Number Theory and Probability

Nadine Amersi, Thealexa Becker, Olivia Beckwith, Alec Greaves-Tunnell, Geoffrey Iyer, Oleg Lazarev, Ryan Ronan, Karen Shen, Liyang Zhang

Advisor Steven Miller (sim1@williams.edu)

http://web.williams.edu/Mathematics/sjmiller/public html/math/talks/talks.html

Williams College, August 2, 2011

Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan Ronan

Historical Introduction

•0000

Bertrand's Postulate (1845)

For all integers $x \ge 2$, there exists at least one prime in (x/2, x].

Definition

The *n*-th Ramanujan prime is the integer R_n that is the smallest to guarantee there are *n* primes in (x/2, x] for all $x \ge R_n$.

Definition

The *n*-th Ramanujan prime is the integer R_n that is the smallest to guarantee there are n primes in (x/2, x] for all $x > R_n$

Theorem

• Ramanujan: For each integer *n*, *R*_n exists.

Definition

The *n*-th Ramanujan prime is the integer R_n that is the smallest to guarantee there are *n* primes in (x/2, x] for all $x > R_n$.

Theorem

- Ramanujan: For each integer *n*, *R*_n exists.
- Sondow: $R_n \sim p_{2n}$.

c-Ramanujan Primes

Definition

The *n*-th Ramanujan prime is the integer R_n that is the smallest to guarantee there are n primes in (x/2, x] for all $x > R_n$.

Theorem

- Ramanujan: For each integer *n*, *R*_n exists.
- Sondow: $R_n \sim p_{2n}$.
- Sondow: As $n \to \infty$, $\frac{1}{2}$ of primes are Ramanujan.

Definition

c-Ramanujan Primes

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are *n* primes in (cx, x] for all $x \ge R_{c,n}$ where $c \in (0, 1)$.

Definition

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are n primes in (cx, x] for all $x > R_{c,n}$ where $c \in (0,1)$.

• For each c and integer n, does $R_{c,n}$ exist?

Definition

c-Ramanujan Primes

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are n primes in (cx, x] for all $x > R_{c,n}$ where $c \in (0,1)$.

• For each c and integer n, does $R_{c,n}$ exist? Yes!

Definition

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are *n* primes in (cx, x] for all $x \ge R_{c,n}$ where $c \in (0, 1)$.

- For each *c* and integer *n*, does $R_{c,n}$ exist? Yes!
- Does R_{c,n} exhibit asymptotic behavior?

Definition

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are n primes in (cx, x] for all $x > R_{c,n}$ where $c \in (0,1)$.

- For each c and integer n, does $R_{c,n}$ exist? Yes!
- Does $R_{c,n}$ exhibit asymptotic behavior? $R_{c,n} \sim p_{\underline{n}}$

Definition

c-Ramanujan Primes

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are n primes in (cx, x] for all $x > R_{c,n}$ where $c \in (0,1)$.

- For each c and integer n, does $R_{c,n}$ exist? Yes!
- Does $R_{c,n}$ exhibit asymptotic behavior? $R_{c,n} \sim p_{\underline{n}}$
- As $n \to \infty$, what proportion of primes are c-Ramanujan?

Definition

c-Ramanujan Primes

The *n*-th *c*-Ramanujan prime is the integer $R_{c,n}$ that is the smallest to guarantee there are n primes in (cx, x] for all $x > R_{c,n}$ where $c \in (0,1)$.

- For each c and integer n, does $R_{c,n}$ exist? Yes!
- Does $R_{c,n}$ exhibit asymptotic behavior? $R_{c,n} \sim p_{\underline{n}}$
- As $n \to \infty$, what proportion of primes are c-Ramanujan? 1-c

Theorem

For all $n \in \mathbb{Z}$ and all $c \in (0,1)$, the *n*-th *c*-Ramanujan prime $R_{c,n}$ exists.

Theorem

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the n-th c-Ramanujan prime $R_{c,n}$ exists.

Sketch of proof:

Theorem

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the *n*-th *c*-Ramanujan prime $R_{c,n}$ exists.

Sketch of proof:

• Let $\pi(x)$ denote the number of primes at most x. Then the number of primes in (cx, x] is $\pi(x) - \pi(cx)$.

Theorem

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the n-th c-Ramanujan prime $R_{c,n}$ exists.

Sketch of proof:

- Let $\pi(x)$ denote the number of primes at most x. Then the number of primes in (cx, x] is $\pi(x) - \pi(cx)$.
- Using the Prime Number Theorem and Mean Value Theorem, we obtain $\pi(x) \pi(cx) = \frac{(1-c)x}{\log x} + O\left(\frac{x}{\log^2 x}\right)$.

Theorem

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the *n*-th *c*-Ramanujan prime $R_{c,n}$ exists.

Sketch of proof:

- Let $\pi(x)$ denote the number of primes at most x. Then the number of primes in (cx, x] is $\pi(x) - \pi(cx)$.
- Using the Prime Number Theorem and Mean Value Theorem, we obtain $\pi(x) - \pi(cx) = \frac{(1-c)x}{\log x} + O\left(\frac{x}{\log^2 x}\right)$.
- $\pi(x) \pi(cx) > n$ for all x sufficiently large.

Distribution of generalized Ramanujan primes

Expected longest run $\approx \log_{1/p} (n(1-p))$.

Length of the longest run below 10 ⁶ of			
c-Ramanujan primes		Non-Ramanujan primes	
Expected	Actual	Expected	Actual
127	97	4	2
71	58	5	3
50	42	6	6
38	36	8	7
31	27	9	12
25	25	10	12
22	18	11	18
19	21	13	16
16	19	15	23
14	20	17	36
	c-Ramanu Expected 127 71 50 38 31 25 22 19 16	c-Ramanujan primes Expected Actual 127 97 71 58 50 42 38 36 31 27 25 25 22 18 19 21 16 19	c-Ramanujan primes Non-Rama Expected Actual Expected 127 97 4 71 58 5 50 42 6 38 36 8 31 27 9 25 25 10 22 18 11 19 21 13 16 19 15

c-Ramanujan Primes

00000

More Sums Than Differences Sets Geoff Iyer, Oleg Lazarev, Liyang Zhang

Statement

c-Ramanujan Primes

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_j : a_i, a_j \in A\}.$
- Difference set: $A A = \{a_i a_j : a_j, a_j \in A\}.$

Statement

c-Ramanujan Primes

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_i : a_i, a_i \in A\}.$
- Difference set: $A A = \{a_i a_i : a_i, a_i \in A\}$.

Definition

We say A is difference dominated if |A - A| > |A + A|, balanced if |A - A| = |A + A| and sum dominated (or an MSTD set) if |A + A| > |A - A|.

Statement

c-Ramanujan Primes

A finite set of integers, |A| its size. Form

- Sumset: $A + A = \{a_i + a_i : a_i, a_i \in A\}.$
- Difference set: $A A = \{a_i a_i : a_i, a_i \in A\}$.

Definition

We say A is difference dominated if |A - A| > |A + A|, balanced if |A - A| = |A + A| and sum dominated (or an MSTD set) if |A + A| > |A - A|.

Definition

$$kA = \underbrace{A + \ldots + A}_{k \text{ times}}, \quad [a, b] = \{a, a + 1, \ldots, b\}.$$

Questions

- Can we find a set A such that |kA + kA| > |kA kA|?
- Can we find a set A such that |A + A| > |A A| and |2A + 2A| > |2A - 2A|?
- Can we find a set A such that |kA + kA| > |kA kA|for all k?

Questions

- Can we find a set A such that |kA + kA| > |kA kA|? YES!
- Can we find a set A such that |A + A| > |A A| and |2A + 2A| > |2A - 2A|? YES!
- Can we find a set A such that |kA + kA| > |kA kA|for all k? NO! (No such set exists)

$$|kA + kA| > |kA - kA|$$

Question: Can we find a set A such that |kA + kA| > |kA - kA|? YES!

|kA + kA| > |kA - kA|

Question: Can we find a set A such that

$$|kA + kA| > |kA - kA|$$
? YES!

Example: |3A + 3A| > |3A - 3A|

$$A = [0, 12] \cup [16, 18] \cup \{24\} \cup [139, 161]$$
$$\cup \{275\} \cup [281, 283] \cup [287, 300]$$

$$|3A + 3A| = 1798, |3A - 3A| = 1795.$$

Generalizations

c-Ramanujan Primes

By further modifying A, we can construct sets where

 The sumset has arbitrarily more elements than the difference set:

$$|kA + kA| - |kA - kA| = m$$

 The sumset and difference set each have arbitrarily many missing elements:

$$|kA + kA| = 2nk + 1 - m$$
 and $|kA - kA| = 2nk + 1 - \ell$ for any m, ℓ such that $\ell \le 2m$

• $|s_1A - d_1A| = (s_1 + d_1)n + 1 - m$ and $|s_2A - d_2A| = (s_2 + d_2)n + 1 - \ell$ for $\ell < 2m$ and $s_1 + d_1 = s_2 + d_2$

Question: Does a set A exist such that |A + A| > |A - A|and |A+A+A+A| > |A+A-A-A|? If yes call it 2-generational.

Question: Does a set A exist such that |A + A| > |A - A|and |A+A+A+A| > |A+A-A-A|? If yes call it 2-generational.

Yes!

$$A = \{0, 1, 3, 4, 5, 26, 27, 29, 30, 33, 37, 38, 40, 41, 42, 43, \\46, 49, 50, 52, 53, 54, 72, 75, 76, 79, 80\}$$

In fact, we can do much better.

We can find an A such that $|x_iA - y_iA| > |w_iA - z_iA|$ for any nontrivial choices of x_i, y_i, w_i, z_i and for all $2 \le j \le k$.

We can find an A such that $|x_iA - y_iA| > |w_iA - z_iA|$ for any nontrivial choices of x_i , y_i , w_i , z_i and for all $2 \le j \le k$.

Example: We can find an A such that

$$|A + A| > |A - A|$$
 $|A + A - A| > |A + A + A|$
 $|5A - 2A| > |A - 6A|$
 \vdots
 $|1870A - 141A| > |1817A - 194A|$

Base Expansion: For sets A_1, \ldots, A_n and $m \in \mathbb{N}$ sufficiently large (relative to k and A_1, \ldots, A_n) the set

$$A = A_1 + m \cdot A_2 + \cdots + m^{n-1} \cdot A_n$$

(where the multiplication is the usual scalar multiplication) has

$$|xA - yA| = \prod_{j=1}^{k} |xA_j - yA_j|$$

whenever $x + y \le k$.

Base Expansion: For sets A_1, \ldots, A_n and $m \in \mathbb{N}$ sufficiently large (relative to k and A_1, \ldots, A_n) the set

$$A = A_1 + m \cdot A_2 + \cdots + m^{n-1} \cdot A_n$$

(where the multiplication is the usual scalar multiplication) has

$$|xA - yA| = \prod_{j=1}^{k} |xA_j - yA_j|$$

whenever $x + y \le k$.

Base expansion is an approximation to the cross product. However, it only works for finitely many sums/differences.

To prove the theorem, we choose sets A_j that behave well for a specific $2 \le j \le k$ and are balanced for $i \ne j$. We then use base expansion to create A using the A_j .

We can construct *k*-generation sets for arbitrarily large *k*. But for any set A, as k goes to infinity kA will become difference-dominated or balanced.

We can construct *k*-generation sets for arbitrarily large *k*. But for any set A, as k goes to infinity kA will become difference-dominated or balanced.

Theorem (Nathanson)

c-Ramanujan Primes

For any set A, as k goes to infinity the fringes of kA will stabilize. If the largest element of A is a and there are m elements in A, kA will stabilize before $k = a^2 m$.

We can construct *k*-generation sets for arbitrarily large *k*. But for any set *A*, as *k* goes to infinity *kA* will become difference-dominated or balanced.

Theorem (Nathanson)

For any set A, as k goes to infinity the fringes of kA will stabilize. If the largest element of A is a and there are m elements in A, kA will stabilize before $k = a^2m$.

Here we will improve this bound.

Theorem

For any set A, as k goes to infinity the fringes of kA will stabilize. If the largest element of A is a and there are m elements in A, kA will stabilize before k = a.

c-Ramanujan Primes

Theorem

For any set A, as k goes to infinity the fringes of kA will stabilize. If the largest element of A is a and there are m elements in A. kA will stabilize before k = a.

Theorem

For any set A, as k goes to infinity kA will eventually become difference-dominated or balanced. And this will happen before k reaches 2a.

Proof Idea: $kA \subset kA - kA$. And k(A - A) and 2k(A) will both become stabilize when k = 2a.

Random Matrix Theory Olivia Beckwith, Karen Shen

Distribution of eigenvalues of random matrices: $Ax = \lambda x$.

Distribution of eigenvalues of random matrices: $Ax = \lambda x$.

Applications:

Distribution of eigenvalues of random matrices: $Ax = \lambda x$.

Applications:

Nuclear Physics

Distribution of eigenvalues of random matrices: $Ax = \lambda x$.

Applications:

- Nuclear Physics
- L-functions

00000000

Toeplitz:
$$\begin{pmatrix} b_0 & b_1 & b_2 & b_3 \\ b_1 & b_0 & b_1 & b_2 \\ b_2 & b_1 & b_0 & b_1 \\ b_3 & b_2 & b_1 & b_0 \end{pmatrix}$$

00000000

Matrix Ensembles

Toeplitz:
$$\begin{pmatrix} b_0 & b_1 & b_2 & b_3 \\ b_1 & b_0 & b_1 & b_2 \\ b_2 & b_1 & b_0 & b_1 \\ b_3 & b_2 & b_1 & b_0 \end{pmatrix}$$

Signed Toeplitz:

$$\begin{pmatrix} b_0 & -b_1 & b_2 & b_3 \\ -b_1 & -b_0 & b_1 & -b_2 \\ b_2 & b_1 & b_0 & -b_1 \\ b_3 & -b_2 & -b_1 & b_0 \end{pmatrix}$$

$$a_{ii} = \epsilon_{ii}a = \pm a, p = \text{Prob}(\epsilon_{ij} = 1), \ldots$$

Toeplitz:

Previous Work

Methods: Markov's Method of Moments

• The k^{th} moment M_k of a probability distribution f(x)defined on an interval [a, b] is $\int_a^b x^k f(x) dx$.

RMT

000000000

• The k^{th} moment M_k of a probability distribution f(x) defined on an interval [a, b] is $\int_a^b x^k f(x) dx$.

RMT

Show a typical eigenvalue measure μ_{A,N}(x)
converges to a probability distribution P by controlling
convergence of average moments of the measures as
N → ∞ to the moments of P.

Eigenvalue Trace Lemma

c-Ramanujan Primes

For any non-negative integer k, if A is an $N \times N$ matrix with eigenvalues $\lambda_i(A)$, then

Trace
$$(A^k) = \sum_{i=1}^N \lambda_i (A)^k$$
.

Eigenvalue Trace Lemma

For any non-negative integer k, if A is an $N \times N$ matrix with eigenvalues $\lambda_i(A)$, then

Trace
$$(A^k) = \sum_{i=1}^N \lambda_i (A)^k$$
.

Using this lemma, we see that a formula for the average k^{th} moment, $M_k(N) = \mathbb{E}[M_k(A_N)]$, is:

$$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_1, \dots, i_k \leq N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$

$$M_k(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_1, \dots, i_k \leq N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$

000000000

000000000

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

For a term to contribute in the summand:

• The *b*'s must be matched in at least pairs since $\mathbb{E}(b_{ii}) = 0$.

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

For a term to contribute in the summand:

- The b's must be matched in at least pairs since $\mathbb{E}\left(b_{ii}\right)=0.$
- The b's must be matched in at most pairs since there must be at least $\frac{k}{2}$ + 1 degrees of freedom.

Thus:

Thus:

Odd moments vanish.

Thus:

c-Ramanujan Primes

- Odd moments vanish.
- For the even moments M_{2k} we can represent each contributing term as a pairing of 2k vertices on a circle as follows:

RMT ○○○○○○●○

$$p = \frac{1}{2}$$
: Semi-circle distribution

Results

$$p = \frac{1}{2}$$
: Semi-circle distribution

 $p \neq \frac{1}{2}$: unbounded support.

Each configuration weighted by $(2p-1)^m$, where m is the number of points on the circle whose edge crosses another edge.

Example:

Results, continued

Question: Out of the (2k-1)!! ways to pair 2k vertices, how many of these pairings will have *m* vertices crossing?

Question: Out of the (2k-1)!! ways to pair 2k vertices, how many of these pairings will have m vertices crossing? For:

RMT

00000000

• m = 0, well-known to be the Catalan numbers.

Question: Out of the (2k-1)!! ways to pair 2k vertices, how many of these pairings will have m vertices crossing? For:

- m = 0, well-known to be the Catalan numbers.
- m = 4, we proved there are $\binom{2k}{k-2}$ such pairings.

Question: Out of the (2k-1)!! ways to pair 2k vertices, how many of these pairings will have m vertices crossing? For:

- m = 0, well-known to be the Catalan numbers.
- m = 4, we proved there are $\binom{2k}{k-2}$ such pairings.
- m = 6, we proved there are $4\binom{2k}{k-3}$ such pairings.

Question: Out of the (2k-1)!! ways to pair 2k vertices, how many of these pairings will have m vertices crossing? For:

- m = 0, well-known to be the Catalan numbers.
- m = 4, we proved there are $\binom{2k}{k-2}$ such pairings.
- m = 6, we proved there are $4\binom{2k}{k-3}$ such pairings.

As k gets very large, the expected number of vertices in a crossing converges to 2k - 2 and the variance converges to 4.

Benford's Law Thealexa Becker, Alec Greaves-Tunnell, Ryan Ronan

Benford's Law Review

Benford's Law: Newcomb (1881), Benford (1938)

A set is Benford if probability first digit is d is $\log_B \left(\frac{d+1}{d}\right)$; 30% start with 1.

- Many data sets exhibit Benford behavior:
 - ⋄ Fibonacci Sequence
 - Lots of financial data (stocks, bonds, etc.)
 - Certain products of random independent variables

Benford's Law Review

Benford's Law: Newcomb (1881), Benford (1938)

A set is Benford if probability first digit is d is $\log_{B}(\frac{d+1}{d})$; 30% start with 1.

- Many data sets exhibit Benford behavior:
 - ⋄ Fibonacci Sequence
 - Lots of financial data (stocks, bonds, etc.)
 - Certain products of random independent variables

Interesting Question

Why do we observe Benford distribution of first digits in "real world" data sets?

Overview

Lemons' Interesting Answer (American Journal of Physics, 1986)

Often due to observing distribution of pieces of a conserved quantity.

Benford's Law

Overview

Lemons' Interesting Answer (American Journal of Physics, 1986)

Often due to observing distribution of pieces of a conserved quantity.

Probability model in paper vague and unclear.

Overview

Lemons' Interesting Answer (American Journal of **Physics**, 1986)

Often due to observing distribution of pieces of a conserved quantity.

Probability model in paper vague and unclear.

Proposed model

Partition X into N terms: $X = \sum_{i=1}^{N} n_i x_i$. Issues: what possible x_i 's? Is N fixed?

c-Ramanujan Primes

• For (small) finite N, brute force calculation shows $\mathbb{E}(n_j) = \frac{1}{x_i}(\frac{X}{N})$; Benford density is proportional to 1/x.

Results

c-Ramanujan Primes

- For (small) finite N, brute force calculation shows $\mathbb{E}(n_j) = \frac{1}{x_i} (\frac{X}{N})$; Benford density is proportional to 1/x.
- For general N, approximate: $S = X \sum_i n_i x_i$,

$$\delta(X, \sum_{j=1}^N n_j x_j) \ltimes e^{-S^2/2\sigma},$$

then evaluate N-dimensional integral.

Results

- For (small) finite N, brute force calculation shows $\mathbb{E}(n_j) = \frac{1}{x_i}(\frac{X}{N})$; Benford density is proportional to 1/x.
- For general N, approximate: $S = X \sum_{j} n_{j}x_{j}$,

$$\delta(X, \sum_{j=1}^N n_j x_j) \ltimes e^{-S^2/2\sigma},$$

then evaluate *N*-dimensional integral.

 Difficulty: region of integration; can simplify with indicator functions, but Fourier transform has slow decay.

Consider M sticks of lengths ℓ_i , each l_i drawn from the random variable L. Break each ℓ_i by cutting at $k_i\ell_i$, with $K_i \sim \text{Unif}(0, 1)$. Repeat cutting N times.

Consider M sticks of lengths ℓ_i , each I_i drawn from the random variable L. Break each ℓ_i by cutting at $k_i\ell_i$, with $K_i \sim \text{Unif}(0,1)$. Repeat cutting N times.

Theorem

If L is Benford on [1, 10) and N = 1, then as $M \to \infty$ the distribution of lengths of pieces is Benford's Law.

Consider M sticks of lengths ℓ_i , each I_i drawn from the random variable L. Break each ℓ_i by cutting at $k_i\ell_i$, with $K_i \sim \text{Unif}(0,1)$. Repeat cutting N times.

Theorem

c-Ramanujan Primes

If *L* is Benford on [1, 10) and N = 1, then as $M \to \infty$ the distribution of lengths of pieces is Benford's Law.

- Find cumulative probability distribution function of random variable Z = KL.
- ♦ Evaluate

Prob[First digit =
$$d$$
] = $\sum_{r=0}^{r=0} [F_z((d+1)10^{-r}) - F_z(d10^{-r})].$

Consider M sticks of lengths ℓ_i , each I_i drawn from the random variable L. Break each ℓ_i by cutting at $k_i\ell_i$, with $K_i \sim \text{Unif}(0,1)$. Repeat cutting N times.

Theorem

If *L* is Benford on [1, 10) and N = 1, then as $M \to \infty$ the distribution of lengths of pieces is Benford's Law.

- Find cumulative probability distribution function of random variable Z = KL.
- ♦ Evaluate

Prob[First digit =
$$d$$
] = $\sum_{r=0}^{+\infty} [F_z((d+1)10^{-r}) - F_z(d10^{-r})].$

Also true if $N \to \infty$.

c-Ramanujan Primes

Let L be fixed and consider one stick (M=1). As $N\to\infty$, the resulting first digit distribution of the lengths of the broken pieces will conform to Benford's Law.

♦ Wish to show that for any digit *d* the resulting first digit distribution has zero variance.

CONJECTURE

Let L be fixed and consider one stick (M = 1). As $N \to \infty$, the resulting first digit distribution of the lengths of the broken pieces will conform to Benford's Law.

- ♦ Wish to show that for any digit *d* the resulting first digit distribution has zero variance.
- \diamond Cross terms are most problematic: Need $N \to \infty$ limit of

$$\sum_{i,j=1}^{\infty} \int_{x=0}^{1} \int_{y=0}^{1} \int_{z=\min(\frac{10^{-i}}{xy},1)}^{\min(\frac{2\times 10^{-i}}{xy},1)} \int_{w=\min(\frac{10^{-i}}{x(1-y)},1)}^{\min(\frac{2\times 10^{-j}}{x(1-y)},1)} \frac{(-\log x)^{n-1}(\log z \log w)^{m-1}}{\Gamma(n)\Gamma(m)^2} dw dz dy dx$$

Definition of Copulas

c-Ramanujan Primes

Copula: A form of joint CDF between multiple variables with given uniform marginals on the d-dimensional unit cube.

Sklar's Theorem

Let X and Y be random variables with joint distribution function H and marginal distribution functions F and G respectively. There exists a copula, C, such that

$$\forall x, y \in \mathbb{R}, \ H(x, y) = C(F(x), G(y)).$$

c-Ramanujan Primes

A commonly used / studied family of copulas is of the form

$$C(x,y) = \phi^{-1}(\phi(x) + \phi(y))$$

where ϕ is the generator and ϕ^{-1} is the inverse generator of the copula.

Investigating the Benfordness of the product of random variables arising from copulas.

Clayton Copula:
$$C(x, y) = (x^{-\theta} + y^{-\theta} - 1)^{-1/\theta}$$
.

PDF (bivariate):
$$\theta(\theta^{-1} + 1)(xy)^{-\theta - 1}(x^{-\theta} + y^{-\theta} - 1)^{-2-1/\theta}$$
.

PDF (general case):

$$\theta^{n-1} \frac{\Gamma(n+\theta^{-1})}{\Gamma(1+\theta^{-1})} (x_1 \cdots x_n)^{-\theta-1} (x_1^{-\theta} + \cdots + x_n^{-\theta} - 1)^{-n-1/\theta}.$$

Results

c-Ramanujan Primes

- Early data and chi-square tests of multivariate copulas suggest Benford behavior of the products of copulas.
- Proof strategy includes the integration of the PDF over the region in which the product has first digit d using Poisson summation:

$$\int_0^1 \cdots \int_0^1 \sum_k \widehat{\phi}_{\log_{10}(x_1 \cdots x_n)}(k) p(x_1, \ldots, x_n) dx_1 \cdots dx_n,$$

where

$$\phi_a(u) = \chi_{[1,2)}(10^{u+a}) = \begin{cases} 1 & \text{if } 10^{u+a} \in [1,2) \\ 0 & \text{otherwise.} \end{cases}$$