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Why should we care about L-Functions?

L-functions provide a way to study arithmetic properties of
integers by translating them to an analytic setting.

Euler proved that properties of primes can be studied analytically
for s > 1:

∞∑
n=1

1
ns =

∏
p prime

1
1− p−s .

This was formalized by Riemann ζ-function, which is a well-known
example of an L-function.

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1−

1
ps

)−1

, ℜ(s) > 1,
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Riemann Zeta

The Riemann ζ-function admits an analytic continuation by
means of a functional equation:

ξ(s) = Γ

(
s
2

)
π−

s
2 ζ(s) = ξ(1− s).

Connection between distribution its zeros and the distribution of
primes. The Prime Number Theorem is equivalent to there being
no ζ-zeros on the line Re(s) = 1.

Riemann Hypothesis: All non trivial zeros lie in the line
ℜ(s) = 1/2.
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General L-functions

An L-function is

L(s, f ) =
∞∑

n=1

af

ns =
∏

p prime

Lp(s, f )−1,ℜ(s) > 1

They have functional equation:

Λ(s, f ) =

(√
N

2π

)s

Γ

(
s +

k − 1
2

)
L(s, f ) = ϵf Λ(1− s, f )

where ϵf = ±1
Generalized Riemann Hypothesis: All non trivial zeroes lie in the
line ℜ(s) = 1/2
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Even More Motivation to Study Zeros!

• Infinitude of primes, primes in arithmetic progression

• Birch and Swinnerton Dyer: rational points of elliptic curves

• Goldfeld-Gross-Zagier: Gauss class number problem for
imaginary quadratic fields
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L-Functions Connection to Random Matrix Theory

• Surprising relation to Random Matrix Theory

• Montgomery and Dyson found that pair correlation of zeros of
ζ(s) matched the pair correlation of eigenvalues of large
unitary matrices in RMT.

• The pair correlation conjecture states that the pair
correlation between pairs of zeros of ζ(s) is the same as the
pair correlation function of random Hermitian matrices

Katz-Sarnak Philosophy
In the limit, statistics of L-functions match statistics for large
random matrices from particular classical compact groups.

• U(N)

• O(N)

• USp(2N)
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The GUE Hypothesis

• The Gaussian Unitary Ensemble is an ensemble of random
n × n Hermitian matrices (A = AT ) with upper triangular
entries i.i.d.r.v. a certain probability measure independent of
the upper triangular ones.

The GUE Hypothesis

The zeros of ζ(s) are distributed like the eigenvalues of large
random matrices from the Gaussian Unitary Ensemble. This
generalizes the pair correlation conjecture regarding pairs of
such zeros.

• Key takeaway: Random matrix models are extremely useful for
a comparisons of the behavior or zeros of L-Functions.
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Some notation

• Ramanujan Sum: R(n, q) =
∑

(a,q)=1 exp(an/q)

• Principal Dirichlet Character χ0:

χ0(n)

{
1 if(n, b) = 1

0 otherwise

• φ(x) is a Schwartz even test function with support [−σ, σ]
• φ̂(x) is the Fourier Transform with support [−1, 1]

φ̂(ξ) =

∫ ∞
−∞
φ(x) exp(−2πixξ)dx

• Jk−1(x) is the Bessel function of the first kind.

• R = k2N is the analytic conductor
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Modular Form Preliminaries

• Define the Hecke congruence subgroup:

Γ0(N) =

{(
a b
c d

)
ad − bc = 1, c ≡ 0 (N)

}
• We say f is a weight k holomorphic cuspform of level N if

∀γ ∈ Γ0(N), f (γz) = (cz + d)k f (z).

• Denote Sk(N) the space of all cusp forms of weight k for the
Hecke congruence subgroup Γ0(N) of level N.

• f ∈ Sk(N) iff f is holomorphic in the upper half plane satisfies

f
(

az + b
cz + d

)
= (cz + d)k f (z)

for all
(

a b
c d

)
∈ Γ0(N), and vanishes at each cusp of Γ0(N).
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Modular Form Preliminaries

• Let f ∈ Sk(N) be of weight k and level N be a cuspidal
newform. For our purposes, this implies that f is a cusp form
of level N but not of level 1.

• With Fourier expansion

f (z) =

∞∑
n=1

af (n)e(nz),

with f normalized so that af (1) = 1.

• Denote H∗k to be the set of all cuspidal newforms f ∈ Sk(N).
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Hughes-Miller Results

• Calculated moments of a smooth counting function of the
zeros near the central point of L-functions of weight k cuspidal
newforms of prime level N.

• nth centered moments agree with RMT for test functions
whose Fourier transforms are supported in the extended range
(−2

n ,
2
n ), 2k ≥ n.

• Provide additional support for Katz-Sarnak conjectures.
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Methods for Proof and Key Idea

• Calculating multi-dimensional integrals in Bessel-Kloosterman
expansion of Petersson formula.

• This involves a change of variables (we lose support)

• Important!: Expanding support allows us to see more values of
the function we are analyzing (and thus more zeros!)
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Results from Iwaniac-Luo-Sarnak

∑
m≤Nϵ

1
m2

∑
(b,N)=1

R
(
m2, b

)
R(1, b)

ϕ(b)∫ ∞
y=0

Jk−1(y)Ψ̂

(
2 log(by

√
N/4πm)

logR

)
dy

logR

= −
1
2

[∫ ∞
−∞

Ψ(x)
sin 2πx
2πx

dx −
1
2
Ψ(0)

]
+ O

(
k log log kN

log kN

)

• HM changes variables to appeal to this result as a lemma, but
loses support.

• To regain support, HM does complicated combinatorics
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Methods for Proof and Key Idea

The Key Idea!
HM had difficulty in comparison with classical RMT. Instead of
having an n-dimensional integral of φ1(x1) · · ·φn(xn), we have a
1-dimensional integral of a new test function. This leads to harder
combinatorics but allows us to appeal to the result from ILS.
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The New Objective

Are there any other ways to achieve the same support without
using combinatorial arguments? It is easier to show that it agrees

with RMT?
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Objective

We want to turn this:

S(2)
2 = −

2n+1π√
N

∑
p1,p2

∑
m≤Nϵ

1
m

∑
b<N2006

1
bϕ(b)∑

χ( mod b)

R(m2, 1)R(1, b)χ̄ (p1p2)× Jk−1

(
4πm

√
p1p2

b
√

N

)
2∏

j=1

(
φ̂

(
log pj

logR

)
log pj√pj logR

)
+ O

(
N−ϵ

)
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Goal

Into this:

S(2)
2 = −

1
2

[∫ ∞
−∞

Ψ(x)
sin 2πx
2πx

dx −
1
2
Ψ(0)

]
+ O

(
k log log kN

log kN

)
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Fixing the prime

S(2)
2 = −

2n+1π√
N

∑
p1

φ̂

(
log p1

logR

)
log p1√
p1 logR

∑
m≤Nϵ

1
m∑

b<N2006

∑
χ(modb)

R
(
m2, b

)
R(1, b)χ(p1)

bϕ(b)

×
∑
p2

(
φ̂

(
log p2

logR

)
χ (p2) log(p2)√

p2 logR

)
Jk−1

(
4πm

√
p2p1

b
√

N

)
+ O

(
N−ϵ

)
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Handling the χ

S(2)
2 = −

2n+1π√
N

∑
p1

φ̂

(
log p1

logR

)
log p1√
p1 logR

∑
m≤Nϵ

1
m∑

b<N2006

R
(
m2, b

)
R(1, b)χ0(p1)

bϕ(b)

×
∑
p2

(
φ̂

(
log p2

logR

)
χ0 (p2) log(p2)√

p2 logR

)
Jk−1

(
4πm

√
p2p1

b
√

N

)
+ O

(
N−ϵ

)
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From primes to integers

S(2)
2 = −

2n+1π√
N

∑
p1

φ̂

(
log p1

logR

)
log p1√
p1 logR

∑
m≤Nϵ

1
m∑

b<N2006

R
(
m2, b

)
R(1, b)χ0(p1)

bϕ(b)

×
∑
n1

(
φ̂

(
log n1

logR

)
χ0 (n1) Λ (n1)√

n1 logR

)
Jk−1

(
4πm

√
n1p1

b
√

N

)
+ O

(
N−ϵ

)
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The Mellin Transform

MJk−1(s) = Gk−1(s) =
∫ ∞

0
x s−1Jk−1(x)dx

Jk−1(s) =
1

2πi

∫
ℜs=1

Gk−1(s)x−sds
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From sum to integral

S(2)
2 = −

2n+1π√
N

∑
p1

φ̂

(
log p1

logR

)
log p1√
p1 logR

∑
m≤Nϵ

1
m∑

b<N2006

R
(
m2, b

)
R(1, b)χ0(p1)

bϕ(b)
b
√

N
2πm

√
p1 logR

∫ ∞
0

Jk−1(x)φ̂

2 log
(

bx
√

N
4πm

√
p1

)
logR

 dx
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Simplifying

S(2)
2 = −2n

∑
p1

φ̂

(
log p1

logR

)
log p1

p1 logR

∑
m≤Nϵ

1
m2

∑
b<N2006

R
(
m2, b

)
R(1, b)χ0(p1)

ϕ(b)
1

logR

∫ ∞
0

Jk−1(x)φ̂

2 log
(

bx
√

N
4πm

√
p1

)
logR

 dx
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Bessel and Gamma

S(2)
2 = −2n

∑
p1

φ̂

(
log p1

logR

)
log p1

p1 logR

∑
m≤Nϵ

1
m2

∑
b<N2006

R
(
m2, b

)
R(1, b)χ0(p1)

ϕ(b)∫ ∞
−∞
φ(x logR)

(
2πmL

b
√

N

)4πix Γ
(k

2 − 2πix
)

Γ
(k

2 + 2πix
)dx
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Current State

We have the following:

− 2n
∑
p1

φ̂

(
log p1

logR

)(
ϕ(p1) log p1

p2
1 logR

)
∫ ∞
−∞
φ(x)

sin
(
2πx logA

logR

)
2πx

dx +
1
2
φ(0)


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