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Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +17 = Fg + 17.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+4 = Fg + Fs + 4.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13 +3+1=Fg + Fg + F3 + 1.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89, ....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1=Fg+ Fg + F3 + F4.
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Previous Results

Fibonacci Numbers: F,.1 = Fn+ Fp_q;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34 +13+3+1 = F8+F6+F3—|-F1.
Example: 83=55+21+5+2=Fy+ F7 + F4 + F>.
Observe: 51 miles ~ 82.1 kilometers.
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Introduction

Fibonaccis: Fo =1,F =1,Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example: 2021 = 1597 + 377 + 34 + 13 = Fig + F13 + Fg + Fe.

Conversely, we can construct the Fibonacci sequence using
this property:

1
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Conversely, we can construct the Fibonacci sequence using
this property:
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Introduction

Fibonaccis: Fo =1,F =1,Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example: 2021 = 1597 + 377 + 34 + 13 = Fig + F13 + Fg + Fe.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5
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Introduction

Fibonaccis: Fo =1,F =1,Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example: 2021 = 1597 + 377 + 34 + 13 = Fig + F13 + Fg + Fe.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8
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Introduction

Fibonaccis: Fo =1,F =1,Fpi0 = Fpy1 + Fo.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example: 2021 = 1597 + 377 + 34 + 13 = Fig + F13 + Fg + Fe.

Conversely, we can construct the Fibonacci sequence using
this property:

1,2,3,5,8,13...
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The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).
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Divides the cookies into P sets.
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Combinatorial Proof: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (“5°7).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (°477") ways to do.
Divides the cookies into P sets.

Example 8 cookles and 5 people (C 8 P 5)
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Tge number of solutions to xy + - -+ + xp = C with x; > 0 is
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(“p27)-
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Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.




Summand Minimality
.

Combinatorial Proof: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Tge number of solutions to xy + - -+ + xp = C with x; > 0 is
+P—1
(“p27)-

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fp, Fni1), the largest summand is F,.
N:l__i1 +Fig+..'+l__ik71 +Fn:
1<l <o <o <1 <ik:n,ijfij,1 > 2.
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Combinatorial Proof: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Tge number of solutions to xy + - -+ + xp = C with x; > 0 is
+P—1
(“p27)-

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.

For N € [Fp, Fni1), the largest summand is F,.
N:l__i1+FI‘2+..'+l__ik71+Fn:
1<l <o <o <1 <ik:n,ijfij,1 > 2.
di+do+---+d¢=n-2k+1,d >0.
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Combinatorial Proof: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

Tge number of solutions to xy + - -+ + xp = C with x; > 0 is
+P—1
(“p27)-

Let pnx = # {N € [Fp, Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fp, Fni1), the largest summand is F,.
N:l__i1 +Fig+..'+l__ik71 +Fn:
1<l <o <o <1 <ik:n,ijfij,1 > 2.
d1 I:i1 —1,de:ij—ij_1 —2(j>1)
di+do+---+d¢=n-2k+1,d >0.

Cookie counting = p, x = (72K 1 F K1) = (17F).

DR
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Summand Minimality

@ 18 = 13 + 5= Fg + F4, legal decomposition, two
summands.

@18 = 18 + 3 + 2=Fs + F3+ Fp, non-legal
decomposition, three summands.

The Zeckendorf decomposition is summand minimal. \
Overall Question
What other recurrences are summand minimal?
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Positive Linear Recurrence Sequences

A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence {an} with

an = C1ap—1 + -+ Cta@n—t

and each ¢; > 0 and c¢q, ¢; > 0. We use ideal initial conditions
a_(n-1)=0,...,a1=0,a =1andcall (¢,...,c) the
signature of the sequence.

A

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)

For a PLRS with signature (¢4, Co, . . ., Ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

Ct=>C 2> 2>Ct

v
TS -
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Proof Preliminaries: Invariant

A quantity is invariant if it does not change throughout the
process.

Examples:

@ Think of mass and energy in classical physics.

@ If you travel on a straight line from 0 to 10 it doesn’t matter
how many stops you make, the total distance traveled is
always 10.

@ If you are given 1 meter and bend it in two places to make
a triangle, the area of the triangles can differ but all will
have a perimeter of 1.
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Proof Preliminaries: Mono-variant

A mono-variant is a quantity that can change in only one way; it
is either non-decreasing (so it can stay the same or increase)
or it is non-increasing (so it can stay the same or decrease).

Examples:

@ The number of pieces on the board in a game of chess or
checkers.

@ The scores in a sports contest.

@ The distance traveled by a cannonball (unless we have a
very strong wind!).
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Proof Preliminaries: Applications of Mono-variants

@ 1-dimensional Sperner's Lemma game and Fixed Point
Theorems.

@ Zombie Apocalypse: Spread of infection.
@ Conway Soldier / Checker Problem.

@ 2 x 1 dominoes tiling an n x n square with upper right and
bottom left corners removed.

Rectangle Game, Zombie Apocalypse:
https://youtu.be/RaajCJ8zfv0?2t=768.

Why | love Monovariants: From Zombies to Conway’s Soldiers
via the Golden Mean: https://youtu.be/LWiWc4g3e—RY.



https://youtu.be/RaajCJ8Zfv0?t=768
https://youtu.be/LWWc4q3e-RY
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Proof for Fibonacci Case

Idea of proof:

@ D = biFi + -+ byF, decomposition of N, set
Ind(D)=by-1+---+bp-n.
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Idea of proof:

@ D = biFi + -+ byF, decomposition of N, set
Ind(’D):b1 A4+ by-n

@ Move to D’ by
o 2Fk = Fxi 1+ Fx_2 (and 2F, = F3 + F4).
o Fi + Fk_|_1 = Fk+2 (and F1 + F1 = F).
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Proof for Fibonacci Case

Idea of proof:

@ D = biFi + -+ byF, decomposition of N, set
Ind(’D):b1 A4+ by-n

@ Move to D’ by
o 2Fk = Fxi 1+ Fx_2 (and 2F, = F3 + F4).
o Fi + Fk_|_1 = Fk+2 (and F1 + F1 = F).

@ Monovariant: Note Ind(D’) < Ind(D).
o 2F = Fk+1 + Fi_o: 2k vs 2k — 1.
o Fx+ Fxi1 = Fao: 2k +1vs k4 2.
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Proof for Fibonacci Case

Idea of proof:

@ D = biFi + -+ byF, decomposition of N, set
Ind(’D):b1 A4+ by-n

@ Move to D’ by
o 2Fk = Fxi 1+ Fx_2 (and 2F, = F3 + F4).
o Fi + Fk_|_1 = Fk+2 (and F1 + F1 = F).

@ Monovariant: Note Ind(D’) < Ind(D).
o 2F = Fk+1 + Fi_o: 2k vs 2k — 1.
o Fx+ Fxi1 = Fao: 2k +1vs k4 2.

@ If not at Zeckendorf decomposition can continue, if at
Zeckendorf cannot. Better: Ind'(D) = byv/1 + -+ + byy/n.

‘.
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The Zeckendorf Game
with Paul Baird-Smith, Alyssa Epstein and Kristen Flint
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in F; and others
empty.

@ Aturnis one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F5)
o If pieces at Fx and F,1 remove and add one at Fi_».
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@ Two player game, alternate turns, last to move wins.

@ Bins F4, Fo, F3, ..., start with N pieces in F; and others
empty.

@ Aturnis one of the following moves:
o If have two pieces on F, can remove and put one
piece at Fx.1 and one at Fx_»
(if Kk =1 then 2F; becomes 1F5)
o If pieces at Fx and F,1 remove and add one at Fi_».

Questions:
@ Does the game end? How long?
@ For each N who has the winning strategy?
@ What is the winning strategy?
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Sample Game

Start with 10 pieces at F4, rest empty.

10 0 0 0 0
[Fi=1 [Fo=2] [FR=3] [F=5 [F=8]

Next move: Player 1: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

8 1 0 0 0
[Fi=1 [Fo=2] [FR=3] [F=5 [F=8]

Next move: Player2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

6 2 0 0 0
[Fi=1 [Fo=2] [FR=3] [F=5 [F=8]

Next move: Player 1: 2F, = F3 + F;
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Sample Game

Start with 10 pieces at F4, rest empty.

7 0 1 0 0
[F1 =1] [F2 = 2] [Fs = 3] [F4=9] [Fs = 8]

Next move: Player2: F1 + F1 = F»
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Sample Game

Start with 10 pieces at F4, rest empty.

5 1 1 0 0
[F1 =1] [F2 = 2] [Fs = 3] [F4=9] [Fs = 8]

Next move: Player 1: Fo + F3 = F4.
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Sample Game

Start with 10 pieces at F4, rest empty.

5 0 0 1 0
[Fi=1 [Fo=2] [FR=3] [F=5 [F=8]

Next move: Player 2: F; + F; = Fo.
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Sample Game

Start with 10 pieces at F4, rest empty.

3 1 0 1 0
[Fi=1 [Fo=2] [FR=3] [F=5 [F=8]

Next move: Player 1: F; + F; = Fo.

A7
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Sample Game

Start with 10 pieces at F4, rest empty.

1 2 0 1 0
[F1 =1] [F2 = 2] [Fs = 3] [F4=9] [Fs = 8]

Next move: Player 2: F; + Fo = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 1 1 0
[Fi=1 [Fo=2] [FR=3] [F=5 [F=8]

Next move: Player 1: F3 + F4 = Fs.
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Sample Game

Start with 10 pieces at F4, rest empty.

0 1 0 0 1
[F =1] [F2=2] [F3 = 3] [Fa=9] [F5 = 8]

No moves left, Player One wins.
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Sample Game

Player One won in 9 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0
0 1 1 1 0
0 1 0 0 1
[Fi=11 [R=21 [R=3 [R=5 [Fk=8

ST -
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Sample Game

Player Two won in 10 moves.

10

[Fs5 = 8]

[Fa=9]

[Fs = 3]

[F2 = 2]

[Fr = 1]

;



Zeckendorf Game
[ ]

Games end

All games end in finitely many moves. \

Proof: The sum of the square roots of the indices is a strict
monovariant.

@ Adding consecutive terms: (\/F+ \/R) ~vVk+2<0.
e Splitting: 2vk — (Vk+1+vk+1) <0.

@ Adding 1’s: 2v/1 — V2 < 0.

o Splitting 2's: 2v2 — (V3+ /1) < 0.

;




Zeckendorf Game
o

Games Lengths: |

Upper bound: At most nlog, (nv/5 -+ 1/2) moves (improved
last year to order n).

Fastest game: n— Z(n) moves (Z(n) is the number of
summands in n's Zeckendorf decomposition).
From always moving on the largest summand possible
(deterministic).

BA
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Games Lengths: I

Frequency
0A125
0.10
0.085
o.oei
0.04%

0‘02:

0.007

e o s 4 o Moves
70

50 55 60 65

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n = 60 vs a Gaussian. Natural conjecture....

SN EOGOSTSTSSSSSSSE
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Winning Strategy

Payer Two Has a Winning Strategy \

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.

;



L

Zeckendorf Game

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Zeckendorf Game

Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i, j) and
coloring every dot (m, n) with i < mandj < n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.




Zeckendorf Game

@000

Sketch of Proof for Player Two’s Winning Strategy

1(11—2D A2
1(!1—4) A 23
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

l(n—-ll A 22

I(n—3) A3

]"‘_S'AZA 3

I 1(:1—5) AS I ](n—7) A 22/\-3 | l(n—())/\ 32 I 1(11—5) A2A3 | ](n—S)A 24'

)
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

l(n—J)A 3 1(n—6) A 23

19 A2A3

I 1(n—5) AS I ](n—7)/\22 /\-3 I 1(n—6) /\32| 1(:1—5)/\2 A3 I ](n—S)A 24I

— |
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1=DA2A5
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

I l(n—S)/\ 5 I 1(!!—7)/\ 22 A3 I 1(=6) A 32 I l(n—S)/\ 2A3 I 1(11—8)/\ 24|
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

1™9A2A3

I 1()1—5) AS | 1()1—7) /\22/\ 3 | l(n—())/\ 32 I l(n—SJ A2A3 | l(n—SJA 24 I

I SN |
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

1= A2 A3 1(=6) A 23

[9A5T 10PA22A3 [IORE[  109a243  [10922°]

———
](n—b) A 32 | 15=8) A 2 A 3:| l(n—S)/\ 5 Ilm_7.A 2273 I 1(=10) A 25|

l'"_7'/\ 2A5

1=DA2AS|1mDA23A3




Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

[R5 1 0A22A3 JI9A32] 1095243  [109A27]

l LS —=<— N |

I 1D A2 A 5| 10-9) A 23 A 3| 10-0) A 32 | 10-8) A 2 A 32 I 15975 I 10-D A 22 7 3| 10100 A 25|

1=DA2A5




Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

10— 5)/\2/\3 1(11—3)/\3
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

l(n—3) A3 1(n—6) A 23

(19945 | 1@ DA2A3  [1®9A2] 19243 [10-9A2¢]
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Zeckendorf Game
[ eJele]

Sketch of Proof for Player Two’s Winning Strategy

(n—3) 3 (n—4) A 22
1A 2]

l(n—?) /\ 3

l(n—ﬁ) A 23

e
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Zeckendorf Game
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The Abstract Zeckendorf Game (AZG)

Definition
The AZG game is played on an infinite tape. In each index is a
(possibly empty) stack of tokens which can be moved in two
ways:
@ The Combine Move (x4 > 1,x > 1):
(..., X1, X2, X3, ...) £> (.ooxy—1,x%—1,x3+1,...)
@ The Split Move (x3 > 2):
(..., X1, X2, X3, Xg,...) 3, (.., X1 +1,X,X3—2,x4+1,...)
Two players take turns making either of these two moves, the
last player to move wins.

A TTTSTSTSLSSSSSSSSSSEEESEESSSSSSEEEEEE
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Base p Decompositions

@ Base ¢ Decompositions «» Zeckendorf Decompositions ~
Abstract Zeckendorf Game «+» Zeckendorf Game

@ For example, play the game on the tuple (6) and keep
track of the starting index

6) > (1,0,4,1) 5 (1,0,3,0,1) 5 (2,0,1,1,1)
5, (1,0,0,1,1,1,1) £ (1,0,0,1,1,0,0,1)
£ (1,0,0,0,0,1,0,1)

@ Notice that 6 = ¢% + ¢ + 4. Why?

y
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Summary of Results

@ The game terminates in O(n? + bn) moves, where n is the
total number of summands in your initial configuration /
and b is the width of /.

@ The average number of summands in the base ¢
decomposition in the interval [L;, L; 4] is linear in i.
Conjectured to be Gaussian in the limit.

@ The AZG is hard: if the game board is a general directed
acyclic graph (DAG) instead of a tape, it is PSPACE-hard.
Over a wide family of DAGs, it is instead
PSPACE-complete.

v UTTSTSTSLSLSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSESEEEEEEEEEE L
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Classical Random Matrix Theory J

With Olivia Beckwith, Leo Goldmakher, Chris Hammond,
Steven Jackson, Cap Khoury, Murat Kologlu, Gene Kopp,
Victor Luo, Adam Massey, Eve Ninsuwan, Vincent Pham,
Karen Shen, Jon Sinsheimer, Fred Strauch, Nicholas
Triantafillou, Wentao Xiong

y
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.

TS
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus,
see what comes out.

Fundamental Equation:
Hwn = Enwn
H : matrix, entries depend on system

E, : energy levels
¥p : energy eigenfunctions

TR
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration, calculate
quantity (say pressure).

@ Average over all configurations — most configurations close
to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian 4" = A).

TS ’’’SSHSSEER
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Random Matrix Ensembles

ayy a2 a3
a2 do2 a3

A=
a1IN ale asl,N
Fix p, define
Prob(A) =
This means

Prob (A : a,-/- € [Oé,'j,,@,’j])

1<i<j<N

an
an

ann

I eap.

1<i<j<N

Bij
/ p(x;)dxi;.
X

=g

| Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(x — Xo) is @ unit point mass at xp: [ f(x)d(x — Xp)dx = f(xo).

Qe
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Eigenvalue Distribution

d(x — Xo) is @ unit point mass at xp: [ f(x)d(x — Xp)dx = f(xo).

To each A, attach a probability measure:

pan(x z( )
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Eigenvalue Distribution

d(x — Xo) is @ unit point mass at xp: [ f(x)d(x — Xp)dx = f(xo).

To each A, attach a probability measure:

HAN(X) = zi’: < 2\%)

N
,.A(A
/abuA,N(x)dx _ il < ladl]
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Eigenvalue Distribution

d(x — Xo) is @ unit point mass at xp: [ f(x)d(x — Xp)dx = f(xo).

To each A, attach a probability measure:

N .
HAN(X) = 1 Z(S <X— 2%)

b P
| mantaax = :
SN A(A)K Trace(A¥)

k" moment = — = —.
2kNz ! 2kNz 1
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a fixed
p(x) with mean 0, variance 1, and other moments finite. Then
for almost all A, as N — oo

21— x2 if x| <1
0 otherwise.

paNn(X) — {

See Eugene Wigner’'s The Unreasonable Effectiveness of
Mathematics in the Natural Sciences in Communications in
Pure and Applied Mathematics, vol. 13, No. | (February 1960),
online at http://www.dartmouth.edu/~matc/
MathDrama/reading/Wigner.html.



http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
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Numerical examples

Distribution of eigenvalues——Gaussian, N=400, 500 matrices
0.025 T T T

0.015F

0.005F

0
-15 1 -0.5 [ 05 1 15

500 Matrices: Gaussian 400 x 400
p(x) = o= e x/2
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Numerical examples

The eigenvalues of the Cauchy
distribution are NOT semicirular.

2000

1500

1000

500

9
-300 -200 -100 0 100 200 300

Cauchy Distribution: p(x) = m

|. Zakharevich, A generalization of Wigner's law, Comm. Math.
Phys. 268 (2006), no. 2, 403—414.

http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf



http://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/innaz.pdf
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but choose the matrix
elements randomly and independently.

Eigenvalue Trace Lemma
Let Abe an N x N matrix with eigenvalues \;(A). Then

Trace Ak Z Ai(A

where

Trace(Ak = Z Z A, Aipiz * * * Aiyiy -

I11 Ik1
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SKETCH OF PROOF: Correct Scale

Trace A2 Z Ai(

By the Central Limit Theorem:

N N N N
Trace(A?) = > ) aja; = » > & ~ N?

i=1 j=1 i=1 j=1

D AAE ~ NP

Gives NAve(\i(A)2) ~ N2 or Ave()\(A)) ~ V/N.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of 114 n(x) is Trace(AK)/2KNk/2+1,

Average k-th moment is
Trace(AK)
/ /2ka/2+1 Hp aj)da.

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments of
semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2/ /_ Zzaz p(ai1)das - p(ann)dann

i=1 j=1

Integration factors as
oo
/ a;p(aj)da; - H / p(aw)day = 1.
ajj=—00 ayg|=——00
k<I

Higher moments involve more advanced combinatorics
(Catalan numbers).




Classical RMT
oe

SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

N N
1 e o0
2ka/2+1/ / Z”'Zafﬂz”'afkh 'Hp(aij)daij-
- T =1

>0 =1 i<

Main contribution when the a;,;,,,’s matched in pairs, not all
matchings contribute equally (if did would get a Gaussian and
not a semi-circle; this is seen in Real Symmetric Palindromic
Toeplitz matrices).

Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices (with Adam
Massey and John Sinsheimer), Journal of Theoretical Probability 20 (2007), no. 3, 637-662.

http://arxiv.org/abs/math/0512146

Q)



http://arxiv.org/abs/math/0512146
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Until recently only known if p is a Gaussian.

GOE(x) ~ Zxe ™ /4,
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Numerical Experiment: Uniform Distribution

Let p(x) = § for x| < 1.

x10°
35 T

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 0.5 1 15 2 25 3 3.5 4 45 5

5000: 300 x 300 uniform on [—1, 1]

Q0
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Cauchy Distribution

T T T T T T
The local spacings of the central 3/5 of the eigenvalues

of 5000 300x300 Cauchy matrices, normalized in batches
of 20.

0 0.5 1 15 2 25 3 3.5 4 45 5

5000: 300 x 300 Cauchy
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex / and Vertex
J.

0
0
A= 1
1

o =+ 00
oOnN O =

1
1
0
2

These are Real Symmetric Matrices.

QA
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McKay’s Law (Kesten Measure) with d = 3

Density of Eigenvalues for d-regular graphs

f(x) = {Wm X <2vd—1

0 otherwise.
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McKay’s Law (Kesten Measure) with d = 6

Fat Thin: fat enough to average, thin enough to get something

different than semi-circle (though as d — oo recover
semi-circle).




Classical RMT

3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and the
GOE:
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Block Circulant Ensemble J

With Murat Kologlu, Gene Kopp, Fred Strauch and Wentao
Xiong.
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The Ensemble of m-Block Circulant Matrices

Symmetric matrices periodic with period m on wrapped
diagonals, i.e., symmetric block circulant matrices.

8-by-8 real symmetric 2-block circulant matrix:

Co Cl|C C3|cCs dg|cCo d
Cq do d1 O'g d3 d4 C3 d2
Co di|Cy C1|Co C3|C4 O3
C3 d2 Cq do d1 d2 d3 d4
Cy4 d3 C> 04 Ch C|C C3
d3 dy|c3 Ob|Cy dp|dy 0o
Co C3|C4 d3 C> 0 Ch €4
d1 d2 d3 d4 C3 d2 Cq do

Choose distinct entries i.i.d.r.v.
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Oriented Matchings and Dualization

Compute moments of eigenvalue distribution (as m stays fixed
and N — o0) using the combinatorics of pairings. Rewrite:

1

Mn(N) = Na+T Z E(ai,i, @5+ - Qi)
2 <y in<N

1
= g 22 Ma ) - M.

where the sum is over oriented matchings on the edges
{(1,2),(2,3),...,(n,1)} of a regular n-gon.
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Oriented Matchings and Dualization

c C |l cle d|e d
Cq do d1 d2 d3 d4 C3 d2
Cc di|C Ci|C C3|Cs O
C3 th|C dy|dy do|d3 ds
Cy dz|C dijcy ¢ |[C C3
d3 d4 C3 d2 Cq do d1 d2
Co C3|Cs O3|Co Oi|C Cy
d o d3 s C3 s | ¢4 do

15 Qisis 16

Figure: An oriented matching in the expansion for M,(N) = Mg(8).
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Contributing Terms

As N — oo, the only terms that contribute to this sum are those
in which the entries are matched in pairs and with opposite
orientation.
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Only Topology Matters

Think of pairings as topological identifications; the contributing
ones give rise to orientable surfaces.

25 ("/724, ZG

Contribution from such a pairing is m—29, where g is the genus
(number of holes) of the surface. Proof: combinatorial
argument involving Euler characteristic.

10
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Computing the Even Moments

Theorem: Even Moment Formula

Lk/2] 1
Mo = > eg(k)m=29 + O (N) :

9=0

with e4(k) the number of pairings of the edges of a (2k)-gon
giving rise to a genus g surface.

J. Harer and D. Zagier (1986) gave generating functions for the
eg(k).
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Harer and Zagier

Lk/2]
D eg(k)rkt1729 = (2k — 1)l c(k, 1)
g=0

where

o0 1 r
1+2) o(k,nx ! = ( “) .

1—x
k=0

Thus, we write

Mo = m~ K+ 2k — 1)1 c(k, m).
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A multiplicative convolution and Cauchy’s residue formula yield

Theorem: Kologlu, Kopp and Miller

Limiting spectral density f,(x) of the real symmetric m-block
circulant ensemble is

fn(X) = \/277722 2r)! ni_:<r+s+ >
(2rr++szlssl ( >

As m — oo, fm(x) approaches the semicircle distribution.
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 circulant
matrices of size 400 x 400.
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Results (continued)

0.4

Figure: Plot for £, and histogram of eigenvalues of 100 2-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f; and histogram of eigenvalues of 100 3-block
circulant matrices of size 402 x 402.
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Results (continued)

0.4

-3 -2 -1 1 2 3

Figure: Plot for 4 and histogram of eigenvalues of 100 4-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f3 and histogram of eigenvalues of 100 8-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot for f»p and histogram of eigenvalues of 100 20-block
circulant matrices of size 400 x 400.
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Results (continued)

Figure: Plot of convergence to the semi-circle.

The Limiting Spectral Measure for Ensembles of Symmetric Block
Circulant Matrices (with Murat Kologlu, Gene S. Kopp, Frederick W.
Strauch and Wentao Xiong), Journal of Theoretical Probability 26
(2013), no. 4, 1020-1060. http://arxiv.org/abs/1008.4812

TS



http://arxiv.org/abs/1008.4812

Checkerboard
o

Checkerboard Matrices J

@ First paper with Paula Burkhardt, Peter Cohen, Jonathan
Dewitt, Max Hlavacek, Carsten Sprunger (Michigan), Yen
Nhi Truong Vu, Roger Van Peski, and Kevin Yang, and an
appendix joint with Manuel Fernandez and Nicholas
Sieger.

@ Second paper with Ryan Chen, Yujin Kim, Jared Lichtman,
Shannon Sweitzer, and Eric Winsor (Michigan).

@ Third paper with Fangu Chen (Michigan), Yuxin Lin and
Jiahui Yu.
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Checkerboard Matrices: N x N (k, w)-checkerboard ensemble

Matrices M = (mj;) = MT with aj; iidrv, mean 0, variance 1,
finite higher moments, w fixed and

aj if i#jmod k

mj = e
w ifi =jmod k.

Example: (3, w)-checkerboard matrix:

w dp1 Aoz w dpa - doN-1
aio w a2 a3 w Tt a1,N—1
az o as 1 w aza acsa w

anN-1 a1N-1 W anN-1 a4N-1 - w
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Split Eigenvalue Distribution

Scaled Bin Count

1.0

L
-0.5

0.0 05 1.0 1.5 20 25

Figure: Histogram of normalized eigenvalues: 2-checkerboard
100 x 100 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

L L L I
0 1 2 3

Figure: Histogram of normalized eigenvalues: 2-checkerboard
150 x 150 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

L L L L
0 1 2 3

Figure: Histogram of normalized eigenvalues: 2-checkerboard
200 x 200 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count
1.0

i L L L I
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
250 x 250 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

il L L L L
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
300 x 300 matrices, 100 trials.
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Split Eigenvalue Distribution

Scaled Bin Count

I L L L L
0 1 2 3 4

Figure: Histogram of normalized eigenvalues: 2-checkerboard
350 x 350 matrices, 100 trials.
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The Weighting Function

Use weighting function f,(x) = x2"(x — 2)2".

Figure: f,(x) plotted for n € {1,2,3, 4}.

A
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The Weighting Function

Use weighting function f,(x) = x2"(x — 2)".

05 1.0 15 20

Figure: f,(x) plotted for n = 4™ m e {0,1,...,5}.
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Spectral distribution of hollow GOE

Figure: Hist. of eigenvals of 32000 (Left) 2 x 2 hollow GOE matrices,
(Right) 3 x 3 hollow GOE matrices.

Figure: Hist. of eigenvals of 32000 (Left) 4 x 4 hollow GOE matrices,
(Right) 16 x 16 hollow GOE matrices.

104
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New Result: Preliminaries: Symmetric Hankel Matrices

A circulant Hankel matrix is a symmetric matrix constant along
antidiagonals, which wrap about the matrix cyclically:

Xo X1 Xo X3 Xs4
X1 Xo X3 X4 Xp
Xo X3 X4 Xo Xq
X3 X4 Xo X1 Xo
X4 Xo X4 Xo X3

Theorem (SMALL 2021: Dunn, Fleischmann, Jackson,

Khunger, Nadjimzadah, Reifenberg, Shashkov, Willis.)

The distribution of the spectral measure of the ensemble of
circulant Hankel matrices converges almost surely to the
Laplace distribution (f(x) = elXl /2).
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New Result: Swirl of a matrix A

Definition

swirl(A, X) = ()?;C( A'L;()

Note: When X2 = /, Trace(swirl(A, X)") = Trace((XA)").
When X2 = | and XA is circulant Hankel, the previous theorem
tells us the distribution of the spectral measure is Laplace.
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Introduction
to L-Functions
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Riemann Zeta Function
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Riemann Zeta Function

00 —1
g(s):Z%: 11 <1—;S> ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pf' --- po.
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Riemann Zeta Function

00 —1
g(s):Z%: 11 <1—;S> ., Re(s) > 1.

n=1 p prime
Unique Factorization: n = pf' --- po.

1\ 1 12
11 175 T+ o+ (os) +

p

1 1\2
T+ +(3) +
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Riemann Zeta Function (cont)

1
o(s) = ;:H<1_;S) . Re(s) > 1

p
m(x) = #{p:pisprime,p < x}

Properties of ¢(s) and Primes:
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Riemann Zeta Function (cont)

1
o(s) = ;:H<1_;S) . Re(s) > 1

p
m(x) = #{p:pisprime,p < x}

Properties of ¢(s) and Primes:
@ limg_,1+ ((8) = o0, m(X) — oo.
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Riemann Zeta Function (cont)

1 1\
¢(s) = s = H<1—ps) ., Re(s) > 1
m(x) = #{p:pisprime,p < x}
Properties of ¢(s) and Primes:

@ limg .4+ ¢ (S) = 00, m(X) = .

@ ((2)="7Z 6, m(X) — oo.
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Riemann Zeta Function

o0 —1
C(S):Z%Z 11 <1—;S> . Re(s) > 1.

n=1 p prime

Functional Equation:

S\ _s
&(s) = T(3)m8c(s) = &(1-9).
Riemann Hypothesis (RH):
- 1 . 1,
All non-trivial zeros have Re(s) = 5 can write zeros as 5T
Observation: Spacings b/w zeros appear same as b/w

eigenvalues of Complex Hermitian matrices A=A

124




L-Functions
000

General L-functions

= ] Lo(s,H)™", Re(s)>1.

n :
p prime

L(s,f) = iaf(s”)
n=1

Functional Equation:
A(s, f) = Nxo(s,f)L(s,f) = N1 — s, f).

Generalized Riemann Hypothesis (RH):

- 1 . 1.
All non-trivial zeros have Re(s) = i can write zeros as > + i.

Observation: Spacings b/w zeros appear same as b/w
. » . =T
eigenvalues of Complex Hermitian matrices A° = A.

TS
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Nuclear spacings: Thorium

0.10

0.05+

| \ N A N

Lt

0.5 1.0 1.5 20 25 3.0

227 spacings b/w adjacent energy levels of Thorium.
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Zeros of ((s) vs GUE

08 =

06

02 f

0.0

0.0 0.5 10 15 2.0 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at the
1020t zero (from Odlyzko).
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Elliptic Curves: Mordell-Weil Group

Elliptic curve y? = x3 + ax + b with rational solutions
P = (x1,y1) and Q = (x2, y») and connecting line y = mx + b.

Addition of distinct points P and Q Adding a point P to itself

E(Q) ~ E(Q)tors ® Z"
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Elliptic curve L-function

E : y? = x3 + ax + b, associate L-function

Us.B) = 3% T Le(es),

n=1 p prime

where

ag(p) = p— #{(x,¥) € (Z/PZ)? : y* = x* + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of
L(s,E)ats=1/2.
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Properties of zeros of L-functions

@ infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: 73 4(x) > 71 4(x) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from L-functions
with many central point zeros.

@ Even better estimates for h(D) if a positive percentage of
zeros of ((s) are at most 1/2 — ¢ of the average spacing to
the next zero.
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: w(x), ma,q(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

o

d —
— dszpjlogm —p S)

logp - p~S log p
p




L-Functions
o

Explicit Formula (Contour Integration)

Contour Integration:

s e T () S
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Explicit Formula (Contour Integration)

/ d -
O CE “gs e 101 =P

_ 4 s
= dszﬂ;logﬁ p )

logp - p~° log p
- Zﬁ = > DS + Good(s).
p p

Contour Integration:

¢'(s) s
/— RO #(s)ds vs zp:Iogp/qS(s)p ds.
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Explicit Formula (Contour Integration)

/ d d -
O CE “gs e 101 =P

_d s
= dszpjlogﬁ p )

logp - p~*° log p
= Zﬁ => DS + Good(s).
p p

Contour Integration (see Fourier Transform arising):

C/(S) —olo —itlo
/— ) $(s)ds vs ;Iogp/QS(S)e gPg=itlogp g,

Knowledge of zeros gives info on coefficients.
1
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels

Schwartz test function ——  Neutron

Support of test function <—  Neutron Energy.
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