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Summary

@ Review of L-functions
e Applications: Bounding average rank, high vanishing

@ |deas of Proof: Functional Analysis, Reduction of
Dimension
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Summary
o

Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the
end. Not optimized.

As order of vanishing increases, result gets better but
initially bad.

Worst results I’'ve proved:

o (Approximately) at most 250% of cuspidal newforms
vanish to order 2 or more.

@ There are at least log log log x primes at most x!
o Uses PNT: 7(x) ~ x/ log x!.
¢ Can make better:
https://arxiv.org/abs/0709.2184.
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Example: Riemann Zeta Function

Riemann Zeta Function
((s)= Y &= TI == for R(s) > 1.

n=1 p prime

v

3>

Functional Equation

¢(s) =257 Tsin(Z)M(1 — s)¢(1 —s) for se C\ {1}.

Riemann Hypothesis

All nontrivial zeros (not negative even integers) of ¢ are of
the form v = I + io with o € R.
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General L-functions

e Euler product

00 d
s ) =3 2 TT [0 - aod) "

n=1 p prime j=1

@ meromorphic continuation to C, of finite order, at most
finitely may poles (all on the line R(s) = 1),

e Functional equation: w € R, G(s) product of '-fns:

e“G(s)L(s,f) = e “G(1 —3)L(1 —3).
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Random Matrix Theory (RMT)

e Ensembles of matrices (Real Symmetric, Hermitian)
with entries drawn from probability distribution;
Classical Compact Groups.

e Study distribution of normalized eigenvalues for given
ensemble.

Applications of RMT

Behavior of zeros of L-functions and energy levels of
heavy nuclei well-modeled by eigenvalues of random
matrix ensembles.
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Riemann hypothesis = zeros of L(s, f) are of the form
pr = % + iyr with 7 € R.
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Fourier transform ¢ compactly supported, $(0) > 0.
¢ > 1 is the analytic conductor.
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1-level Density

Riemann hypothesis = zeros of L(s, f) are of the form
pr = % + iyr with 7 € R.

1-level Density
D(f; ¢) == >_ ¢(5% log(cr)) where ¢ > 0 is even, Schwartz,
vt

Fourier transform ¢ compactly supported, $(0) > 0.
¢ > 1 is the analytic conductor.

Varying ¢, D(f; ) measures density of zeros of L(s, f)
near central point s = 1/2.
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1-level Density

Impossible to calculate D(f; ¢) explicitly in practice... so
take averages over finite subfamilies of F:

FQ)={feF:c<Q}
E(F(Q); ¢) = |fg—oﬂzfxf; 9).

feF
Then take a limit:

Q—oo

lim E(F(Q): ) = / S(X)W(F)(x) dx

where W(F) is a distribution depending on F.
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1-level Density

Katz-Sarnak Philosophy: W(F) is dependent on a
symmetry group G = G(F) of F, write W(F) = W, 6.

Examples:

Wio(x) = 1—|—%5(x)
sin(27x)
21X
sin(27x)
- 2nx

Wi so(Even)(X) = 1+

Wi sooday(X) = 1 +6(x).
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1-level Density

Quantity of interest
C;im AveRank(F(Q)), where AveRank(F(Q)) is average

order of vanishing of the L-functions with f € 7(Q) at
s=1/2.

Trivially

Cli;nooAveRank(]-"(Q)) < 2(0)
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n-level Density

n-level Density

Do(f;0) = > ¢ (%L log(cr), %2 log(Cr), .., 5L log(cy)) -

j,f
|j| distinct
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n-level Density

Di(f;0) = > ¢ (% log(cr), 2 log(cr), .. -, 5 log(cr)) -

j,f
|j| distinct

4

Higher Dimensional Bound

i i n W, d
limg_oo WeightedAveRank(F(Q)) < Jrn () ¢fé)x) X -
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n-level Density

n-level Density
Di(f;0) = > ¢ (% log(cr), 2 log(cr), .. -, 5 log(cr)) -
), f

U,
|j| distinct

Higher Dimensional Bound

lim a0 WeightedAveRank(F(Q)) < Lt fneld b = do

Higher level densities give stronger bound. Minimize
right-hand side over admissible ¢ for n as large as
possible.
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Applications of n-level density

Average rank - ¢(0) < [ ¢(x)Wg(r)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
order r for any r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a c, such that probability of at least r
zeros at the central point is at most c,r=".

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r > 5.
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Katz-Sarnak Determinants

Set K.(x,y) := g + gl e € (0, £1),

The n-level weights for classical compact groups are

Wn,SO(Even)(X) = det(K1 (Xi’)(j))i,jgn
n

Wh sooua)(X) = det (K_1(Xi, X)), i<y + Z 0(Xk) det (K—1(Xi, X)), 1k
k=1

1 1
Wh.o(X) = 5 Wasomven)(X) + 5 Waso(wu)(X)

Wh,u(x) = det (Ko(Xi, X)), <
Wi sp(x) = det (K_1(xi, X;))

ij<n*
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Philosophy: Reduce dimension of number theory
problem.

Theorem (lwaniec-Luo-Sarnak)

Let W be an even Schwartz function with supp(¥) C (—2,2). Then

Z Z R(m? b)R(1 b)/ Jes (1) <2|og(byf/4wm)> y

m<N‘ (bN log R log R

1 o sin 2w X 1 k log log kN
= —= v — =V(0 o ————
2 {/_oo (x) 2mx X 2 ( )} * ( log kN )7

where R = k2N, ¢ is Euler’s totient function, and R(n, q) is a Ramanujan sum.
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2-Level Density

/Ro /Fi(7 a(logX1)$<|OgX2)J 47T\/m2X1X2N dX1dX2
x1=2 J xp=2 e c v/ X1 X2
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2-Level Density

Re RT N 2 N
/ / ¢(IOgX1)¢<IOgX2)Jk_1 <47T\/m X1 X2 ) dX1dX2
X1 =2 X2:2

|OgR |Og R C v X1 X2

Change of variables and Jacobian:

%)

U = XiXo Xo = m
by = X X1 = U
ox 1 0 1
ou Z U
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2-Level Density

/Ro / |Og X1 |Og Xo J 4 \/ m2X1 X2N dX1 dX2
X1 Xo= Iog R o " c VX1 X2

Change of variables and Jacobian:

%)

U = Xi1Xo Xo = m
bt = X X1 = U
ox 1 0 1
—| = _w 1| = — and
8” U12 Uy U1

~(roguy - (0 () 1 (, VrPwN
//¢(|0gﬁ>¢ logR | Vi S U
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2-Level Density

Change variables: w = log u; / log R; uy-integral is

7 ~ ~ [ log U>
/|/‘|/1_|ogu2 0'¢(W1)¢<IogR _W1) dW1

“logR
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2-Level Density

Change variables: w = log u; / log R; uy-integral is

7 ~ ~ [ log U>
/;V_loguz a¢(W1)¢<IOgR —W1) dW1.

17|og.‘:l_

Support conditions imply

logu\ [ =~ ~(loglp
%(log/?) - /vv__m¢(w1)¢<|og/? W1) i




Review of L-Functions
[ ]

2-Level Density

Change variables: w = log u; / log R; uy-integral is

7 ~ ~ [ log U>
oy 0007 (g =)

" log R

Support conditions imply
logu\ [ =~ ~(loglp
w2<|OgR> = /W1__OO¢(W1)¢<|OgR W1) aw;.
Substituting gives

/ J 4r m2u2N " <Iogu2>%
- k—1 - RN N
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Main Results

Main Idea

Restrict domain to only those ¢ which are products of
single variable test functions: ¢(x) = ¢1(x1) - - - Pn(Xn)
(equivalent to linear combinations of such products).
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Main Results

Main Idea

Restrict domain to only those ¢ which are products of
single variable test functions: ¢(x) = ¢1(x1) - - - Pn(Xn)
(equivalent to linear combinations of such products).

@ Choosing first n — 1 factors ¢4, ..., ¢,_1 carefully, can
integrate first n — 1 variables to obtain new weight
function of a form similar to 1-dimensional weights.

Q 1-level case already solved, so choose ¢, optimally
for new weight.
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1-level Case

Two Steps.
¢ Reduce problem to different optimization problem.

o Use functional analysis to solve reduced problem.

YT
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Step 1: Reduce Problem

Assume supp($) C [—1, 1]. Plancherel on numerator,
taking then inverting Fourler transform in denominator:

[ o) Wha()dx [1 3(6)Waa(e) d
“(0) [ideya
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Ahiezer's Theorem and the Paley-Wiener Theorem show
¢ admissible < ¢(&) = (g * §)(&) for some

g € L?[-3, 3], where g(¢) = g(—¢).
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°

Step 1: Reduce Problem

Assume supp($) C [—1, 1]. Plancherel on numerator,
taking then inverting Fourler transform in denominator:

% (X)W 6(x) dx fLé(@V/VE(S)dg

¢(0) L d©)de

Ahiezer's Theorem and the Paley-Wiener Theorem show
¢ admissible < ¢(&) = (g * §)(&) for some

g € L?[-3, 3], where g(¢) = g(—¢).

Calculations show for classical compact group,

@(g) =0(&) + m(&) on [—1, 1], with m(&) real,
piecewise continuous, even.
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Step 1: Reduce Problem

Some functional analysis: define compact, self-adjoint

2 1 1 2
linear operator K : L 5] = L _575

/mx y y

l\)\—‘
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Step 1: Reduce Problem

Some functional anaIyS|s define compact, self-adjoint

linear operator K : [2[—1,1] — L?[-1,1

/mx y)a(y)dy.

Some manipulations (1 is the characteristic function of a
set):

l\)\—‘

—

JLAOWia(€)de  [1(g* 8)(©)(6(€) + m(E)) de
/

1 B(e) de I (g 8)(€)de
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Step 1: Reduce Problem

T (309G + g + mie)ate +y)g0y) dedy
ff,f 9(& +y)9(y) ds dy
ghe + ' S35 m(©)g()a(—E + y) dy d
f2 I g€+ y)degly)dy
(g9 e+ [y A m(—€)g(y)g(—€ + ) dy de
ffE J1 9(&+y)dg g(y) dy
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Step 1: Reduce Problem

<gng+f2 f2 (€ —y)aly)dyg(&) d¢

I3, 1" ale + y) de gy dy

_(9.9)i2 +(Kg.9)i2
<g> 1>L2<1ag>L2

_ ({(I+K)g,9):2
(1.9) 2P

New Problem

((+K
Defining R : %[} 2 2] — L*[~] 2> 2] by R(9) = (|<+1 g)>gg|;L2’

minimize R over subset of L?[—1, 1] with denominator # 0.
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Step 2: Minimization

Some observations:
e R(g) > C!im AveRank(F(Q)) > 0.

@ Spectral Theorem — orthonormal basis of
eigenvectors of K, eigenvalues ;.

O)\jZ—1.

AR
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Step 2: Minimization

Some observations:
e R(g) > C!im AveRank(F(Q)) > 0.
@ Spectral Theorem — orthonormal basis of
eigenvectors of K, eigenvalues ;.
o )\j Z —1.

Case 1: Eigenvalue (—1)

If have a (—1)-eigenvector f, € L2[—1, 1] not orthogonal to

(K)o, f0) 2 (fofo) o —(fosfo) 2
1,then R(h) = Syrar™ =~ Tamer = = 0
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Step 2: Minimization

Case 2: \; > —1 for all j. More functional analysis!

A7
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Step 2: Minimization

Case 2: \; > —1 for all j. More functional analysis!
@ ker(/+ K) = {0} (all eigenvalues > —1).
e Fredholm Theory —> 3f, € L?[-1, ]] satisfying
(I+K)fy=1.
o A= <1, fo> = <(/+ K)fo, fO>L2 > 0.
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Step 2: Minimization

Case 2: \; > —1 for all j. More functional analysis!
@ ker(/+ K) = {0} (all eigenvalues > —1).
e Fredholm Theory —> 3f, € L?[-1, ]] satisfying
(I+K)fy=1.
o A= <1, fo> = <(/+ K)fo, fO>L2 > 0.
For g = fy + h € L?[-}, ] with (1,9),2 # 0, WLOG
(1,9);2=A. Then (1, h),- =0, so

(1, fo)e + (I + K)h, hy 2 + (1, )2 + (D, 1) 2

A2
A+{(l+Khh+0+0 _ 1
A2 T A

R(9) =
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n-Level Case

BO)
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Challenges:

@ W, s more complicated.

@ Higher dimensional integral operators not as
well-understood.

ST




n-Level Case

Challenges:

@ W, s more complicated.

@ Higher dimensional integral operators not as
well-understood.

Restrict to minimizing over ¢(x) = ¢1(X1) - - - ¢n(Xn) With ¢;
as in 1-level case (equivalent to minimizing over finite
sums).

N TS -
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An Approach

Outline:

© Choose ¢, ..., ¢, and integrate last n — 1 variables to
obtain new weight function similar to 1-level weights.

o Use 1-level approach to minimize choice of ¢;.

eSS -
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Example: W,y

Problem

Minimize o

fJRZ d)1 (X1 )¢2(X2)W2’U(X) dX1 dX2 o f[71’1]2 ¢1 £1 )¢2(£2)W2 U(E) d§1 d£2
#1(0)¢2(0) - #1(0)#2(0)

o1, ¢2 even, Schwartz, ¢1(0), ¢2(0) > 0, and

supp(q§1),supp(q§2) - [_17 1]

ver

BA
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Example: W,y

Problem
Minimize S
fJRZ d)1 (X1 )¢2(X2)W2’U(X) dxq dxo o f[71’1]2 ¢1 £1 )¢2(£2)W2 U(E) d§1 d£2

#1(0)¢2(0) - #1(0)¢2(0)
o1, ¢2 even, Schwartz, ¢1(0), ¢2(0) > 0, and

supp(q§1),supp(q§2) - [_17 1]

1(x) characteristic function of appropriate set. A short
computation:

ver

sin2(7r(X1 — Xg))
7T2(X1 — X2)2

Wau(€) = 6(61)5(&2) + (&1 + &)([& | — 11(E).

W27u(X) =1-

L
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Example: W,y

For ¢, arbitrary,

do(—&1)
$2(0)

42(0) 5
#2(0)

/ ba(&2) Wa U(f)dfz

EzE]R

6(&1) + ([&1] = 1)1(&).

R
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Example: W,y

For ¢, arbitrary,

do(—&1)
$2(0)

42(0) 5
#2(0)

/ ba(&2) Wa U(f)dfz

EZE]R

New Problem:

Normalizing by izggg, minimize

6(&1) + ([&1] = 1)1(&).

Jier G1(EW(Er)
$1(0)

over g1, where W(¢) = 6(¢1) + 8 (& — 1)1(61).

L
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Example: W,y

~

W(e) = () + 275 (16 - 1100(&) = 6(6&) + mi&n)

¢2(0)

@ ¢ even —> mis even.

~N-UEOSTSTSTSTSTSSSSSSSSSE—
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Example: W,y

~

W(e) = () + 275 (16 - 1100(&) = 6(6&) + mi&n)

¢2(0)

@ ¢ even —> mis even.

o 1-level case = optimal ¢ has (&) = (g * §)(&1)
where g € L?[—], 1] satisfying

unzguyﬁ/mu—ymwmy

. . . 1
Minimum value is Aoa"

;
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Example: W,y

1(x) = g(x) + / m(x — y)a(y) dy.

NI

Solution is found by iteration:
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Example: W,y

1(x) = g(x) + / m(x — y)a(y) dy.

NI

Solution is found by iteration:
@ o K(x,y) =—m(x—y).
< Kn(X) = "/‘[_%7%],7 K(X, t1) e K(tn_1, tn) dt1 st dtn
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Example: W,y

1(x) = g(x) + / m(x — y)a(y) dy.

NI

Solution is found by iteration:
@ o K(x,y) =—m(x—y).
< Kn(X) = "/‘[_%7%],7 K(X, t1) e K(tn_1, tn) dt1 st dtn

® g(x) =1(x) + >_p24 Kn(X).
o (1.9)z =1+, f_;; Kn(x) dx.
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Example: W,y

g =1+Y [ Kax
n=1%Y"2

o Numerical data — ¢2(&) = (1 — |&|)x—1.11(&) is a
good choice.
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Example: W,y

(1,9)2 = 1 +Z/21 Kn(x) dx
n=1%"2

@ Numerical data — Qgg(fg) = (1 — |fg|)X[_1,1](§2) is a
good choice.

e Terms of series are nonnegative, so truncate after
finitely many terms to get

~ A~ 100 .1 -1
52(0) 1 _ $(0) (1 +)° / 2 K,,(x)dx) ~ 0.49386.
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Numerical Data for n =2

@ Truncate at 100 terms with

d2(&) = (1 — |&l)x1-1.11(&)-
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Numerical Data for n =2

° 'I:runcate at 100 terms with
?2(&2) = (1 — |&2)x=1,1(&2)-

@ Series converge uniformly, so integrate term-by-term.




n-Level Case
[ ]

Numerical Data for n =2

@ Truncate at 100 terms with
02(&2) = (1 — |&[)x-1,11(&2)-
@ Series converge uniformly, so integrate term-by-term.

e Can show all series terms are non-negative, so have
strict upper bounds by truncating.
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Numerical Data for n =2

@ Truncate at 100 terms with
02(&2) = (1 — |&[)x-1,11(&2)-
@ Series converge uniformly, so integrate term-by-term.

e Can show all series terms are non-negative, so have
strict upper bounds by truncating.

] " Bound |

Wao 0.222483
Wa so(ven) | 0.252298
Wa so(oas | 0.130293

Wau 0.493856

Wos, | 0.130293
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Applications to Order of Vanishing

Assume F finite, Pr(N) := probability that L(s, f) has zero
of order Nats =1/2.
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Applications to Order of Vanishing

Assume F finite, Pr(N) := probability that L(s, f) has zero
of order Nats =1/2. If F « G, then

Jge 0(X, y)Wag(x, y)dx dy
$(0,0)

iN(N— 1)Pr(N) <

N=0

T0)




n-Level Case
L]

Applications to Order of Vanishing

Assume F finite, Pr(N) := probability that L(s, f) has zero
of order Nats =1/2. If F « G, then

Jge 0(X, y)Wag(x, y)dx dy
$(0,0)

iN(N— 1)Pr(N) <

N=0

0.777517 Wayo
Pr(0) + Pr(1) > { 0.506144 Wa
0.869707 Whas,.

y
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Applications to Order of Vanishing

Better results if every f € F has same parity functional
equation.

D
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Applications to Order of Vanishing

Better results if every f € F has same parity functional

equation.
Pr(0)
Pr(1)

0.873851 W2 s0(Even)

>
> 0.978285 W2 s0(0da)

v OTTSTSTSLSLSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSEEEEEEEE D
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