Steven J. Miller, Williams College

Steven J. Miller@williams.edu

http://web.williams.edu/Mathematics/sjmiller/public_html/

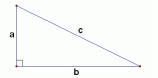
Hampshire College Prime Time Talk, July 31, 2014

- Often multiple proofs: Say a proof rather than the proof.
- Different proofs highlight different aspects.
- Too often rote algebra explore!
- General: How to find / check proofs: special cases, 'smell' test.
- Specific: Pythagorean Theorem, Dimensional Analysis, Sabermetrics.

My math riddles page: http://mathriddles.williams.edu/.

Geometry Gem: Pythagorean Theorem

Pythagorean Theorem



Theorem (Pythagorean Theorem)

Right triangle with sides a, b and hypotenuse c, then $a^2 + b^2 = c^2$

Most students know the statement, but the proof?

Why are proofs important? Can help see big picture.

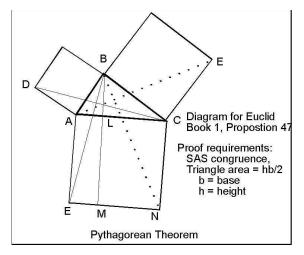


Figure: Euclid's Proposition 47, Book I. Why these auxiliary lines? Why are there equalities?

Conclusion

Geometric Proofs of Pythagoras

Pythagorean Theorem

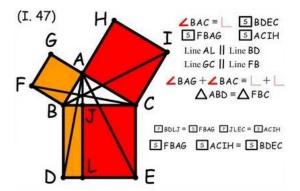


Figure: Euclid's Proposition 47, Book I. Why these auxiliary lines? Why are there equalities?

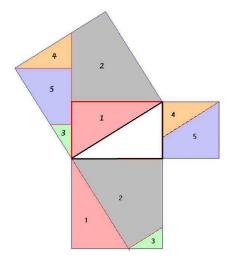
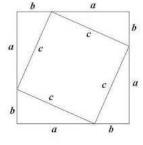


Figure: A nice matching proof, but how to find these slicings!



Big square:
$$(a+b)^2$$

 $= a^2 + 2ab + b^2$
Four triangles $= 2ab$
Little square $= c^2$
 $a^2 + 2ab + b^2 = c^2 + 2ab$
 $a^2 + b^2 = c^2$

Figure: Four triangles proof: I

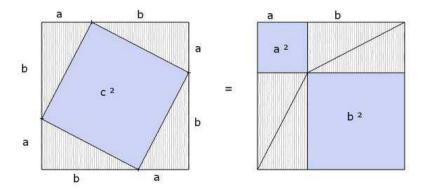


Figure: Four triangles proof: II

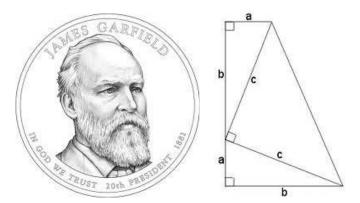


Figure: President James Garfield's (Williams 1856) Proof.

Lots of different proofs.

Difficulty: how to find these combinations?

At the end of the day, do you know why it's true?

Feeling Equations

Sabermetrics

Sabermetrics is the art of applying mathematics and statistics to baseball.

Danger: not all students like sports (Red Sox aren't making life easier!).

Lessons: not just for baseball; try to find the right statistics that others miss, competitive advantage (business, politics).

Pythagorean Theorem

Assume team A wins p percent of their games, and team B wins q percent of their games. Which formula do you think does a good job of predicting the probability that team A beats team B? Why?

$$egin{array}{ll} egin{array}{ll} egi$$

Pythagorean Theorem

$$\frac{p+pq}{p+q+2pq}, \quad \frac{p+pq}{p+q-2pq}, \quad \frac{p-pq}{p+q+2pq}, \quad \frac{p-pq}{p+q-2pq}$$

How can we test these candidates?

Can you think of answers for special choices of p and q?

$$\frac{p+pq}{p+q+2pq}, \quad \frac{p+pq}{p+q-2pq}, \quad \frac{p-pq}{p+q+2pq}, \quad \frac{p-pq}{p+q-2pq}$$

Homework: explore the following:

- $\diamond p = 1$, q < 1 (do not want the battle of the undefeated).
- $\diamond p = 0$, q > 0 (do not want the Toilet Bowl).
- $\diamond p = q$.

- $\diamond p > q$ (can do q < 1/2 and q > 1/2).
- Anything else where you 'know' the answer?

Other Gems: Sums, Products, Irrationality

Estimating Winning Percentages

$$\frac{p+pq}{p+q+2pq}, \quad \frac{p+pq}{p+q-2pq}, \quad \frac{p-pq}{p+q+2pq}, \quad \frac{p-pq}{p+q-2pq}$$

Homework: explore the following:

- $\diamond p = 1$, q < 1 (do not want the battle of the undefeated).
- $\diamond p = 0$, q > 0 (do not want the Toilet Bowl).
- $\diamond p = q$.
- $\diamond p > q$ (can do q < 1/2 and q > 1/2).
- Anything else where you 'know' the answer?

$$\frac{p - pq}{p + q - 2pq} = \frac{p(1 - q)}{p(1 - q) + (1 - p)q}$$

Homework: explore the following:

- $\diamond p = 1$, q < 1 (do not want the battle of the undefeated).
- $\diamond p = 0$, q > 0 (do not want the Toilet Bowl).
- $\diamond p = q$.

- $\diamond p > q$ (can do q < 1/2 and q > 1/2).
- Anything else where you 'know' the answer?

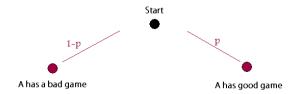
Conclusion

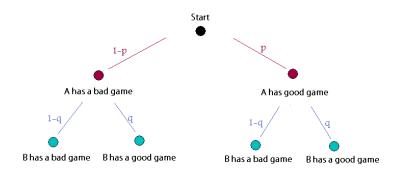
Estimating Winning Percentages: 'Proof'

A has a good game with probability p

B has a good game with probability q

20





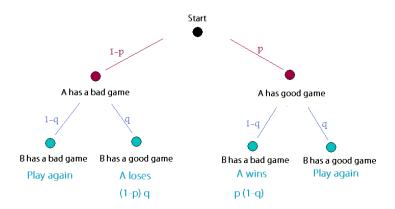


Figure: Two paths terminate, two start again.

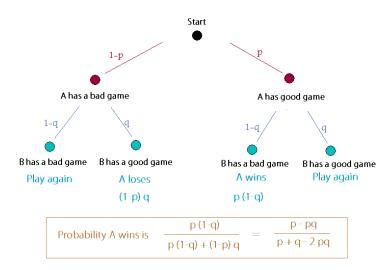


Figure: Probability A beats B.

Lessons

Special cases can give clues.

Algebra can suggests answers.

Better formula: Bill James' Pythagorean Won-Loss formula.

Numerical Observation: Pythagorean Won-Loss Formula

Parameters

- RS_{obs}: average number of runs scored per game;
- RA_{obs}: average number of runs allowed per game;
- \bullet γ : some parameter, constant for a sport.

James' Won-Loss Formula (NUMERICAL Observation)

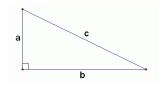
Won – Loss Percentage =
$$\frac{RS_{obs}^{\gamma}}{RS_{obs}^{\gamma} + RA_{obs}^{\gamma}}$$

 γ originally taken as 2, numerical studies show best γ is about 1.82. Used by ESPN, MLB.

See http://arxiv.org/abs/math/0509698 for a 'derivation'.

Dimensional Analysis

Possible Pythagorean Theorems....



Dimensional Analysis

00000

$$\diamond c^2 = a^3 + b^3.$$

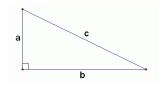
$$\diamond c^2 = a^2 + 2b^2.$$

$$\diamond c^2 = a^2 - b^2.$$

$$\diamond c^2 = a^2 + ab + b^2.$$

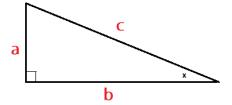
$$\diamond c^2 = a^2 + 110ab + b^2$$
.

Possible Pythagorean Theorems....

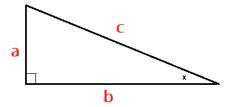


- $\diamond c^2 = a^3 + b^3$. No: wrong dimensions.
- $\diamond c^2 = a^2 + 2b^2$. No: asymmetric in a, b.
- $\diamond c^2 = a^2 b^2$. No: can be negative.
- $\diamond c^2 = a^2 + ab + b^2$. Maybe: passes all tests.
- $\diamond c^2 = a^2 + 110ab + b^2$. No: violates a + b > c.

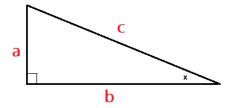
Dimensional Analysis Proof of the Pythagorean Theorem



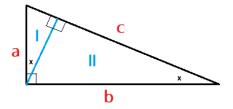
 \diamond Area is a function of hypotenuse c and angle x.



- ♦ Area is a function of hypotenuse c and angle x.
- \diamond Area $(c,x) = f(x)c^2$ for some function f (similar triangles).



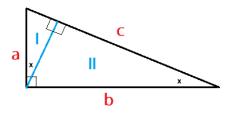
- ♦ Area is a function of hypotenuse c and angle x.
- \diamond Area $(c,x) = f(x)c^2$ for some function f (similar triangles).
- Must draw an auxiliary line, but where? Need right angles!



- ⋄ Area is a function of hypotenuse c and angle x.
- \diamond Area $(c, x) = f(x)c^2$ for some function f (CPCTC).
- Must draw an auxiliary line, but where? Need right angles!

Other Gems: Sums, Products, Irrationality

Dimensional Analysis Proof of the Pythagorean Theorem



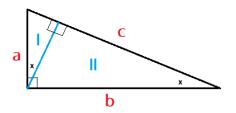
- ⋄ Area is a function of hypotenuse c and angle x.
- \diamond Area $(c, x) = f(x)c^2$ for some function f (CPCTC).
- Must draw an auxiliary line, but where? Need right angles!

$$\diamond f(x)a^2 + f(x)b^2 = f(x)c^2$$

Other Gems: Sums, Products, Irrationality

Pythagorean Theorem

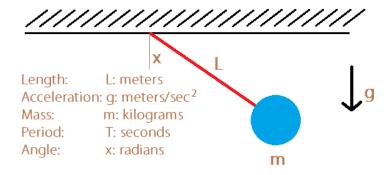
Dimensional Analysis Proof of the Pythagorean Theorem



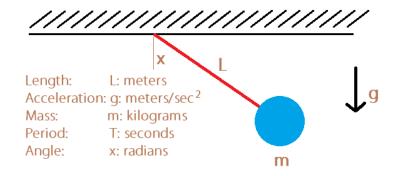
- ⋄ Area is a function of hypotenuse c and angle x.
- \diamond Area $(c, x) = f(x)c^2$ for some function f (CPCTC).
- Must draw an auxiliary line, but where? Need right angles!

$$\diamond f(x)a^2 + f(x)b^2 = f(x)c^2 \Rightarrow a^2 + b^2 = c^2.$$

Dimensional Analysis and the Pendulum

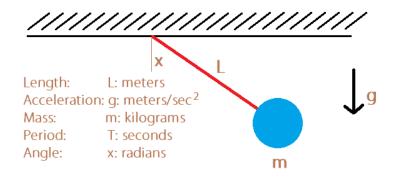


Dimensional Analysis and the Pendulum



Period: Need combination of quantities to get seconds.

Dimensional Analysis and the Pendulum



Period: Need combination of quantities to get seconds.

$$T = f(x)\sqrt{L/g}$$
.

Dimensional Analysis Examples

Pythagorean Theorem

Consider $\int x^{17} e^{ax} dx$.

What are the features of the solution?

Pythagorean Theorem

Consider $\int x^{17} e^{ax} dx$.

What are the features of the solution?

$$\frac{e^{ax}}{a^{18}}\left(\sum_{k=0}^{17}c_ka^kx^k\right).$$

Conclusion

Sums of Integers

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Pythagorean Theorem

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction.

Proof 2: Grouping:

$$2S_n = (1+n) + (2+(n-1)) + \cdots + (n+1).$$

Pythagorean Theorem

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction.

Proof 2: Grouping:

$$2S_n = (1+n) + (2+(n-1)) + \cdots + (n+1).$$

Instead of determining sum useful to get sense of size.

Other Gems: Sums, Products, Irrationality

Pythagorean Theorem

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction.

Proof 2: Grouping:

$$2S_n = (1+n) + (2+(n-1)) + \cdots + (n+1).$$

Instead of determining sum useful to get sense of size.

Have $\frac{n}{2} \frac{n}{2} \leq S_n \leq n^2$; thus S_n is between $n^2/4$ and n^2 , have the correct order of magnitude of n.

Sums of Integers

Pythagorean Theorem

$$S_n := 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2.$$

Proof 1: Induction.

Proof 2: Grouping:

$$2S_n = (1+n) + (2+(n-1)) + \cdots + (n+1).$$

Instead of determining sum useful to get sense of size.

Have $\frac{n}{2} \frac{n}{2} \leq S_n \leq n^2$; thus S_n is between $n^2/4$ and n^2 , have the correct order of magnitude of n.

Can improve: divide and conquer again: lather, rinse, repeat....

$$\frac{n}{4}\frac{n}{4} + \frac{n}{4}\frac{2n}{4} + \frac{n}{4}\frac{3n}{4} \ \le \ S_n, \quad \mathrm{so} \quad \frac{6}{16}n^2 \ \le \ S_n.$$

Pythagorean Theorem

Stirling's Formula

We have

$$n! \approx n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + \cdots \right).$$

Can prove / get close by Integral Test, Euler-Maclaurin Formula.

Stirling's Formula ($n! \approx n^n e^{-n} \sqrt{2\pi n}$: Approximations

To illustrate ideas not worrying about rounding issues.

$$[1, 2, \dots, \frac{n}{2}] [\frac{n}{2} + 1, \frac{n}{2} + 2, \dots, n].$$

$$1^{n/2}(n/2)^{n/2} \le n! \le (n/2)^{n/2} n^{n/2}$$
, or $(n/2)^{n/2} \le n! \le n^n \sqrt{2}^{-n}$.

Have $\sqrt{2} \approx 1.414$ vs $e \approx 2.718$.

Stirling's Formula ($n! \approx n^n e^{-n} \sqrt{2\pi n}$: Approximations

To illustrate ideas not worrying about rounding issues.

$$[1,2,\ldots,\frac{n}{2}][\frac{n}{2}+1,\frac{n}{2}+2,\ldots,n].$$

$$1^{n/2}(n/2)^{n/2} \le n! \le (n/2)^{n/2} n^{n/2}$$
, or $(n/2)^{n/2} \le n! \le n^n \sqrt{2}^{-n}$.

Have
$$\sqrt{2} \approx 1.414$$
 vs $e \approx 2.718$.

$$[1,2,\ldots,\frac{n}{4}]$$
 $[\frac{n}{4}+1,\ldots,\frac{n}{2}]$ $[\frac{n}{2}+1,\frac{n}{2}+2,\ldots,\frac{3n}{4}]$ $[\frac{3n}{4}+1,\ldots,n]$.

Upper bound now

$$n! \leq (n/4)^{n/4} (n/2)^{n/4} (3n/4)^{n/4} n^{n/4} = n^n (32/3)^{-n/4} = n^n (\sqrt[4]{32/3})^{-n}.$$

Have $\sqrt[4]{32/3} \approx 1.8072$ vs $e \approx 2.718$.

Other Gems: Sums, Products, Irrationality

Stirling's Formula ($n! \approx n^n e^{-n} \sqrt{2\pi n}$: Approximations

Use
$$xy \leq \left(\frac{x+y}{2}\right)^2$$
.

Pythagorean Theorem

$$[1,2,\ldots,\frac{n}{2}][\frac{n}{2}+1,\frac{n}{2}+2,\ldots,n].$$

$$n! \le (n/4)^{2(n/4)} (3n/4)^{2(n/4)}$$
, or $n! \le n^n (16/3)^{-n/2}$.

Have $(4^2/3)^{1/2} \approx 2.3094$ vs $e \approx 2.718$ (much better than 1.414).

Stirling's Formula ($n! \approx n^n e^{-n} \sqrt{2\pi n}$: Approximations

Use
$$xy \leq \left(\frac{x+y}{2}\right)^2$$
.

Pythagorean Theorem

$$[1,2,\ldots,\frac{n}{2}][\frac{n}{2}+1,\frac{n}{2}+2,\ldots,n].$$

$$n! \le (n/4)^{2(n/4)} (3n/4)^{2(n/4)}$$
, or $n! \le n^n (16/3)^{-n/2}$.

Have $(4^2/3)^{1/2} \approx 2.3094$ vs e ≈ 2.718 (much better than 1.414).

$$[1,2,\ldots,\frac{n}{4}][\frac{n}{4}+1,\ldots,\frac{n}{2}][\frac{n}{2}+1,\frac{n}{2}+2,\ldots,\frac{3n}{4}][\frac{3n}{4}+1,\ldots,n].$$

Upper bound now

$$n! \leq (n/8)^{2(n/8)} (3n/8)^{2(n/8)} (5n/8)^{2(n/8)} (7n/8)^{2(n/8)} = n^n (8^4/7!!)^{-n/4}.$$

Have $(8^4/7!!)^{1/4} \approx 2.49915$ vs e ≈ 2.718 (much better than 1.8072).

Stirling's Formula ($n! \approx n^n e^{-n} \sqrt{2\pi n}$: Approximations

Use
$$xy \leq \left(\frac{x+y}{2}\right)^2$$
.

Pythagorean Theorem

$$[1,2,\ldots,\frac{n}{2}][\frac{n}{2}+1,\frac{n}{2}+2,\ldots,n].$$

$$n! \le (n/4)^{2(n/4)} (3n/4)^{2(n/4)}$$
, or $n! \le n^n (16/3)^{-n/2}$.

Have $(4^2/3)^{1/2} \approx 2.3094$ vs e ≈ 2.718 (much better than 1.414). $[1,2,\ldots,\frac{n}{4}] \left[\frac{n}{4}+1,\ldots,\frac{n}{2}\right] \left[\frac{n}{2}+1,\frac{n}{2}+2,\ldots,\frac{3n}{4}\right] \left[\frac{3n}{4}+1,\ldots,n\right].$

Upper bound now

$$n! \leq (n/8)^{2(n/8)} (3n/8)^{2(n/8)} (5n/8)^{2(n/8)} (7n/8)^{2(n/8)} = n^n (8^4/7!!)^{-n/4}.$$

Have $(8^4/7!!)^{1/4} \approx 2.49915$ vs $e \approx 2.718$ (much better than 1.8072).

Next $(16^8/15!!)^{1/8} \approx 2.60473$, then $(32^{16}/31!!)^{1/16} \approx 2.66047$.

Can derive

Pythagorean Theorem

$$n! \ \le \ n^n \left((2^k)^{2^{k-1}}/(2^k-1)!! \right)^{-n/2^{k-1}}.$$

k	$\left((2^k)^{2^{k-1}}/(2^k-1)!! \right)^{1/2^{k-1}}$
2	2.30940107675850
3	2.49915194953620
4	2.60472929511376
8	2.71093864109117
12	2.71782189208667
16	2.71825307857336
20	2.71828003157610
24	2.71828171615380

Useful fact:

$$(2m-1)!! = \frac{(2m)!}{2^m m!}$$

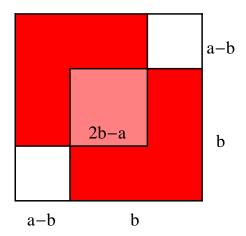


Figure: Geometric proof of the irrationality of $\sqrt{2}$.

Pythagorean Theorem

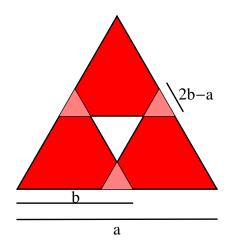


Figure: Geometric proof of the irrationality of $\sqrt{3}$

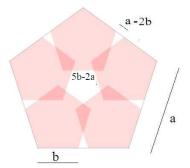


Figure: Geometric proof of the irrationality of $\sqrt{5}$.

http://arxiv.org/abs/0909.4913

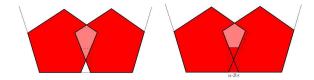


Figure: Geometric proof of the irrationality of $\sqrt{5}$: the kites, triangles and the small pentagons.

Pythagorean Theorem

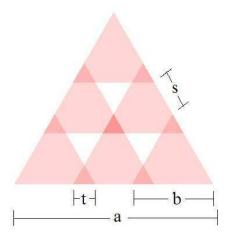


Figure: Geometric proof of the irrationality of $\sqrt{6}$.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{p-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Pythagorean Theorem

Conclusion

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Conclusion

Preliminaries: The Cookie Problem

The Cookie Problem

Pythagorean Theorem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$. Solved $x_1 + \cdots + x_P = C$, $x_i \ge 0$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into *P* sets.

Conclusion

Conclusion

- Math is not complete explore and conjecture!
- Different proofs highlight different aspects.
- Oet a sense of what to try / what might work.