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Motivation

Conjecture (Montgomery-Dyson, 1970s)
High on the critical line, spacings between

zeros of the Riemann zeta function←→ eigenvalues of the Gaussian Unitary Ensemble.

Conjecture (Katz-Sarnak, 1990s)
Katz and Sarnak conjectured that the following distributions match in the correct asymptotic limit:

lowest-lying zeros at the critical point of families of L-functions,

eigenvalues of random matrices from classical compact groups.

Source: N. M. Katz and P. Sarnak, Zeros of zeta functions and symmetry, Bulletin of the American Mathematical Society (1) 36 (1999), pages 1-26.
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An Excised Orthogonal Model

In 2005, M. noticed a repulsion of the lowest-lying zeros near the central point of a family of
even twists of a fixed elliptic curve L-function with finite conductor.

Comparison of distribution of lowest zeros for twists of an elliptic curve L-function and the corresponding eigenvalues from SO(even)

In 2011, E. Duenez, D.K. Huynh, J.P. Keating, M., and N.C. Snaith proposed an excised
orthogonal model to capture the behavior of this repulsion in the elliptic curve case.
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Motivating Questions

Can this model be generalized or adapted to L-functions arising from cuspidal newforms?

Motivating Question
How accurately do eigenvalues of random matrices from classical compact groups model the
lowest-lying zeros of families of L-functions associated to a cuspidal newform?
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L-function associated to cuspidal newform
Let f ∈ Snew

k (M,χf ) be a cuspidal newform of level an odd prime M , weight k, and
nebentypus χf . Then, f has Fourier expansion

f(z) =
∞∑

n=1
af (n)e2πinz

at the cusp ∞.

Put λf (n) = af (n)/n(k−1)/2. Then, for Re(s) > 1, the L-function attached to f is given
by the Dirichlet series

L(f, s) :=
∑
n≥1

λf (n)
ns

.

The Euler product is
L(f, s) =

∏
p

(
1− λf (p)p−s + χf (p)p−2s)−1

.

The functional equation of the completed L-function is given by
Λ(f, s) = ϵf Λ(f, 1− s),

where ϵf is the root number.
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The Family of Twists

Fix a cuspidal newform f , and consider its L-function L(f, s). Given a quadratic character
ψd, we create a twist by

L(f ⊗ ψd, s) =
∞∑

n=1

ψd(n)λf (n)
ns

=
∏
p

(
1− ψd(p)λf (p)p−s + ψd(p)χf (p)p−2s

)−1
.

Fix ∆ ∈ {±1}. We create a family of L-functions by taking twists of L(f, s) with positive
fundamental discriminants d ∈ D+ ranging over

D+
f (X) :=


{d ∈ D+ | 0 < d ≤ X, ψd(−M)ϵf = +1} χf principal, even twists,
{d ∈ D+ | 0 < d ≤ X, ψd(−M)ϵf = −1} χf principal, odd twists,
{d ∈ D+ | 0 < d ≤ X, ψd(−M) = ∆} χf non-principal, f = f,

{d ∈ D+ | 0 < d ≤ X} χf non-principal, f ̸= f.
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Motivating question, revisited

Is there any unexpected behavior that appears when we try to model the lowest-lying zeros
of our family?
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Determining the Model

Before analyzing any behavior, we must ask:

Which classical compact groups model the lowest lying zeros of our family?

We computed the one-level density of our family and compared it to that of the groups U,
Sp, and SO to determine the model:

Principal nebentype, even twists←−→ SO(even)
Principal nebentype, odd twists←−→ SO(odd)

Non-principal nebentype and self-dual←−→ Sp
Generic←−→ U
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Matrix Size and Cutoff Value

The model depends on two parameters:

Matrix Size:
The typical approach involves equating mean densities of zeros to the mean densities
of eigenvalues.

In the finite conductor setting, we can get a better matrix size by using the lower-order
terms of series expansions coming from one-level density and pair-correlation.

Cutoff Value:
As in the elliptic curve setting, we excise matrices whose eigenvalues are too small.
More precisely, we discard all matrices whose characteristic polynomial evaluated at 1
is too small.

When do we need a cutoff value?
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Families with orthogonal symmetry I

Lowest zeros (even twists) of 11.2.a.a Second lowest zeros (odd twists) of 11.2.a.a

Eigenvalues from random matrices of SO(18) Eigenvalues from random matrices of SO(19)
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Families with orthogonal symmetry II

Lowest zeros (even twists) of 5.4.a.a Second lowest zeros (odd twists) of 5.4.a.a

Eigenvalues from random matrices of SO(18) Eigenvalues from random matrices of SO(19)
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Families with orthogonal symmetry III

Lowest zeros (even twists) of 7.4.a.a Lowest zeros (odd twists) of 7.4.a.a

Eigenvalues of random matrices of SO(20) Eigenvalues of random matrices of SO(21)
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Families with symplectic symmetry

Lowest zeros (∆ = +1) of 3.7.b.a Lowest zeros (∆ = −1) of 7.3.b.a

Eigenvalues of random matrices of Sp(20) Eigenvalues of random matrices of Sp(20)
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Families with unitary symmetry I

Lowest zeros (twists) of 13.2.e.a Lowest zeros (twists) of 17.2.d.a

Eigenvalues of random matrices of Sp(20) Eigenvalues of random matrices of Sp(20)
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Families with unitary symmetry II

Lowest zeros (twists) of 11.7.b.b

Eigenvalues of random matrices of U(9)
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Pair-correlation function of a family of twists

For large T , we denote the pair-correlation of a family of twists of a given form f by

P (f ⊗ ψd;φ) =
∑

0<γ,γ′<T

φ(γ − γ′),

where the γ’s are the imaginary part of the zeros and φ a (holomorphic) test function.

Using the ratios conjecture and analyticity, we expand the above using series expansions

P (f ⊗ ψd;φ) := T

2πR
[
h(0) +

∫
R
h(y)

(
1−

(sin πy
πy

)2

+e1 − e2 sin2 πy

R2 − e3πy sin 2πy
R3 +O(R−4)

)
dy

]
+O(T ε+1/2),

where
R = log

(√
M |d|T
2πe

)
.
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Effective Matrix Size: Pair-correlation

Compare the U(N) pair-correlation

1−
(sin πy

πy

)2
−sin2 πy

3N2 ,

to the pair-correlation for our form f , we compare the term

1−
(sin πy

πy

)2
+e1 − e2 sin2 πy

R2 − e3
πy sin 2πy

R3 .

Conjecture (Montgomery, 1973)

High on the critical line, the spacing between pairs of the Riemann zeta function is
asymptotically

1−
(sin πu

πu

)2
.
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