Why more is better: The power of multiple proofs

Steven J. Miller, Williams College
Steven.J.Miller@williams.edu
http://web.williams.edu/Mathematics/sjmiller/public_html/

Hampshire College
Prime Time Talk, July 31, 2014
Goals of the Talk

- Often multiple proofs: Say a proof rather than the proof.

- Different proofs highlight different aspects.

- Too often rote algebra – explore!

- General: How to find / check proofs: special cases, ‘smell’ test.

- Specific: Pythagorean Theorem, Dimensional Analysis, Sabermetrics.

My math riddles page:
http://mathriddles.williams.edu/.
Pythagorean Theorem
Theorem (Pythagorean Theorem)

Right triangle with sides a, b and hypotenuse c, then $a^2 + b^2 = c^2$.

Most students know the statement, but the proof?

Why are proofs important? Can help see big picture.
Geometric Proofs of Pythagoras

Diagram for Euclid Book 1, Proposition 47

Proof requirements:
- SAS congruence,
- Triangle area = \(\frac{hb}{2} \)
 - \(b = \) base
 - \(h = \) height

Figure: Euclid’s Proposition 47, Book I. Why these auxiliary lines? Why are there equalities?
Figure: Euclid’s Proposition 47, Book I. Why these auxiliary lines? Why are there equalities?
Geometric Proofs of Pythagoras

Figure: A nice matching proof, but how to find these slicings!
Geometric Proofs of Pythagoras

Figure: Four triangles proof: I
Geometric Proofs of Pythagoras

Figure: Four triangles proof: II
Geometric Proofs of Pythagoras

Figure: President James Garfield’s (Williams 1856) Proof.
Geometric Proofs of Pythagoras

Lots of different proofs.

Difficulty: how to find these combinations?

At the end of the day, do you know *why* it’s true?
Feeling Equations
Sabermetrics

Sabermetrics is the art of applying mathematics and statistics to baseball.

Danger: not all students like sports (Red Sox aren’t making life easier!).

Lessons: not just for baseball; try to find the right statistics that others miss, competitive advantage (business, politics).
Estimating Winning Percentages

Assume team A wins p percent of their games, and team B wins q percent of their games. Which formula do you think does a good job of predicting the probability that team A beats team B? Why?

\[
\frac{p + pq}{p + q + 2pq} \quad \frac{p + pq}{p + q - 2pq}
\]

\[
\frac{p - pq}{p + q + 2pq} \quad \frac{p - pq}{p + q - 2pq}
\]
Estimating Winning Percentages

\[
\frac{p + pq}{p + q + 2pq'} \quad \frac{p + pq}{p + q - 2pq'} \quad \frac{p - pq}{p + q + 2pq'} \quad \frac{p - pq}{p + q - 2pq}
\]

How can we test these candidates?

Can you think of answers for special choices of \(p \) and \(q \)?
Estimating Winning Percentages

\[
\frac{p + pq}{p + q + 2pq}, \quad \frac{p + pq}{p + q - 2pq}, \quad \frac{p - pq}{p + q + 2pq}, \quad \frac{p - pq}{p + q - 2pq}
\]

Homework: explore the following:

\begin{itemize}
 \item $p = 1, \ q < 1$ (do not want the battle of the undefeated).
 \item $p = 0, \ q > 0$ (do not want the Toilet Bowl).
 \item $p = q$.
 \item $p > q$ (can do $q < 1/2$ and $q > 1/2$).
 \item Anything else where you ‘know’ the answer?
\end{itemize}
Estimating Winning Percentages

\[
\frac{p + pq}{p + q + 2pq}, \quad \frac{p + pq}{p + q - 2pq}, \quad \frac{p - pq}{p + q + 2pq}, \quad \frac{p - pq}{p + q - 2pq}
\]

Homework: explore the following:

\(p = 1, \ q < 1 \) (do not want the battle of the undefeated).

\(p = 0, \ q > 0 \) (do not want the Toilet Bowl).

\(p = q \).

\(p > q \) (can do \(q < 1/2 \) and \(q > 1/2 \)).

\(\) Anything else where you ‘know’ the answer?
Estimating Winning Percentages

\[
\frac{p - pq}{p + q - 2pq} = \frac{p(1 - q)}{p(1 - q) + (1 - p)q}
\]

Homework: explore the following:

- $p = 1, q < 1$ (do not want the battle of the undefeated).
- $p = 0, q > 0$ (do not want the Toilet Bowl).
- $p = q$.
- $p > q$ (can do $q < 1/2$ and $q > 1/2$).
- Anything else where you ‘know’ the answer?
Estimating Winning Percentages: ‘Proof’

Start

A has a good game with probability p

B has a good game with probability q

Figure: First see how A does, then B.
Estimating Winning Percentages: ‘Proof’

Figure: Two possibilities: A has a good day, or A doesn’t.
Estimating Winning Percentages: ‘Proof’

Figure: \(B \) has a good day, or doesn’t.
Estimating Winning Percentages: ‘Proof’

Figure: Two paths terminate, two start again.
Estimating Winning Percentages: ‘Proof’

Probability A wins is \[
\frac{p(1-q)}{p(1-q) + (1-p)q} = \frac{p - pq}{p + q - 2pq}
\]

Figure: Probability A beats B.
Lessons

Special cases can give clues.

Algebra can suggest answers.

Better formula: Bill James’ Pythagorean Won-Loss formula.
Numerical Observation: Pythagorean Won-Loss Formula

Parameters

- RS_{obs}: average number of runs scored per game;
- RA_{obs}: average number of runs allowed per game;
- γ: some parameter, constant for a sport.

James’ Won-Loss Formula (NUMERICAL Observation)

\[
\text{Won} - \text{Loss Percentage} = \frac{\text{RS}_{\text{obs}} \gamma}{\text{RS}_{\text{obs}} \gamma + \text{RA}_{\text{obs}} \gamma}
\]

γ originally taken as 2, numerical studies show best γ is about 1.82. Used by ESPN, MLB. See http://arxiv.org/abs/math/0509698 for a ‘derivation’.
Dimensional Analysis
Possible Pythagorean Theorems....

\[c^2 = a^3 + b^3. \]
\[c^2 = a^2 + 2b^2. \]
\[c^2 = a^2 - b^2. \]
\[c^2 = a^2 + ab + b^2. \]
\[c^2 = a^2 + 110ab + b^2. \]
Possible Pythagorean Theorems....

- $c^2 = a^3 + b^3$. **No**: wrong dimensions.
- $c^2 = a^2 + 2b^2$. **No**: asymmetric in a, b.
- $c^2 = a^2 - b^2$. **No**: can be negative.
- $c^2 = a^2 + ab + b^2$. **Maybe**: passes all tests.
- $c^2 = a^2 + 110ab + b^2$. **No**: violates $a + b > c$.
Dimensional Analysis Proof of the Pythagorean Theorem

- Area is a function of hypotenuse c and angle x.
Dimensional Analysis Proof of the Pythagorean Theorem

- Area is a function of hypotenuse c and angle x.

- $\text{Area}(c, x) = f(x)c^2$ for some function f (similar triangles).
Dimensional Analysis Proof of the Pythagorean Theorem

- Area is a function of hypotenuse c and angle x.
- $\text{Area}(c, x) = f(x)c^2$ for some function f (similar triangles).
- Must draw an auxiliary line, but where? Need right angles!
Dimensional Analysis Proof of the Pythagorean Theorem

- Area is a function of hypotenuse c and angle x.

- $\text{Area}(c, x) = f(x)c^2$ for some function f (CPCTC).

- Must draw an auxiliary line, but where? Need right angles!
Diamond Analysis Proof of the Pythagorean Theorem

- Area is a function of hypotenuse c and angle x.

- $\text{Area}(c, x) = f(x)c^2$ for some function f (CPCTC).

- Must draw an auxiliary line, but where? Need right angles!

- $f(x)a^2 + f(x)b^2 = f(x)c^2$
Dimensional Analysis Proof of the Pythagorean Theorem

- Area is a function of hypotenuse c and angle x.

- $\text{Area}(c, x) = f(x)c^2$ for some function f (CPCTC).

- Must draw an auxiliary line, but where? Need right angles!

- $f(x)a^2 + f(x)b^2 = f(x)c^2 \Rightarrow a^2 + b^2 = c^2$.
Dimensional Analysis and the Pendulum

Length: \(L \): meters
Acceleration: \(g \): meters/\(\text{sec}^2 \)
Mass: \(m \): kilograms
Period: \(T \): seconds
Angle: \(x \): radians
Dimensional Analysis and the Pendulum

Length: L: meters
Acceleration: g: meters/sec2
Mass: m: kilograms
Period: T: seconds
Angle: x: radians

Period: Need combination of quantities to get seconds.
Period: Need combination of quantities to get seconds.

\[T = f(x) \sqrt{\frac{L}{g}}. \]
Consider $\int x^{17} e^{ax} \, dx$.

What are the features of the solution?
Consider $\int x^{17} e^{ax} \, dx$.

What are the features of the solution?

$$\frac{e^{ax}}{a^{18}} \left(\sum_{k=0}^{17} c_k a^k x^k \right).$$
Other Gems
Sums of Integers

\[S_n := 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \approx \frac{1}{2} n^2. \]
Sums of Integers

\[S_n := 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \approx \frac{1}{2} n^2. \]

Proof 1: Induction.
Proof 2: Grouping:
\[2S_n = (1 + n) + (2 + (n - 1)) + \cdots + (n + 1). \]
Sums of Integers

\[S_n := 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \approx \frac{1}{2} n^2. \]

Proof 1: Induction.
Proof 2: Grouping:
\[2S_n = (1 + n) + (2 + (n - 1)) + \cdots + (n + 1). \]

Instead of determining sum useful to get sense of size.
Sums of Integers

\[S_n := 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \approx \frac{1}{2} n^2. \]

Proof 1: Induction.
Proof 2: Grouping:
\[2S_n = (1 + n) + (2 + (n - 1)) + \cdots + (n + 1). \]

Instead of determining sum useful to get sense of size.

Have \(\frac{n^2}{2} \leq S_n \leq n^2 \); thus \(S_n \) is between \(n^2/4 \) and \(n^2 \), have the correct order of magnitude of \(n \).
Sums of Integers

\[S_n := 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} \approx \frac{1}{2} n^2. \]

Proof 1: Induction.
Proof 2: Grouping:
\[2S_n = (1 + n) + (2 + (n - 1)) + \cdots + (n + 1). \]

Instead of determining sum useful to get sense of size.

Have \(\frac{n^2}{2} \leq S_n \leq n^2 \); thus \(S_n \) is between \(n^2/4 \) and \(n^2 \), have the correct order of magnitude of \(n \).

Can improve: divide and conquer again: lather, rinse, repeat....

\[\frac{n^2}{4} + \frac{n^2}{4} + \frac{n^2}{4} \leq S_n, \quad \text{so} \quad \frac{6}{16} n^2 \leq S_n. \]
Stirling’s Formula

We have

\[n! \approx n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + \cdots \right). \]

Can prove / get close by Integral Test, Euler-Maclaurin Formula.
Stirling’s Formula \((n!) \approx n^n e^{-n} \sqrt{2\pi n}\): Approximations

To illustrate ideas not worrying about rounding issues.

\[[1, 2, \ldots, \frac{n}{2}] \left[\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n \right]. \]

\[1^{n/2} (n/2)^{n/2} \leq n! \leq (n/2)^{n/2} n^{n/2}, \text{ or } (n/2)^{n/2} \leq n! \leq n^n \sqrt{2}^{-n}. \]

Have \(\sqrt{2} \approx 1.414 \) vs \(e \approx 2.718. \)
Stirling’s Formula \((n! \approx n^n e^{-n} \sqrt{2\pi n}):\) Approximations

To illustrate ideas not worrying about rounding issues.

\[
\left[1, 2, \ldots, \frac{n}{2}\right] \left[\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n\right].
\]

\[
1^{n/2}(n/2)^{n/2} \leq n! \leq (n/2)^{n/2} n^{n/2}, \text{ or } (n/2)^{n/2} \leq n! \leq n^n \sqrt{2}^{-n}.
\]

Have \(\sqrt{2} \approx 1.414\) vs \(e \approx 2.718.\)

\[
\left[1, 2, \ldots, \frac{n}{4}\right] \left[\frac{n}{4} + 1, \ldots, \frac{n}{2}\right] \left[\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, \frac{3n}{4}\right] \left[\frac{3n}{4} + 1, \ldots, n\right].
\]

Upper bound now

\[
n! \leq (n/4)^{n/4} (n/2)^{n/4} (3n/4)^{n/4} n^{n/4} = n^n (32/3)^{-n/4} = n^n (\sqrt{32/3})^{-n}.
\]

Have \(\sqrt[4]{32/3} \approx 1.8072\) vs \(e \approx 2.718.\)
Stirling’s Formula \((n! \approx n^n e^{-n} \sqrt{2\pi n})\): Approximations

Use \(xy \leq \left(\frac{x+y}{2}\right)^2\).

\([1, 2, \ldots, \frac{n}{2}] [\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n]\).

\(n! \leq \left(\frac{n}{4}\right)^{2(n/4)} \left(\frac{3n}{4}\right)^{2(n/4)},\) or \(n! \leq n^n \left(\frac{16}{3}\right)^{-n/2}\).

Have \((\frac{4^2}{3})^{1/2} \approx 2.3094\) vs \(e \approx 2.718\) (much better than 1.414).
Stirling’s Formula \((n!) \approx n^n e^{-n} \sqrt{2\pi n}:\) Approximations

Use \(xy \leq \left(\frac{x+y}{2}\right)^2.\)

\([1, 2, \ldots, \frac{n}{2}] \left[\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n\right].\)

\(n! \leq (n/4)^{2(n/4)} (3n/4)^{2(n/4)},\) or \(n! \leq n^n (16/3)^{-n/2}.\)

Have \((4^2/3)^{1/2} \approx 2.3094\) vs \(e \approx 2.718\) (much better than 1.414).

\([1, 2, \ldots, \frac{n}{4}] \left[\frac{n}{4} + 1, \ldots, \frac{n}{2}\right][\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, \frac{3n}{4}] [\frac{3n}{4} + 1, \ldots, n].\)

Upper bound now
\(n! \leq (n/8)^{2(n/8)} (3n/8)^{2(n/8)} (5n/8)^{2(n/8)} (7n/8)^{2(n/8)} = n^n (8^4/7!!)^{-n/4}.\)

Have \((8^4/7!!)^{1/4} \approx 2.49915\) vs \(e \approx 2.718\) (much better than 1.8072).
Stirling’s Formula \((n!) \approx n^n e^{-n} \sqrt{2\pi n}:\) Approximations

Use \(xy \leq (\frac{x+y}{2})^2.\)

\([1, 2, \ldots, \frac{n}{2}] \left[\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, n \right].\)

\(n! \leq (n/4)^{2(n/4)} (3n/4)^{2(n/4)},\) or \(n! \leq n^n (16/3)^{-n/2}.\)

Have \((4^2/3)^{1/2} \approx 2.3094\) vs \(e \approx 2.718\) (much better than 1.414).

\([1, 2, \ldots, \frac{n}{4}] \left[\frac{n}{4} + 1, \ldots, \frac{n}{2} \right] \left[\frac{n}{2} + 1, \frac{n}{2} + 2, \ldots, \frac{n}{4} \right] \left[\frac{n}{4} + 1, \ldots, n \right].\)

Upper bound now

\(n! \leq (n/8)^{2(n/8)} (3n/8)^{2(n/8)} (5n/8)^{2(n/8)} (7n/8)^{2(n/8)} = n^n (8^4/7!!)^{-n/4}.\)

Have \((8^4/7!!)^{1/4} \approx 2.49915\) vs \(e \approx 2.718\) (much better than 1.8072).

Next \((16^8/15!!)^{1/8} \approx 2.60473,\) then \((32^{16}/31!!)^{1/16} \approx 2.66047.\)
Homework: Note \(e \approx 2.71828182845905 \).

Can derive

\[
n! \leq n^n \left(\frac{(2^k)^{2^k-1}}{(2^k - 1)!!} \right)^{-n/2^k-1}.
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\left(\frac{(2^k)^{2^k-1}}{(2^k - 1)!!} \right)^{1/(2^k-1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.30940107675850</td>
</tr>
<tr>
<td>3</td>
<td>2.49915194953620</td>
</tr>
<tr>
<td>4</td>
<td>2.60472929511376</td>
</tr>
<tr>
<td>8</td>
<td>2.71093864109117</td>
</tr>
<tr>
<td>12</td>
<td>2.71782189208667</td>
</tr>
<tr>
<td>16</td>
<td>2.71825307857336</td>
</tr>
<tr>
<td>20</td>
<td>2.71828003157610</td>
</tr>
<tr>
<td>24</td>
<td>2.71828171615380</td>
</tr>
</tbody>
</table>

Useful fact:

\[
(2m - 1)!! = \frac{(2m)!}{2^m m!}.
\]
Geometric Irrationality Proofs:
http://arxiv.org/abs/0909.4913

Figure: Geometric proof of the irrationality of $\sqrt{2}$.
Geometric Irrationality Proofs:
http://arxiv.org/abs/0909.4913

Figure: Geometric proof of the irrationality of $\sqrt{3}$
Geometric Irrationality Proofs:
http://arxiv.org/abs/0909.4913

Figure: Geometric proof of the irrationality of $\sqrt{5}$.
Geometric Irrationality Proofs:

http://arxiv.org/abs/0909.4913

Figure: Geometric proof of the irrationality of $\sqrt{5}$: the kites, triangles and the small pentagons.
Geometric Irrationality Proofs:
http://arxiv.org/abs/0909.4913

Figure: Geometric proof of the irrationality of $\sqrt{6}$.
Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.
The number of ways of dividing C identical cookies among P distinct people is \(\binom{C+P-1}{P-1} \).

Proof: Consider $C + P - 1$ cookies in a line. **Cookie Monster** eats $P - 1$ cookies: \(\binom{C+P-1}{P-1} \) ways to do. Divides the cookies into P sets.
Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is \(\binom{C+P-1}{P-1} \).

Proof: Consider $C + P - 1$ cookies in a line. **Cookie Monster** eats $P - 1$ cookies: \(\binom{C+P-1}{P-1} \) ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people ($C = 8$, $P = 5$):

![Cookies Diagram](image)
Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider $C + P - 1$ cookies in a line.
Cookie Monster eats $P - 1$ cookies: $\binom{C+P-1}{P-1}$ ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people ($C = 8, P = 5$):
Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C + P - 1}{P - 1}$.

Proof: Consider $C + P - 1$ cookies in a line. **Cookie Monster** eats $P - 1$ cookies: $\binom{C + P - 1}{P - 1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people ($C = 8$, $P = 5$):
Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$. Solved $x_1 + \cdots + x_P = C$, $x_i \geq 0$.

Proof: Consider $C + P - 1$ cookies in a line. **Cookie Monster** eats $P - 1$ cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people ($C = 8$, $P = 5$):

![Cookie Monster eating cookies](image)
Conclusion
Math is not complete – explore and conjecture!

Different proofs highlight different aspects.

Get a sense of what to try / what might work.