ−1
1 + a−1

1 − 3) : j = 0

λ−1
1 ( 1

CLek
)(λ1(1 − 2a1) + a1) : j = 1

(λ1 − 1)2
(

a1
CLek

)

λ−j
1 : j ≥ 2.
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/φk for k ≥ 2, with
φ = 1+

√
5

2 the golden mean.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Shift. Choose summands from {F1, . . . ,Fn−k−i+1} with
F1,Fn−k−i+1 chosen. Decompositions with largest summand
Fn−k−i+1 minus decompositions with largest summand Fn−k−i .
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Calculating Xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

For the indices less than i : Fi−1 choices. Why? Have Fi as
largest summand and follows by Zeckendorf:
#[Fi ,Fi+1) = Fi+1 − Fi = Fi−1.

For the indices greater than i + k : Fn−k−i−2 choices. Why?
Shift. Choose summands from {F1, . . . ,Fn−k−i+1} with
F1,Fn−k−i+1 chosen. Decompositions with largest summand
Fn−k−i+1 minus decompositions with largest summand Fn−k−i .

So total choices number of choices is Fn−k−2−iFi−1.
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Determining P(k)

Recall

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.

Use Binet’s formula. Sums of geometric series: P(k) = 1/φk .
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Individual Gaps
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Main Result

Decomposition: m =
∑k(m)

j=1 Fij .
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Main Result

Decomposition: m =
∑k(m)

j=1 Fij .

Individual gap measure:
νm;n(x) = 1

k(m)−1

∑k(m)
j=2 δ

(

x − (ij − ij−1)
)

.
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Main Result

Decomposition: m =
∑k(m)

j=1 Fij .

Individual gap measure:
νm;n(x) = 1

k(m)−1

∑k(m)
j=2 δ

(

x − (ij − ij−1)
)

.

Theorem (Distribution of Individual Gaps (SMALL 2012))

Gap measures νm;n converge to average gap measure.
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Proof Sketch of Individual Gap Measures

µm,n(t) =
∫

x t dνm;n(x) = 1
k(m)−1

∑k(m)
j=2 (ij − ij−1)

t .
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Proof Sketch of Individual Gap Measures

µm,n(t) =
∫

x t dνm;n(x) = 1
k(m)−1

∑k(m)
j=2 (ij − ij−1)

t .

Show Em[µm;n(t)] equals average gap moments, µ(t).
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Proof Sketch of Individual Gap Measures

µm,n(t) =
∫

x t dνm;n(x) = 1
k(m)−1

∑k(m)
j=2 (ij − ij−1)

t .

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t) − µ(t))2] and Em[(µm;n(t)− µ(t))4] tend
to zero.
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Proof Sketch of Individual Gap Measures

µm,n(t) =
∫

x t dνm;n(x) = 1
k(m)−1

∑k(m)
j=2 (ij − ij−1)

t .

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t) − µ(t))2] and Em[(µm;n(t)− µ(t))4] tend
to zero.

Key ideas:
(1) Replace k(m) with average (Gaussianity);
(2) use Xi ,i+g1,j ,j+g2

.
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Future Research

Future Research

Finish elementary proof of convergence of individual gap
measures (maybe probabilities instead of moments).
Email sjm1@williams.edu if interested.

Extend to recurrences with coefficients that can be zero:
SMALL ’13.

Generalize to signed decompositions, ℓ largest gaps, ....
SMALL ’13.
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Longest Gap
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Fibonacci Case Generating Function

Gn,k ,f be the number of m ∈ [Fn,Fn+1) with k nonzero
summands and all gaps less than f (n).
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Fibonacci Case Generating Function

Gn,k ,f be the number of m ∈ [Fn,Fn+1) with k nonzero
summands and all gaps less than f (n).

Gn,k ,f is the coefficient of xn for the generating function

1
1 − x





f (n)−2
∑

j=2

x j





k−1

.
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Fibonacci Case Generating Function

Gn,k ,f be the number of m ∈ [Fn,Fn+1) with k nonzero
summands and all gaps less than f (n).

Gn,k ,f is the coefficient of xn for the generating function

1
1 − x





f (n)−2
∑

j=2

x j





k−1

.

Let m = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1, then

Each gap is ≥ 2.

Each gap is < f (n).

The sum of the gaps of x is ≤ n.

Gaps uniquely identify m by Zeckendorf’s Theorem.
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The Combinatorics

Gn,k ,f is the nth coefficient of

1
1 − x

[

x2 + · · · + x f (n)−2
]k−1

=
x2(k−1)

1 − x

(

1 − x f (n)−3

1 − x

)k−1

.
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The Combinatorics

Gn,k ,f is the nth coefficient of

1
1 − x

[

x2 + · · · + x f (n)−2
]k−1

=
x2(k−1)

1 − x

(

1 − x f (n)−3

1 − x

)k−1

.

For fixed k hard to analyze, but only care about sum over k .
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The Generating Function

Sum over k gives number of m ∈ [Fn,Fn+1) with longest gap
< f (n), call it Gn,f .

It’s the nth coefficient (up to potentially small algebra errors!) of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f (n)
.
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The Generating Function

Sum over k gives number of m ∈ [Fn,Fn+1) with longest gap
< f (n), call it Gn,f .

It’s the nth coefficient (up to potentially small algebra errors!) of

F (x) =
1

1 − x

∞
∑

k=1

(

x2 − x f−2

1 − x

)k−1

=
x

1 − x − x2 + x f (n)
.

Use partial fractions and Rouché’s Theorem to find CDF.
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Partial Fractions

Write the roots of x f − x2 − x − 1 as {αi}f
i=1, generating

function is

F (x) =
x

1 − x − x2 + x f (n)
=

f (n)
∑

i=1

−αi

f (n)αf (n)
i − 2α2

i − αi

∞
∑

j=1

(

x
αi

)j

.
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Partial Fractions

Write the roots of x f − x2 − x − 1 as {αi}f
i=1, generating

function is

F (x) =
x

1 − x − x2 + x f (n)
=

f (n)
∑

i=1

−αi

f (n)αf (n)
i − 2α2

i − αi

∞
∑

j=1

(

x
αi

)j

.

Take the nth coefficient to find the number of m with gaps less
than f (n).
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Partial Fractions

Divide the number of m ∈ [Fn,Fn+1) with longest gap < f (n) by
the number of m, which is

Fn+1 − Fn = Fn−1 = 5−1/2
(

φn−1 − (1/φ)n−1
)

.

Theorem
The proportion of m ∈ [Fn,Fn+1) with L(x) < f (n) is exactly

f (n)
∑

i=1

−
√

5(αi)

f (n)αf (n)
i − 2α2

i − αi

(

1
αi

)n+1 1
(φn − (−1/φ)n)

Now study the roots of x f − x2 − x + 1.
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Rouché and Roots

When f (n) is large, z f (n) is very small for |z| < 1. Thus, by
Rouché’s theorem:

Lemma

For f ∈ N and f ≥ 4, the polynomial pf (z) = z f − z2 − z + 1 has
exactly one root zf with |zf | < .9. Further, zf ∈ R and

zf =
1
φ +

∣

∣

∣

z f
f

zf+φ

∣

∣

∣
, so as f → ∞, zf converges to 1

φ .

We only care about the smallest root .
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Getting the CDF

As f grows, only one root goes to 1/φ. The other roots don’t
matter. So,
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Getting the CDF

As f grows, only one root goes to 1/φ. The other roots don’t
matter. So,

Theorem
If limn→∞ f (n) = ∞, the proportion of m with L(m) < f (n) is, as
n → ∞

lim
n→∞

(φzf )
−n = lim

n→∞

(

1 +

∣

∣

∣

∣

∣

φz f (n)
f

φ+ zf

∣

∣

∣

∣

∣

)−n

.

If f (n) is bounded, then Pf = 0.

Take logarithms, Taylor expand, result follows from algebra.

Algebra increases greatly for general recurrence.
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References
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Generalizations
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences : linear recurrences with non-negative
coefficients:

Hn+1 = c1Hn−(j1=0) + c2Hn−j2 + · · · + cLHn−jL.

Theorem (Zeckendorf’s Theorem for PLRS recurrences)

Any b ∈ N has a unique legal decomposition into sums of Hn,
b = a1Hi1 + · · ·+ aik Hik .

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · · + (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+ · · · + x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · · + (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+ · · · + x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.

A geometric series!
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Let f > jL. The number of x ∈ [Hn,Hn+1), with longest gap < f
is given by the coefficient of sn in the generating function

F (s) =
1 − sjL

M(s) + sfR(s)
,

where
M(s) = 1 − c1s − c2sj2+1 − · · · − cLsjL+1,

and
R(s) = cj1+1sj1 + cj2+1sj2 + · · · + (cjL+1 − 1)sjL .

and ci and ji are defined as above .
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The coefficients in the partial fraction expansion might blow
up from multiple roots.
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The coefficients in the partial fraction expansion might blow
up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn,Hn+1), the mean longest gap µn and
the variance of the longest gap σ2

n are given by

µn =

log
(

R( 1
λ1

)

G( 1
λ1

)
n
)

logλ1
+

γ

logλ1
− 1

2
+ Small Error + ǫ1(n),

and

σ2
n =

π2

6 logλ1
− 1

12
+ Small Error + ǫ2(n),

where ǫi(n) tends to zero in the limit, and Small Error comes
from the Euler-Maclaurin Formula.
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