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Background

A natural number n is perfect if σ(n) = 2n, where
σ(n) :=

∑
d |n d .

Are there infinitely many perfect numbers?
(6, 28, 496, 8128, . . .?)

Does odd perfect number exists?
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Analytic Progress

Let V (x) be the number of perfect numbers up to x . As x →∞,

(Volkmann 1955) V (x) = O(x5/6)

(Hornfeck 1955) V (x) = O(x1/2)

(Kanold 1956) V (x) = o(x1/2)

(Erdős 1956) V (x) = O(x1/2−δ)

(Kanold 1957) V (x) = O(x1/4 log x

log log x
)

(Hornfeck & Wirsing 1957) V (x) = O(xε)

(Wirsing 1959) V (x) ≤ xW / log log x

Conjecture 1.1

As x →∞,

V (x) ∼ eγ

log 2
log log x .
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Definitions

Let k : [1,∞)→ [0,∞) be an increasing function.

Definition 1.2 (k-near-perfect)

We say n is k-near-perfect if

σ(n) = 2n +
∑
d∈Dn

d ,

where Dn is a set of proper divisors of n and #Dn ≤ k(n).

Definition 1.3 ((`; k)-within-perfect)

Let ` > 1. Then we say n is (`; k)-within-perfect if

|σ(n)− `n| < k(n).
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Notations

N(k): set of k-near-perfect numbers

N(k ; x) = N(k) ∩ [1, x ]

W (`; k): set of (`; k)-within-perfect numbers

W (`; k ; x) := W (`; k) ∩ [1, x ]
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Our Results — Near-Perfect

Theorem 1.4 (Cohen-Cordwell-Epstein-K.-Lott-M. 2016)

Let N(k ; x) be the set of k-near-perfect numbers in [1, x ].
For k ≥ 4 and k 6= 2s+2 − 6, 2s+2 − 5 (s ≥ 2),

#N(k; x) �k
x

log x
(log log x)b

log(k+4)
log 2

c−3
.
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For small k

Theorem 1.5 (Cohen-Cordwell-Epstein-K.-Lott-M. 2016)

Let N(k ; x) be the set of k-near-perfect numbers in [1, x ].
For k = 2, 3,

#N(k ; x)� x exp

(
− 1

2

√
log x log log x

(
1+O

(
log log log x

log log x

)))
.

For k = 4, 5, 6, 7, 8, 9,

#N(k, x) ∼ ck
x

log x
,

where

c4 = c5 =
1

6
, c6 =

17

84
, c7 = c8 =

493

1260
, c9 =

179017

360360
.
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For Increasing k

Theorem 1.6 (Cohen-Cordwell-Epstein-K.-Lott-M. 2016)

Let k be positive increasing, N(k) be the set of k-near-perfect
numbers and N(k ; x) = N(k) ∩ [1, x ].

If k(y) < (log y)log 2−ε, then N(k) has density 0:

#N(k ; x) �ε
x

(log x)r(ε)
,

where

r(ε) := 1− (log 2− ε)(1 + log2 2− log(log 2− ε))

log 2
∈ (0, 1).

If k(y) > (log y)log 2+ε, then N(k) has positive density.
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Our Results — Within-Perfect

Denote by W (`; k ; x) the set of (`; k)-within-perfect numbers in
[1, x ] .

Theorem 1.7 (Cohen-Cordwell-Epstein-K.-Lott-M. 2016)

Let ε ∈ (0, 1/3), k(y) ≤ y ε be positive, increasing, unbounded,

and Σ be the set {σ(m)
m : m ≥ 1}.

If ` ∈ Σ ⊂ Q, then

lim
x→∞

#W (`; k; x)

x/ log x
=

∑
σ(m) = `m

1

m
.

If ` ∈ (Q ∩ [1,∞)) \ Σ, then

#W (`; k; x) = O`(x
min{3/4, ε+2/3}+o(1)).
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Near-Perfect Numbers
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A Bit of History

Sierpiński introduced the notion
of pseudoperfectness in 1965.

A natural number is said to
be pseudoperfect if it is a sum of
some subset of its proper divisors.
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A Bit of History

Erdös and Benkoski studied the
asymptotic density for pseudoper-
fect numbers, as well as that of
abundant numbers that are not
pseudoperfect (i.e., weird num-
bers).
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A Bit of History

In 2012, Pollack and Shevelev in-
troduced the notion of k-near-
perfectness defined before.
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Known result

Theorem 2.1 (Pollack-Shevelev 2012)

Let k ∈ N and N(k ; x) denotes the set of all k-near-perfect
numbers up to x. Then as x →∞,

#N(k ; x) �k
x

log x
(log log x)k−1.

#N(1; x)� x3/4+o(1)

#N(k ; x)� x exp(−(ck + o(1))
√

log x log log x) (k = 2, 3),

where c2 = 1/
√

6 ≈ 0.4082, c3 =
√

2/4 ≈ 0.3536.
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A Bit of Statistics — Normal Order

Definition 2.2 (normal order; Hardy-Ramanujan 1917)

For f and g positive arithmetic functions, f has normal order g if
for any ε > 0

lim
x→∞

1

x
#{n ≤ x : (1− ε)g(n) < f (n) < (1 + ε)g(n)} = 1.
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Normal Order

Hardy and Ramanujan
showed that the prime-
divisor-counting function
ω(n) and Ω(n) both have
normal order log log n.

By observing that
2ω(n) ≤ τ(n) ≤ 2Ω(n),
log τ(n) has normal order
(log 2) log log n.
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Application

Explains why there is phase change in density at (log y)log 2.

Push the bound of Pollack-Shevelev from x
log x (log log x)k−1

to x
log x (log log x)[ log k

log 2
].

How to do beyond this?
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Sketch of Pollack-Shevelev’s Argument

Let y > 0. We say a natural number n is y-smooth if n has
all prime factors of n is ≤ y .

Denote by P+(n) the largest prime factor of n.

The counting of N(k; x) is done by a partition:

N1(k; x) := {n ∈ N(k ; x) : n is y -smooth}
N2(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n)2|n}

Negligible contributions from N1(k; x) and N2(k ; x)
(= O(x/(log x)2)).
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Sketch of Pollack-Shevelev’s Argument

N3(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n) || n}.

Major contribution from N3(k ; x). N3(k ; x) is further
partitioned into N ′3(k; x) and N ′′3 (k ; x),

where N ′
3(k; x) consists of n ∈ N3(k; x) such that τ(n) ≤ k

and N ′′
3 (k; x) := N3(k; x) \ N ′

3(k; x).

By Landau’s Theorem, #N ′3(k ; x) is clearly
O( x

log x (log log x)k−1).

By elementary argument, N ′′3 (k ; x) is also negligible
(= O( xy (log x)3k+1)).



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Sketch of Pollack-Shevelev’s Argument

N3(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n) || n}.

Major contribution from N3(k ; x). N3(k ; x) is further
partitioned into N ′3(k; x) and N ′′3 (k ; x),

where N ′
3(k; x) consists of n ∈ N3(k; x) such that τ(n) ≤ k

and N ′′
3 (k; x) := N3(k; x) \ N ′

3(k; x).

By Landau’s Theorem, #N ′3(k ; x) is clearly
O( x

log x (log log x)k−1).

By elementary argument, N ′′3 (k ; x) is also negligible
(= O( xy (log x)3k+1)).



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Sketch of Pollack-Shevelev’s Argument

N3(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n) || n}.

Major contribution from N3(k ; x). N3(k ; x) is further
partitioned into N ′3(k; x) and N ′′3 (k ; x),

where N ′
3(k ; x) consists of n ∈ N3(k ; x) such that τ(n) ≤ k

and N ′′
3 (k ; x) := N3(k ; x) \ N ′

3(k ; x).

By Landau’s Theorem, #N ′3(k ; x) is clearly
O( x

log x (log log x)k−1).

By elementary argument, N ′′3 (k ; x) is also negligible
(= O( xy (log x)3k+1)).



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Sketch of Pollack-Shevelev’s Argument

N3(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n) || n}.

Major contribution from N3(k ; x). N3(k ; x) is further
partitioned into N ′3(k; x) and N ′′3 (k ; x),

where N ′
3(k ; x) consists of n ∈ N3(k ; x) such that τ(n) ≤ k

and N ′′
3 (k ; x) := N3(k ; x) \ N ′

3(k ; x).

By Landau’s Theorem, #N ′3(k ; x) is clearly
O( x

log x (log log x)k−1).

By elementary argument, N ′′3 (k ; x) is also negligible
(= O( xy (log x)3k+1)).



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Sketch of Pollack-Shevelev’s Argument

N3(k; x) := {n ∈ N(k ; x) : P+(n) > y and P+(n) || n}.

Major contribution from N3(k ; x). N3(k ; x) is further
partitioned into N ′3(k; x) and N ′′3 (k ; x),

where N ′
3(k ; x) consists of n ∈ N3(k ; x) such that τ(n) ≤ k

and N ′′
3 (k ; x) := N3(k ; x) \ N ′

3(k ; x).

By Landau’s Theorem, #N ′3(k ; x) is clearly
O( x

log x (log log x)k−1).

By elementary argument, N ′′3 (k ; x) is also negligible
(= O( xy (log x)3k+1)).



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Modification

Problem: The estimation of N ′3 is too rough and does not use
the arithmetic information of near-perfectness.

Instead, consider N
(1)
3 (k ; x) consists of n ∈ N3(k ; x) such that

n = pm, τ(m) ≤ k, m ∈ N(k − τ(m)),

N
(2)
3 (k ; x) = N3(k ; x) \ N(1)

3 (k ; x).

Inductive argument to N
(1)
3 : n = p1m1
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Repeat the partitioning process to m1, i.e., estimate the sizes
of the sets:{

n ≤ x : n = p1m1, p1 > max{y ,P+(m1)},m1 ∈ M

(
k − τ(m1),

x

y

)}
,

where M = N1,N2,N
(1)
3 ,N

(2)
3 .

When M = N1,N2,N
(2)
3 , the size is � x

log x log log x .

When M = N
(1)
3 , the set is equal to

{
n ≤ x : n = p1p2m2, p1 > p2 >max{y ,P+(m2)},

m2 ∈ N

(
k − 3τ(m2),

x

y2

)}
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General: Repeating the process for j − 1 times

#

{
n ≤ x : n = p1 · · · pj−1mj−1, p1 > · · · > pj−1 > y1,P

+(mj−1),

mj−1 ∈ M(k − (2j−1 − 1)τ(mj−1))

}
�k

x

log x
(log log x)j−1,

where M = N1,N2,N
(2)
3 .
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#

{
n ≤ x : n = p1 · · · pj−1mj−1, p1 > · · · > pj−1 > P+(mj−1) > y1,

mj−1 ∈ N
(1)
3 (k − (2j−1 − 1)τ(mj−1))

}
= #

{
n ≤ x : n = p1 · · · pj−1pjmj , p1 > · · · > pj−1 > pj > y1,P

+(mj),

mj ∈ N(k − (2j − 1)τ(mj))

}
.
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When shall we stop?

We stop when there are only finitely many mj such that
(2j − 1)τ(mj) ≤ k and mj ∈ N(k − (2j − 1)τ(mj)). Then we
will have

#N(k ; x) �k
x

log x
(log log x)j−1.

These are satisfied when j = b log(k+4)
log 2 c − 2. Also, τ(mj) is

small and can be handled directly. The result follows.
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Within-Perfect Numbers
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Recall

Definition 3.1 ((`; k)-within-perfect)

Let ` > 1, k be an increasing function. Then we say n is
(`; k)-within-perfect if

|σ(n)− `n| < k(n).
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Phase Transition of Density

Davenport showed that σ(n)/n has a distribution function in 1933.
It follows that:

Theorem 3.2

Let D(·) denote the distribution function of σ(n)/n.

If k(n) = o(n), then the set of (`; k)-within-perfect numbers
has density 0.

If k(n) ∼ cn for some c > 0, then the set of
(`; k)-within-perfect numbers has density D(`+ c)−D(`− c).

If n = o(k(n)), then the set of (`; k)-within-perfect numbers
has density 1.
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Better Understanding?

For the sublinear regime, from the above theorem we only
know the density of (`; k)-within-perfect numbers is 0.

The next step is to find an explicit upper bound for the
sublinear regime.
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Motivation — Fixing k

In 1975, Pomerance studied
the distribution of S`,k = {n ∈
N : σ(n) = `n + k}, where
`, k ∈ Z, ` ≥ 2.

S2,0 (Perfect numbers),

S`,0 (`-multiply perfect
numbers),

S2,1 (Quasiperfect
numbers),

S2,−1 (Almost perfect
numbers)
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Pomerance’s Theorem

Theorem 3.3 (Pomerance 1975)

Denote S`,k ∩ [1, x ] by S`,k(x). As x →∞,

#S`.k(x) �k
x

log x
.



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Ideas — Regular & Sporadic

If σ(n) = `n + k , then σ(n) ≡ k (mod n).

Definition 3.4

Say n is a regular solution of σ(n) ≡ k (mod n) if n = pm, with p
prime, p - m, m | σ(m), and σ(m) = k; otherwise n is a sporadic
solution.
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Theorem 3.5 (Pomerance (1975))

The number of sporadic solutions of σ(n) ≡ k (mod n) is
Ok(x exp(−β(log x log log x)1/2)) as x →∞ for any β < 1/

√
2.

Theorem 3.6 (Anavi-Pollack-Pomerance (2012))

Uniformly for |k | ≤ x1/4, the number of sporadic solutions of
σ(n) ≡ k (mod n) is at most x1/2+o(1), as x →∞.

Theorem (Pollack-Pomerance-Thompson 2017)

Let `, k be integers with ` > 0. Then the number of sporadic
solutions n ≤ x of σ(n) = `n + k is at most x3/5+o`(1) as
x →∞, uniformly in k .
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Our Results — Within-Perfect

Denote by W (`; k ; x) the set of (`; k)-within-perfect numbers in
[1, x ].

Theorem 3.7 (Cohen-Cordwell-Epstein-K.-Lott-M. 2016)

Let ε ∈ (0, 1/3), k(y) ≤ y ε be positive, increasing, unbounded,

and Σ be the set {σ(m)
m : m ≥ 1}.

If ` ∈ Σ ⊂ Q, then

lim
x→∞

#W (`; k; x)

x/ log x
=

∑
σ(m) = `m

1

m
.

If ` ∈ (Q ∩ [1,∞)) \ Σ, then

#W (`; k; x) = O`(x
min{3/4, ε+2/3}+o(1)).
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Sketch of Proof

Assume that an `-perfect numbers exist. Take k(y) = y ε

(ε ∈ (0, 1/3)).

Consider the collection of Diophantine equations

σ(n)− `n = k , where k ∈ Z, |k | < xε.

We can make the following assumptions one by one:
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Assumptions

1 n is regular (else by Pomerance’s Theorem the contribution
from the complement is ≤ 2x2/3+ε+o(1)).

2 n = pm and p > xε (else by PNT & Hornfeck-Wirsing

Theorem, the contribution from the complement is ≤ xε+o(1)

log x ).

3 σ(m)/m ≤ `.

4 σ(m)/m = ` (else by Merten’s estimate, the number of n’s
with σ(m) = rm with 2 ≤ r ≤ `− 1 and p > xε is
� (`− 2)xε log log x).
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Thus, we only have to work with

n = pm where p is prime, p - m, σ(m) = `m

Once again by PNT and Hornfeck-Wirsing, for any c > 1,

#W (`; k ; x) ≤
∑
m≤xε

σ(m)=`m

π(x/m)

< c
∑
m≤xε

σ(m)=`m

x/m

log(x/m)

= c
x

log x

∑
m≤xε

σ(m)=`m

1

m
+ Oε

(
cx

(log x)2

∑
m≤xε

σ(m)=`m

logm

m

)

< c
x

log x

∑
σ(m)=`m

1

m
+ Oε

(
cx

(log x)2

)
.
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Further Thoughts

What happens if ` is irrational?

Wolke and Harman studied in terms of a Diophantine
approximation and used the Prime Number Theorem in Short
Interval.

They showed that for any real ` ≥ 1 and for any
c ∈ (0.525, 1), there exists infinitely many natural numbers
that are (`; y c)-within-perfect. But the constructed set is
quite sparse.

Can we do better than this?
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Further Thoughts

Conjecture (Pollack-Pomerance-Thompson 2017)

Let x ≥ 3, `, k be integers with ` > 0 and |k | ≤ x . Then the
number of sporadic solutions n ≤ x of σ(n) = `n + k is at most
x1/2+o(1) as x →∞, uniformly in k , `.

If this were proven, then one can push our result to
k(x) < x1/2−ε.

How to do beyond this range in the sublinear regime?
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Within-Perfect Numbers



Introduction Near-perfect numbers Within-perfect numbers References Appendix

Sketch of Proof

Assume `-perfect numbers exist and k(y) ≤ y ε for
ε ∈ (0, 1/3).

Showing

lim inf
x→∞

#W (`; k ; x)

x/ log x
≥

∑
σ(m)=`m

1

m

is a direct consequence of the Prime Number Theorem.

Now we want to show

lim sup
x→∞

#W (`; k; x)

x/ log x
≤

∑
σ(m)=`m

1

m
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It suffices to consider k(y) = y ε. Fix a large x and let n ≤ x
satisfy |σ(n)− `n| < xε.

Rewrite this Diophantine inequality as a collection of
Diophantine equations over certain range, i.e.,

σ(n)− `n = k , where k ∈ Z, |k | < xε.

In particular, we have a collection of congruences in the form
of regular solutions:

σ(n) ≡ k (mod n), where k ∈ Z, |k | < xε.
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Recall from Pomerance’s Theorems

n is a regular solution if n is of the form

n = pm where p is prime, p - m, m | σ(m), and σ(m) = k (∗)
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We can make the following assumptions one by one:

n is in the form of (*).

By Pomerance’s theorem, the number of elements of
W (`; k ; x) NOT of the form (*) is at most

2xεx2/3+o(1) = 2x2/3+ε+o(1),

which is negligible (compared with x/ log x).
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Theorem 5.1 (Hornfeck-Wirsing)

The number of multiply perfect numbers less than or equal to x is
at most xo(1) as x →∞.



Introduction Near-perfect numbers Within-perfect numbers References Appendix

p > xε in (*).

By the Prime Number Theorem and Hornfeck-Wirsing
theorem, the number of n ≤ x of the form (*) with p ≤ xε is
at most

xε

log xε
xo(1) �ε

xε+o(1)

log x
,

which is again negligible.
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σ(m)/m ≤ ` in (*).

If σ(m) = rm for some r ≥ `+ 1, then

σ(n)− `n = σ(p)σ(m)− `pm
= (1 + p)(rm)− `pm
= m(r + p(r − `))

≥ p > xε.

Contradiction!
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σ(m)/m = ` in (*).

Consider the case where σ(m) = rm with 2 ≤ r ≤ `− 1 and
p > xε. By Merten’s estimate, the number of such n is

≤
∑

2≤r≤`−1

∑
xε<p≤x

xε

(`− r)p − r

≤ (`− 2)xε
∑

xε<p≤x

1

p − `+ 1

≤ 2(`− 2)xε
∑

xε<p≤x

1

p

� (`− 2)xε log log x .
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Thus, we only have to work with

n = pm where p is prime, p - m, σ(m) = `m (**)

Next we estimate the contribution from (**).

By partial summation and Hornfeck-Wirsing Theorem, we have∑
σ(m) = `m

logm

m
,

∑
σ(m) = `m

1

m

converge.
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Let c be any constant greater than 1. By the Prime Number
Theorem, there exists x0 = x0(c) > 0 such that for x ≥ x0, we have

π(x) < c
x

log x
.

Then for x ≥ max{x1/(1−ε)
0 , `2}, we have

#W (`; k ; x) ≤
∑
m≤xε

σ(m)=`m

π(x/m)

< c
∑
m≤xε

σ(m)=`m

x/m

log(x/m)

= c
x

log x

∑
m≤xε

σ(m)=`m

1

m
+ Oε

(
cx

(log x)2

∑
m≤xε

σ(m)=`m

logm

m

)

< c
x

log x

∑
σ(m)=`m

1

m
+ Oε

(
cx

(log x)2

)
.
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Therefore,

lim sup
x→∞

#W (`; k; x)

x/ log x
≤ c

∑
σ(m)=`m

1

m
.

Since the choice of constant c > 1 is arbitrary, we have

lim sup
x→∞

#W (`; k; x)

x/ log x
≤

∑
σ(m)=`m

1

m
.

This completes the proof.
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