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Historical Introduction

Bertrand’s Postulate (1845)

For all integers x > 2, there exists at least one prime in
(x/2,x].
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Ramanujan Primes

Definition

The n-th Ramanujan prime is the integer R, that is the
smallest to guarantee there are n primes in (x/2, x| for all
X > R,.
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The n-th Ramanujan prime is the integer R, that is the
smallest to guarantee there are n primes in (x/2, x| for all

X > R,.

@ Ramanujan: For each integer n, R,, exists.
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Ramanujan Primes

Definition

The n-th Ramanujan prime is the integer R, that is the
smallest to guarantee there are n primes in (x/2, x| for all
X > R,.

@ Ramanujan: For each integer n, R,, exists.
@ Sondow: R, ~ pan.
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Ramanujan Primes

Definition

The n-th Ramanujan prime is the integer R, that is the
smallest to guarantee there are n primes in (x/2, x| for all
X > R,.

@ Ramanujan: For each integer n, R,, exists.
@ Sondow: R, ~ pan.
@ Sondow: As n — oo, % of primes are Ramanujan.
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c-Ramanujan Primes

Definition

The n-th c-Ramanujan prime is the integer R, , that is the
smallest to guarantee there are n primes in (cx, x] for all
X > Rcn Where c € (0,1).
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c-Ramanujan Primes

Definition

The n-th c-Ramanujan prime is the integer R, , that is the
smallest to guarantee there are n primes in (cx, x] for all
X > Rcn Where c € (0,1).

@ For each c and integer n, does R, exist? Yes!
@ Does R, exhibit asymptotic behavior?
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c-Ramanujan Primes

Definition

The n-th c-Ramanujan prime is the integer R, , that is the
smallest to guarantee there are n primes in (cx, x] for all
X > Rcn Where c € (0,1).

@ For each c and integer n, does R, exist? Yes!
@ Does R, exhibit asymptotic behavior? R. , ~ P

@ As n — oo, what proportion of primes are
c-Ramanujan?
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c-Ramanujan Primes

Definition

The n-th c-Ramanujan prime is the integer R, , that is the
smallest to guarantee there are n primes in (cx, x] for all
X > Rcn Where c € (0,1).

@ For each c and integer n, does R, exist? Yes!
@ Does R, exhibit asymptotic behavior? R. , ~ P

@ As n — oo, what proportion of primes are
c-Ramanujan? 1-c
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prime R, exists.
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@ Let 7(x) denote the number of primes at most x.
Then the number of primes in (cx, x] is 7(x) — m(cx).
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prime R, exists.
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c-Ramanujan Primes
°

Existence of R¢p

Foralln € Z and all ¢ € (0, 1), the n-th c-Ramanujan
prime R, exists.

Sketch of proof:
@ Let 7(x) denote the number of primes at most x.
Then the number of primes in (cx, x] is 7(x) — m(cx).

@ Using the Prime Number Theorem and Mean Value

Theorem, we obtain 7(x) — 7(cx) = % +0 (Iogzx)-

o m(x) — w(cx) > n for all x sufficiently large.
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Distribution of generalized Ramanujan primes

Expected longest run = log, ,, (n(1 — p)).

Length of the longest run below 10° of
c-Ramanujan primes | Non-Ramanujan primes
c | Expected | Actual | Expected Actual

0.05 127 97 4 2
0.10 71 58 5 3
0.15 50 42 6 6
0.20 38 36 8 7
0.25 31 27 9 12
0.30 25 25 10 12
0.35 22 18 11 18
0.40 19 21 13 16
0.45 16 19 15 23
0.50 14 20 17 36
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Statement

A finite set of integers, |A| its size. Form
o Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}.
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A finite set of integers, |A| its size. Form
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Definition

We say A is difference dominated if |A — A| > |A+ A,
balanced if |A — A| = |A + A| and sum dominated (or an
MSTD set) if A+ A] > |A—A|.




Statement

A finite set of integers, |A| its size. Form
o Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}.

Definition
We say A is difference dominated if |A — A| > |A+ A,

balanced if |A — A| = |A + A| and sum dominated (or an
MSTD set) if A+ A] > |A—A|.

Definition
kKA = A+...+A, [ab] = {a,a+1,...,b}.
N——
k times




Questions

@ Can we find a set A such that |KA + kA| > |KA — kA|?

@ Can we find a set A such that |A + A| > |A— A| and
I2A + 2A| > [2A — 2A|?

@ Can we find a set A such that |kA + kA| > |KA — kA|
for all k?




Questions

@ Can we find a set A such that |KA + kA| > |KA — kA|?
YES!

@ Can we find a set A such that |[A+ A| > |A — A and
I2A + 2A| > |2A — 2A|? YES!

@ Can we find a set A such that |kA + kA| > |KA — kA|
for all k? NO! (No such set exists)




KA + KA| > |KA — KA|

Question: Can we find a set A such that
|KA + kA| > |kA — kA|? YES!




KA + KA| > |KA — KA|

Question: Can we find a set A such that
|KA + kA| > |kA — kA|? YES!

Example: [3A + 3A| > [3A — 3A|

A = [0,12]U[16,18] U {24} U[139,161]
U{275} U [281, 283] U [287, 300]

I3A + 3A| = 1798, |3A — 3A| = 1795.




Generalizations

By further modifying A, we can construct sets where

@ The sumset has arbitrarily more elements than the
difference set:
|KA + kA| — |kKA —kA| =m

@ The sumset and difference set each have arbitrarily
many missing elements:
KA+ KA| =2nk +1 —m and |KA—KA| =2nk +1 -/
for any m, ¢ such that / < 2m

o |s;A—diA|=(s;+di)n+1—mand
S2A — dbA| = (s +do)n+1 ¢
for/ <2mands; +d; =5s,+ds




k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A|
and A+A+A+A>|A+A-A-A??Ifyescallit
2-generational.




k-Generational Sets

Question: Does a set A exist such that |A + A| > |A — A|
and A+A+A+A>|A+A-A-A??Ifyescallit
2-generational.

Yes!

A ={0,1,3,4,5,26,27,29, 30,33, 37, 38, 40, 41, 42, 43,
46,49,50,52,53,54,72,75, 76,79, 80}

In fact, we can do much better.




k-Generational Sets

We can find an A such that |[x;A — y;A| > |w;A — z;A| for
any nontrivial choices of x;, y;, w;, z; and for all 2 <j <Kk.




k-Generational Sets

We can find an A such that |[x;A — y;A| > |w;A — z;A| for
any nontrivial choices of x;, y;, w;, z; and for all 2 <j <Kk.

Example: We can find an A such that

A+A|>|A—A
A+A—Al > A+A+A
I5A — 2A| > |A — 6A|

|1870A — 141A| > |1817A — 194A




Base Expansion: For sets A;,...,Apand m € N
sufficiently large (relative to k and Ay, ..., A,) the set

A=A +m-A+---+m" 1. A

(where the multiplication is the usual scalar multiplication)
has

k
XA —yA| = [T IxA — yA||
=1

whenever X +y < K.




Base Expansion: For sets A;,...,Apand m € N
sufficiently large (relative to k and Ay, ..., A,) the set

A=A +m-A+---+m" 1. A

(where the multiplication is the usual scalar multiplication)
has

k
XA —yA| = [T IxA — yA||
=1

whenever X +y < K.

Base expansion is an approximation to the cross product.
However, it only works for finitely many sums/differences.




k-Generational Sets

To prove the theorem, we choose sets A; that behave well
for a specific 2 <j < k and are balanced fori # j. We
then use base expansion to create A using the A,.
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We can construct k-generation sets for arbitrarily large k.
But for any set A, as k goes to infinity kA will become
difference-dominated or balanced.
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But for any set A, as k goes to infinity kA will become
difference-dominated or balanced.

Theorem (Nathanson)

For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a?m.
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We can construct k-generation sets for arbitrarily large k.
But for any set A, as k goes to infinity kA will become
difference-dominated or balanced.

Theorem (Nathanson)

For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a?m.

Here we will improve this bound.




For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a.

A
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For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, KA will stabilize before k = a.

For any set A, as k goes to infinity KA will eventually
become difference-dominated or balanced. And this will
happen before k reaches 2a.

A\

Proof Idea: KA C kA — kA. And k(A — A) and 2k (A) will
both become stabilize when k = 2a.
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Random Matrices

Distribution of eigenvalues of random matrices: Ax = AX.
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Distribution of eigenvalues of random matrices: Ax = AX.

Applications:
@ Nuclear Physics
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Random Matrices

Distribution of eigenvalues of random matrices: Ax = AX.

Applications:

@ Nuclear Physics
@ L-functions
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Matrix Ensembles

Toeplitz:
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Matrix Ensembles

by by
. b, bg
Toeplitz:

oeplitz b, by
bs; b,

Signed Toeplitz:
bo —by1 by
—b; —by by
b, by b
b; —b, —b;

Qi = ¢ja = +a, P= Prob(eij = 1),




Previous Work

Toeplitz:

AQ




Methods: Markov’s Method of Moments

@ The k™ moment M, of a probability distribution f (x)
defined on an interval [a, b] is f; xkf (x) dx.




Methods: Markov’s Method of Moments

@ The k™ moment M, of a probability distribution f (x)
defined on an interval [a, b] is f; xkf (x) dx.

@ Show a typical eigenvalue measure pan (X)
converges to a probability distribution P by controlling
convergence of average moments of the measures as
N — oo to the moments of P.




Eigenvalue Trace Lemma

For any non-negative integer k, if Ais an N x N matrix
with eigenvalues \; (A), then

N

Trace (A*) = >\ (A)".

i=1




Eigenvalue Trace Lemma

For any non-negative integer k, if Ais an N x N matrix
with eigenvalues \; (A), then

N

Trace (A*) = >\ (A)".

i=1

v

Using this lemma, we see that a formula for the average
k™" moment, My (N) = E [My (Ay)], is:

1
N Y E(GuiPyiiat€iis Dy - - - €ii D)




Evaluating the Moments

M (N) = = D IDRR OF (ERATRRNTIRA TRERPPYCRN  TNRN)




Evaluating the Moments

1

Mk (N) = — > B (6i,Dliig €iiaby i) - - - €iis B —iz])
2 1<y, i <N

For a term to contribute in the summand:

@ The b’s must be matched in at least pairs since
E (b;j) = 0.




Evaluating the Moments

Mk (N) = kl > B (6i,Dliig €iiaby i) - - - €iis B —iz])
2 1<y, i <N
For a term to contribute in the summand:
@ The b’s must be matched in at least pairs since
E (b;j) = 0.
@ The b’s must be matched in at most pairs since there
must be at least g + 1 degrees of freedom.




Thus:




Thus:
@ Odd moments vanish.




Thus:

@ Odd moments vanish.

@ For the even moments My, we can represent each
contributing term as a pairing of 2k vertices on a
circle as follows:

lis—legl

lig—1is|

liz—igl

lig—I1]

lio—ig]

li1—io]




p = 3: Semi-circle distribution
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p = 3: Semi-circle distribution

p # 1: unbounded support.

Each configuration weighted by (2p — 1)™, where m is the
number of points on the circle whose edge crosses
another edge.

Example: m=4

¢




Results, continued

Question: Out of the (2k — 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
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@ m = 0, well-known to be the Catalan numbers.
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Results, continued

Question: Out of the (2k — 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
For:

@ m = 0, well-known to be the Catalan numbers.
@ m = 4, we proved there are (,*,) such pairings.
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Results, continued

Question: Out of the (2k — 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?

For:
@ m = 0, well-known to be the Catalan numbers.

@ m = 4, we proved there are (,*,) such pairings.
@ m = 6, we proved there are 4(k2_"3) such pairings.

RE



Results, continued

Question: Out of the (2k — 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
For:

@ m = 0, well-known to be the Catalan numbers.
@ m = 4, we proved there are (,*,) such pairings.

@ m = 6, we proved there are 4(k2_"3) such pairings.

As k gets very large, the expected number of vertices in a
crossing converges to 2k — 2 and the variance converges
to 4.

¢



Benford’s Law

Benford’s Law
Thealexa Becker, Alec Greaves-Tunnell, Ryan Ronan

R7




Benford’s Law
©00000000

Benford’s Law Review

Benford’s Law: Newcomb (1881), Benford (1938)

A set is Benford if probability first digit is d is logg (%+2);
30% start with 1.

@ Many data sets exhibit Benford behavior:
¢ Fibonacci Sequence
¢ Lots of financial data (stocks, bonds, etc.)
o Certain products of random independent variables

¢
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Benford’s Law Review

Benford’s Law: Newcomb (1881), Benford (1938)

A set is Benford if probability first digit is d is logg (%+2);
30% start with 1.

@ Many data sets exhibit Benford behavior:
¢ Fibonacci Sequence
¢ Lots of financial data (stocks, bonds, etc.)
o Certain products of random independent variables

Interesting Question
Why do we observe Benford distribution of first digits in
“real world” data sets?

¢
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Overview

Lemons’ Interesting Answer (American Journal of
Physics, 1986)

Often due to observing distribution of pieces of a
conserved quantity.
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Lemons’ Interesting Answer (American Journal of
Physics, 1986)

Often due to observing distribution of pieces of a
conserved quantity.

@ Probability model in paper vague and unclear.
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Overview

Lemons’ Interesting Answer (American Journal of
Physics, 1986)

Often due to observing distribution of pieces of a
conserved quantity.

@ Probability model in paper vague and unclear.

Proposed model

Partition X into N terms: X = Zszl n;X;. Issues: what
possible x;’s? Is N fixed?

y
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@ For (small) finite N, brute force calculation shows
E(nj) = X%_(%); Benford density is proportional to 1/x.

TS -
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@ For (small) finite N, brute force calculation shows
E(nj) = X%_(%); Benford density is proportional to 1/x.

@ For general N, approximate: S = X — Zj n;X;,

N
(XY " nixg) x eS27,
=1

then evaluate N-dimensional integral.

A
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@ For (small) finite N, brute force calculation shows
E(nj) = X%_(%); Benford density is proportional to 1/x.

@ For general N, approximate: S = X — Zj n;X;,

N
(XY " nixg) x eS27,
=1

then evaluate N-dimensional integral.

o Difficulty: region of integration; can simplify with
indicator functions, but Fourier transform has slow
decay.

y
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Another model

Consider M sticks of lengths ¢;, each |; drawn from the
random variable L. Break each ¢ by cutting at k;¢;, with
Ki ~ Unif(0, 1). Repeat cutting N times.
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Another model

Consider M sticks of lengths ¢;, each |; drawn from the
random variable L. Break each ¢ by cutting at k;¢;, with
K ~ Unif(0, 1). Repeat cutting N times.

If L is Benford on [1,10) and N = 1, then as M — oo the
distribution of lengths of pieces is Benford’s Law.

A\

TS S
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Another model

Consider M sticks of lengths ¢;, each |; drawn from the
random variable L. Break each ¢ by cutting at k;¢;, with
K ~ Unif(0, 1). Repeat cutting N times.

If L is Benford on [1,10) and N = 1, then as M — oo the
distribution of lengths of pieces is Benford’s Law.

A\

o Find cumulative probability distribution function of
random variable Z = KL.

o Evaluate
—+oco

Prob[First digit = d] = ) _ [F,((d + 1)10™") — F,(d107")].

r=0

y
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Another model

Consider M sticks of lengths ¢;, each |; drawn from the
random variable L. Break each ¢ by cutting at k;¢;, with
K ~ Unif(0, 1). Repeat cutting N times.

If L is Benford on [1,10) and N = 1, then as M — oo the
distribution of lengths of pieces is Benford’s Law.

A\

o Find cumulative probability distribution function of
random variable Z = KL.

o Evaluate .
Prob[First digit = d] = ) _ [F,((d + 1)10™") — F,(d107")].
r=0

Also true if N — oco.

y
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Let L be fixed and consider one stick (M = 1). As N — oo,
the resulting first digit distribution of the lengths of the
broken pieces will conform to Benford’s Law.

© Wish to show that for any digit d the resulting first digit
distribution has zero variance.
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Let L be fixed and consider one stick (M = 1). As N — oo,
the resulting first digit distribution of the lengths of the
broken pieces will conform to Benford’s Law.

© Wish to show that for any digit d the resulting first digit
distribution has zero variance.
© Cross terms are most problematic: Need N — oo limit of

x10~" 2x10~J 1

i/i /1 /min(z v ~1>/m‘"< x—y) Y (= logx)"~*(logz logw)™ dwdzdydx
=1 x=0 Jy=0 z:min(ﬂz{;I ,1) w:min(x%g:;),l) r(n)r(m)2
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Definition of Copulas

Copula: A form of joint CDF between multiple variables
with given uniform marginals on the d-dimensional unit
cube.

Sklar's Theorem

Let X and Y be random variables with joint distribution
function H and marginal distribution functions F and G
respectively. There exists a copula, C, such that

vx,y € R, H(x,y) = C(F(x),G(y)).

\
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Archimedean Copulas
A commonly used / studied family of copulas is of the form

C(x,y) = ¢ H(¢(x) + o(y))

where ¢ is the generator and ¢! is the inverse generator
of the copula.
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Investigating the Benfordness of the product of random
variables arising from copulas.

Clayton Copula: C(x,y) = (x ¢ +y~% —1)=%/¢,
PDF (bivariate): 0(6=t + 1)(xy) 0~ 2(x ¢ +y—¢ — 1)=2-1/¢,

PDF (general case):

0N (X xa) (X O g T = 1)
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@ Early data and chi-square tests of multivariate
copulas suggest Benford behavior of the products of
copulas.

@ Proof strategy includes the integration of the PDF
over the region in which the product has first digit d
using Poisson summation:

1 1
/ N / Z (bIOglO(Xl'”X")(k)p(Xl? e 7Xn)Xm U an7
0 0 "

where

1 if10Ut2 ¢ [1,2)
0 otherwise.

Pa(u) = X[1,2)(10u+a) = {
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