Optimal Test Functions for n–Level Densities and Applications to Central Point Vanishing

Charles Devlin VI (chatrick@umich.edu) and Steven J. Miller (sjml@williams.edu)
University of Michigan and Williams College

Maine-Québec Number Theory Conference
University of Maine, October 5, 2019
Summary

Review of L-Functions

Outline of Maine Results

1-Level Case (ILS, F-M)

n-Level Case

References

Journal of Number Theory: Email sjm1@williams.edu

https://www.journals.elsevier.com/journal-of-number-theory
Summary

- Review of L-functions
- Applications: Bounding average rank, high vanishing
- Ideas of Proof: Functional Analysis, Reduction of Dimension
Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the end. Not optimized.

As order of vanishing increases, result gets better but initially bad.
Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the end. Not optimized.

As order of vanishing increases, result gets better but initially bad.

Worst results I’ve proved:
Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the end. Not optimized.

As order of vanishing increases, result gets better but initially bad.

Worst results I’ve proved:

- (Approximately) at most 250% of cuspidal newforms vanish to order 2 or more.
Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the end. Not optimized.

As order of vanishing increases, result gets better but initially bad.

Worst results I’ve proved:
- (Approximately) at most 250% of cuspidal newforms vanish to order 2 or more.
- There are at least $\log \log \log x$ primes at most $x!$
Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the end. Not optimized.

As order of vanishing increases, result gets better but initially bad.

Worst results I’ve proved:

1. (Approximately) at most 250% of cuspidal newforms vanish to order 2 or more.

2. There are at least \(\log \log \log x \) primes at most \(x! \)
 - Uses PNT: \(\pi(x) \approx x/\log x! \).
Non-Brilliant Moments: Worst Results of My Career

IF time permits, will give some explicit bounds at the end. Not optimized.

As order of vanishing increases, result gets better but initially bad.

Worst results I’ve proved:

- (Approximately) at most 250% of cuspidal newforms vanish to order 2 or more.

- There are at least $\log \log \log x$ primes at most $x!$
 - Uses PNT: $\pi(x) \approx x / \log x!$.
Review of L-Functions
Example: Riemann Zeta Function

Riemann Zeta Function

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}} \text{ for } \Re(s) > 1.
\]

Functional Equation

\[
\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \text{ for } s \in \mathbb{C} \setminus \{1\}.
\]

Riemann Hypothesis

All nontrivial zeros (not negative even integers) of \(\zeta \) are of the form \(\gamma = \frac{1}{2} + i\sigma \) with \(\sigma \in \mathbb{R} \).
General L-functions

- Euler product

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} \prod_{j=1}^{d} (1 - \alpha_{f,j}(p)p^{-s})^{-1},$$

- meromorphic continuation to \mathbb{C}, of finite order, at most finitely may poles (all on the line $\Re(s) = 1$),

- Functional equation: $\omega \in \mathbb{R}$, $G(s)$ product of Γ-fns:

$$e^{i\omega} G(s)L(s, f) = e^{-i\omega} \overline{G(1 - \bar{s})L(1 - \bar{s})}.$$
Random Matrix Theory (RMT)

- Ensembles of matrices (Real Symmetric, Hermitian) with entries drawn from probability distribution; Classical Compact Groups.

- Study distribution of normalized eigenvalues for given ensemble.

Applications of RMT

Behavior of zeros of L-functions and energy levels of heavy nuclei well-modeled by eigenvalues of random matrix ensembles.
Riemann hypothesis \implies zeros of $L(s, f)$ are of the form
$$\rho_f = \frac{1}{2} + i\gamma_f \text{ with } \gamma_f \in \mathbb{R}.$$
Riemann hypothesis \implies zeros of $L(s, f)$ are of the form
$$\rho_f = \frac{1}{2} + i\gamma_f \text{ with } \gamma_f \in \mathbb{R}.$$

1-level Density

$$D(f; \phi) := \sum_{\gamma_f} \phi\left(\frac{\gamma_f}{2\pi} \log(c_f)\right) \text{ where } \phi \geq 0 \text{ is even, Schwartz, Fourier transform } \hat{\phi} \text{ compactly supported, } \phi(0) > 0.$$

$c_f > 1$ is the analytic conductor.
Riemann hypothesis \implies zeros of $L(s, f)$ are of the form $\rho_f = \frac{1}{2} + i\gamma_f$ with $\gamma_f \in \mathbb{R}$.

1-level Density

$D(f; \phi) := \sum_{\gamma_f} \phi\left(\frac{\gamma_f}{2\pi} \log(c_f)\right)$ where $\phi \geq 0$ is even, Schwartz, Fourier transform $\hat{\phi}$ compactly supported, $\phi(0) > 0$. $c_f > 1$ is the analytic conductor.

Idea:
Varying ϕ, $D(f; \phi)$ measures density of zeros of $L(s, f)$ near central point $s = 1/2$.
1-level Density

Impossible to calculate $D(f; \phi)$ explicitly in practice...
1-level Density

Impossible to calculate $D(f; \phi)$ explicitly in practice... so take averages over finite subfamilies of \mathcal{F}:

$$\mathcal{F}(Q) := \{ f \in \mathcal{F} : c_f \leq Q \}$$

$$\mathbb{E}(\mathcal{F}(Q); \phi) := \frac{1}{|\mathcal{F}(Q)|} \sum_{f \in \mathcal{F}} D(f; \phi).$$

Then take a limit:

$$\lim_{Q \to \infty} \mathbb{E}(\mathcal{F}(Q); \phi) = \int_{-\infty}^{\infty} \phi(x) W(\mathcal{F})(x) \, dx$$

where $W(\mathcal{F})$ is a distribution depending on \mathcal{F}.
1-level Density

Katz-Sarnak Philosophy: \(W(\mathcal{F}) \) is dependent on a symmetry group \(G = G(\mathcal{F}) \) of \(\mathcal{F} \), write \(W(\mathcal{F}) = W_{1,G} \).

Examples:

\[
W_{1,0}(x) = 1 + \frac{1}{2} \delta(x)
\]

\[
W_{1,SO(\text{Even})}(x) = 1 + \frac{\sin(2\pi x)}{2\pi x}
\]

\[
W_{1,SO(\text{Odd})}(x) = 1 - \frac{\sin(2\pi x)}{2\pi x} + \delta(x).
\]
1-level Density

Quantity of interest

\[
\lim_{Q \to \infty} \text{AveRank}(\mathcal{F}(Q)), \text{ where AveRank}(\mathcal{F}(Q)) \text{ is average order of vanishing of the } L\text{-functions with } f \in \mathcal{F}(Q) \text{ at } s = 1/2.
\]

Trivially

\[
\lim_{Q \to \infty} \text{AveRank}(\mathcal{F}(Q)) \leq \frac{\int_{-\infty}^{\infty} \phi(x) W_{1,G}(x) \, dx}{\phi(0)}.
\]
\[D_n(f; \phi) := \sum_{\gamma_j, f} \phi \left(\frac{\gamma_j f}{2\pi} \log(c_f), \frac{\gamma_j f}{2\pi} \log(c_f), \ldots, \frac{\gamma_n f}{2\pi} \log(c_f) \right). \]
n-level Density

\[D_n(f; \phi) := \sum_{\gamma_j, f} \phi \left(\frac{\gamma_1, f}{2\pi} \log(c_f), \frac{\gamma_2, f}{2\pi} \log(c_f), \ldots, \frac{\gamma_n, f}{2\pi} \log(c_f) \right). \]

Higher Dimensional Bound

\[
\lim_{Q \to \infty} \text{WeightedAveRank}(\mathcal{F}(Q)) \leq \frac{\int_{\mathbb{R}^n} \phi(x) W_{n,G}(x) \, dx_1 \cdots dx_n}{\phi(0)}.
\]
n-level Density

\[D_n(f; \phi) := \sum_{\gamma_{j,f}} \phi \left(\frac{\gamma_{1,f}}{2\pi} \log(c_f), \frac{\gamma_{2,f}}{2\pi} \log(c_f), \ldots, \frac{\gamma_{n,f}}{2\pi} \log(c_f) \right). \]

Higher Dimensional Bound

\[\lim_{Q \to \infty} \text{WeightedAveRank}(\mathcal{F}(Q)) \leq \frac{\int_{\mathbb{R}^n} \phi(x) W_{n,G}(x) \, dx_1 \cdots dx_n}{\phi(0)}. \]

Goal

Higher level densities give stronger bound. Minimize right-hand side over admissible \(\phi \) for \(n \) as large as possible.
Applications of n-level density

Average rank $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$ if ϕ non-negative. Can also use to bound the percentage that vanish to order r for any r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal newforms of prime level $N \to \infty$ (split or not split by sign), for any r there is a c_r such that probability of at least r zeros at the central point is at most $c_n r^{-n}$.

Better results using 2-level than Iwaniec-Luo-Sarnak using the 1-level for $r \geq 5$.
Katz-Sarnak Determinants

Set $K_\epsilon(x, y) := \frac{\sin(\pi(x-y))}{\pi(x-y)} + \epsilon \frac{\sin(\pi(x+y))}{\pi(x+y)}$, $\epsilon \in \{0, \pm 1\}$.

The n-level weights for classical compact groups are

\[
W_{n, \text{SO(Even)}}(x) = \det (K_1(x_i, x_j))_{i,j \leq n}
\]

\[
W_{n, \text{SO(Odd)}}(x) = \det (K_{-1}(x_i, x_j))_{i,j \leq n} + \sum_{k=1}^{n} \delta(x_k) \det (K_{-1}(x_i, x_j))_{i,j \neq k}
\]

\[
W_{n, O}(x) = \frac{1}{2} W_{n, \text{SO(Even)}}(x) + \frac{1}{2} W_{n, \text{SO(Odd)}}(x)
\]

\[
W_{n, U}(x) = \det (K_0(x_i, x_j))_{i,j \leq n}
\]

\[
W_{n, Sp}(x) = \det (K_{-1}(x_i, x_j))_{i,j \leq n}.
\]
Philosophy: Reduce dimension of number theory problem.

Theorem (Iwaniec-Luo-Sarnak)

Let ψ be an even Schwartz function with $\text{supp}(\hat{\psi}) \subset (-2, 2)$. Then

$$
\sum_{m \leq N^\epsilon} \frac{1}{m^2} \sum_{(b,N)=1} \frac{R(m^2,b)R(1,b)}{\varphi(b)} \int_{y=0}^{\infty} J_{k-1}(y) \hat{\psi} \left(\frac{2 \log(by\sqrt{N}/4\pi m)}{\log R} \right) \frac{y}{\log R}
$$

$$
= -\frac{1}{2} \left[\int_{-\infty}^{\infty} \psi(x) \frac{\sin 2\pi x}{2\pi x} x - \frac{1}{2} \psi(0) \right] + O \left(\frac{k \log \log kN}{\log kN} \right),
$$

where $R = k^2N$, φ is Euler’s totient function, and $R(n,q)$ is a Ramanujan sum.
2-Level Density

\[
\int_{x_1=2}^{R^\sigma} \int_{x_2=2}^{R^\sigma} \phi \left(\frac{\log x_1}{\log R} \right) \phi \left(\frac{\log x_2}{\log R} \right) J_{k-1} \left(4\pi \sqrt{\frac{m^2 x_1 x_2 N}{c}} \right) \frac{dx_1}{\sqrt{x_1}} \frac{dx_2}{\sqrt{x_2}}
\]
2-Level Density

\[
\int_{R^\sigma} \int_{R^\sigma} \hat{\phi} \left(\frac{\log x_1}{\log R} \right) \hat{\phi} \left(\frac{\log x_2}{\log R} \right) J_{k-1} \left(4\pi \frac{\sqrt{m^2 x_1 x_2 N}}{c} \right) \frac{dx_1 dx_2}{\sqrt{x_1 x_2}}
\]

Change of variables and Jacobian:

\[
\begin{align*}
U_2 &= x_1 x_2 \\
U_1 &= x_1 \\
x_2 &= \frac{u_2}{u_1} \\
x_1 &= U_1
\end{align*}
\]

\[
\left| \frac{\partial x}{\partial u} \right| = \left| \begin{array}{cc} 1 & 0 \\ -\frac{u_2}{u_1^2} & \frac{1}{u_1} \end{array} \right| = \frac{1}{u_1}
\]
2-Level Density

\[
\int_{x_1=2}^{R^\sigma} \int_{x_2=2}^{R^\sigma} \hat{\phi} \left(\frac{\log x_1}{\log R} \right) \hat{\phi} \left(\frac{\log x_2}{\log R} \right) J_{k-1} \left(4\pi \frac{\sqrt{m^2 x_1 x_2 N}}{c} \right) \frac{dx_1}{\sqrt{x_1 x_2}} dx_2
\]

Change of variables and Jacobian:

\[
\begin{align*}
U_2 &= x_1 x_2 \\
U_1 &= x_1 \\
X_2 &= \frac{u_2}{u_1} \\
X_1 &= u_1
\end{align*}
\]

\[
\left| \frac{\partial x}{\partial u} \right| = \begin{vmatrix} 1 & 0 \\ -\frac{u_2}{u_1^2} & \frac{1}{u_1} \end{vmatrix} = \frac{1}{u_1} \quad \text{and}
\]

\[
\int \int \hat{\phi} \left(\frac{\log u_1}{\log R} \right) \hat{\phi} \left(\frac{\log \left(\frac{u_2}{u_1} \right)}{\log R} \right) \frac{1}{\sqrt{u_2}} J_{k-1} \left(4\pi \frac{\sqrt{m^2 u_2 N}}{c} \right) \frac{du_1}{u_1} du_2
\]
2-Level Density

Change variables: \(w = \log u_1 / \log R \); \(u_1 \)-integral is

\[
\int_{w_1 = \log u_2 / \log R - \sigma}^{\sigma} \tilde{\phi}(w_1) \tilde{\phi} \left(\frac{\log u_2}{\log R} - w_1 \right) \, dw_1.
\]
2-Level Density

Change variables: $w = \log u_1 / \log R$; u_1-integral is

$$\int_{w_1 = \frac{\log u_2}{\log R} - \sigma}^{\sigma} \hat{\phi}(w_1) \hat{\phi} \left(\frac{\log u_2}{\log R} - w_1 \right) dw_1.$$

Support conditions imply

$$\psi_2 \left(\frac{\log u_2}{\log R} \right) := \int_{w_1 = -\infty}^{\infty} \hat{\phi}(w_1) \hat{\phi} \left(\frac{\log u_2}{\log R} - w_1 \right) dw_1.$$
2-Level Density

Change variables: \(w = \log u_1 / \log R; \) \(u_1 \)-integral is

\[
\int_{w_1 = \frac{\log u_2}{\log R} - \sigma}^{\sigma} \hat{\phi}(w_1) \hat{\phi} \left(\frac{\log u_2}{\log R} - w_1 \right) \, dw_1.
\]

Support conditions imply

\[
\psi_2 \left(\frac{\log u_2}{\log R} \right) := \int_{w_1 = -\infty}^{\infty} \hat{\phi}(w_1) \hat{\phi} \left(\frac{\log u_2}{\log R} - w_1 \right) \, dw_1.
\]

Substituting gives

\[
\int_{u_2 = 0}^{\infty} J_{k-1} \left(4\pi \frac{\sqrt{m^2 u_2 N}}{c} \right) \psi_2 \left(\frac{\log u_2}{\log R} \right) \frac{du_2}{\sqrt{u_2}}.
\]
Outline of Maine Results
Main Results

Main Idea

Restrict domain to only those ϕ which are products of single variable test functions: $\phi(x) = \phi_1(x_1) \cdots \phi_n(x_n)$ (equivalent to linear combinations of such products).
Main Results

Main Idea

Restrict domain to only those \(\phi \) which are products of single variable test functions: \(\phi(x) = \phi_1(x_1) \cdots \phi_n(x_n) \) (equivalent to linear combinations of such products).

Main Result

1. Choosing first \(n - 1 \) factors \(\phi_1, \ldots, \phi_{n-1} \) carefully, can integrate first \(n - 1 \) variables to obtain new weight function of a form similar to 1-dimensional weights.
2. 1-level case already solved, so choose \(\phi_n \) optimally for new weight.
1-Level Case (ILS, F-M)
1-level Case

Two Steps.

◊ Reduce problem to different optimization problem.

◊ Use functional analysis to solve reduced problem.
Step 1: Reduce Problem

Assume \(\text{supp}(\hat{\phi}) \subset [-1, 1] \). Plancherel on numerator, taking then inverting Fourier transform in denominator:

\[
\frac{\int_{-\infty}^{\infty} \phi(x) W_{1,G}(x) \, dx}{\phi(0)} = \frac{\int_{-1}^{1} \hat{\phi}(\xi) \widehat{W_{1,G}}(\xi) \, d\xi}{\int_{-1}^{1} \hat{\phi}(\xi) \, d\xi}.
\]
Step 1: Reduce Problem

Assume $\text{supp}(\hat{\phi}) \subset [-1, 1]$. Plancherel on numerator, taking then inverting Fourier transform in denominator:

$$
\frac{\int_{-\infty}^{\infty} \phi(x) W_{1,G}(x) \, dx}{\phi(0)} = \frac{\int_{-1}^{1} \hat{\phi}(\xi) \overline{W_{1,G}(\xi)} \, d\xi}{\int_{-1}^{1} \hat{\phi}(\xi) \, d\xi}.
$$

Ahiezer’s Theorem and the Paley-Wiener Theorem show ϕ admissible $\iff \hat{\phi}(\xi) = (g \ast \check{g})(\xi)$ for some $g \in L^2[-\frac{1}{2}, \frac{1}{2}]$, where $\check{g}(\xi) = g(-\xi)$.
Step 1: Reduce Problem

Assume $\text{supp}(\hat{\phi}) \subset [-1, 1]$. Plancherel on numerator, taking then inverting Fourier transform in denominator:

\[
\frac{\int_{-\infty}^{\infty} \phi(x) W_{1,G}(x) \, dx}{\phi(0)} = \frac{\int_{-1}^{1} \hat{\phi}(\xi) \overline{W_{1,G}(\xi)} \, d\xi}{\int_{-1}^{1} \hat{\phi}(\xi) \, d\xi}.
\]

Ahiezer’s Theorem and the Paley-Wiener Theorem show ϕ admissible $\iff \hat{\phi}(\xi) = (g \ast \check{g})(\xi)$ for some $g \in L^2[-\frac{1}{2}, \frac{1}{2}]$, where $\check{g}(\xi) = \overline{g(-\xi)}$.

Calculations show for classical compact group, $\overline{W_{1,G}(\xi)} = \delta(\xi) + m(\xi)$ on $[-1, 1]$, with $m(\xi)$ real, piecewise continuous, even.
Step 1: Reduce Problem

Some functional analysis: define compact, self-adjoint linear operator $K : L^2\left[-\frac{1}{2}, \frac{1}{2}\right] \to L^2\left[-\frac{1}{2}, \frac{1}{2}\right]$

$$ (Kg)(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} m(x - y)g(y) \, dy. $$
Step 1: Reduce Problem

Some functional analysis: define compact, self-adjoint linear operator \(K : L^2[-\frac{1}{2}, \frac{1}{2}] \to L^2[-\frac{1}{2}, \frac{1}{2}] \)

\[
(Kg)(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} m(x - y)g(y) \, dy.
\]

Some manipulations (\(1 \) is the characteristic function of a set):

\[
\int_{-1}^{1} \frac{\hat{\phi}(\xi) \hat{W}_{1,G}(\xi) \, d\xi}{\int_{-1}^{1} \hat{\phi}(\xi) \, d\xi} = \frac{\int_{-1}^{1} (g * \check{g})(\xi)(\delta(\xi) + m(\xi)) \, d\xi}{\int_{-1}^{1} (g * \check{g})(\xi) \, d\xi}
\]
Step 1: Reduce Problem

\[
\int_{-1/2}^{1/2} \int_{-1}^{1} \left(\delta(\xi) g(\xi + y) g(y) + m(\xi) g(\xi + y) g(y) \right) \, d\xi \, dy
\]

\[
= \frac{\int_{-1/2}^{1/2} \int_{-1}^{1} g(\xi + y) g(y) \, d\xi \, dy}{\int_{-1/2}^{1/2} \int_{-1}^{1} g(\xi + y) g(y) \, d\xi \, dy}
\]

\[
\langle g, g \rangle_{L^2} + \int_{-1}^{1} \int_{-1/2}^{1/2 + \xi} m(\xi) g(y) g(-\xi + y) \, dy \, d\xi
\]

\[
= \frac{\int_{-1/2}^{1/2} \int_{-1}^{1} g(\xi + y) \, d\xi \, g(y) \, dy}{\int_{-1/2}^{1/2} \int_{-1}^{1} g(\xi + y) \, d\xi \, g(y) \, dy}
\]

\[
\langle g, g \rangle_{L^2} + \int_{-1}^{1} \int_{-1/2}^{1/2 + \xi} m(-\xi) g(y) g(-\xi + y) \, dy \, d\xi
\]

\[
= \frac{\int_{-1/2}^{1/2} \int_{-1}^{1} g(\xi + y) \, d\xi \, g(y) \, dy}{\int_{-1/2}^{1/2} \int_{-1}^{1} g(\xi + y) \, d\xi \, g(y) \, dy}
\]
Step 1: Reduce Problem

\[
\langle g, g \rangle_{L^2} + \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} m(\xi - y)g(y) \, dy \overline{g(\xi)} \, d\xi \\
= \frac{\int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-1}^{1} g(\xi + y) \, d\xi \overline{g(y)} \, dy}{\int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-1}^{1} m(\xi - y)g(y) \, dy \overline{g(\xi)} \, d\xi}
\]

\[
= \frac{\langle g, g \rangle_{L^2} + \langle Kg, g \rangle_{L^2}}{\langle g, 1 \rangle_{L^2} \langle 1, g \rangle_{L^2}} = \frac{\langle (I + K)g, g \rangle_{L^2}}{|\langle 1, g \rangle_{L^2}|^2}.
\]

New Problem

Defining \(R : L^2[-\frac{1}{2}, \frac{1}{2}] \rightarrow L^2[-\frac{1}{2}, \frac{1}{2}] \) by \(R(g) := \frac{\langle (I+K)g, g \rangle_{L^2}}{|\langle 1, g \rangle_{L^2}|^2} \),
minimize \(R \) over subset of \(L^2[-\frac{1}{2}, \frac{1}{2}] \) with denominator \(\neq 0 \).
Step 2: Minimization

Some observations:

- $R(g) \geq \lim_{Q \to \infty} \text{AveRank}(\mathcal{F}(Q)) \geq 0$.
- Spectral Theorem \iff orthonormal basis of eigenvectors of K, eigenvalues λ_j.
- $\lambda_j \geq -1$.

\[R(g) \geq \lim_{Q \to \infty} \text{AveRank}(\mathcal{F}(Q)) \geq 0. \]

\[\text{Spectral Theorem} \iff \text{orthonormal basis of eigenvectors of } K, \text{ eigenvalues } \lambda_j. \]

\[\lambda_j \geq -1. \]
Step 2: Minimization

Some observations:

- \(R(g) \geq \lim_{Q \to \infty} \text{AveRank}(\mathcal{F}(Q)) \geq 0 \).
- Spectral Theorem \(\implies \) orthonormal basis of eigenvectors of \(K \), eigenvalues \(\lambda_j \).
- \(\lambda_j \geq -1 \).

Case 1: Eigenvalue \((-1)\)

If have a \((-1)\)-eigenvector \(f_0 \in L^2[-\frac{1}{2}, \frac{1}{2}] \) not orthogonal to 1, then
\[
R(f_0) = \frac{\langle (I+K)f_0,f_0 \rangle_{L^2}}{|\langle 1,f_0 \rangle_{L^2}|^2} = \frac{\langle f_0,f_0 \rangle_{L^2} - \langle f_0,f_0 \rangle_{L^2}}{|\langle 1,f_0 \rangle_{L^2}|^2} = 0.
\]
Step 2: Minimization

Case 2: $\lambda_j > -1$ for all j. More functional analysis!
Step 2: Minimization

Case 2: $\lambda_j > -1$ for all j. More functional analysis!

- $\ker(I + K) = \{0\}$ (all eigenvalues > -1).
- Fredholm Theory $\implies \exists f_0 \in L^2[-\frac{1}{2}, \frac{1}{2}]$ satisfying $(I + K)f_0 = 1$.
- $A := \langle 1, f_0 \rangle = \langle (I + K)f_0, f_0 \rangle_{L^2} > 0$.
Step 2: Minimization

Case 2: $\lambda_j > -1$ for all j. More functional analysis!

- $\ker(I + K) = \{0\}$ (all eigenvalues > -1).
- Fredholm Theory $\implies \exists f_0 \in L^2[-\frac{1}{2}, \frac{1}{2}]$ satisfying $(I + K)f_0 = 1$.
- $A := \langle 1, f_0 \rangle = \langle (I + K)f_0, f_0 \rangle_{L^2} > 0$.

For $g = f_0 + h \in L^2[-\frac{1}{2}, \frac{1}{2}]$ with $\langle 1, g \rangle_{L^2} \neq 0$, WLOG $\langle 1, g \rangle_{L^2} = A$. Then $\langle 1, h \rangle_{L^2} = 0$, so

$$R(g) = \frac{\langle 1, f_0 \rangle_{L^2} + \langle (I + K)h, h \rangle_{L^2} + \langle 1, h \rangle_{L^2} + \langle h, 1 \rangle_{L^2}}{|A|^2}$$

$$= \frac{A + \langle (I + K)h, h \rangle_{L^2} + 0 + 0}{|A|^2} \geq \frac{1}{A} = R(f_0).$$
<table>
<thead>
<tr>
<th>Summary</th>
<th>Review of (L)-Functions</th>
<th>Outline of Maine Results</th>
<th>1-Level Case (ILS, F-M)</th>
<th>(n)-Level Case</th>
<th>References</th>
</tr>
</thead>
</table>

\(n \)-Level Case
Challenges:

1. \(\mathcal{W}_{n,G} \) more complicated.
2. Higher dimensional integral operators not as well-understood.
Challenges:

1. \(\hat{W}_{n,G} \) more complicated.

2. Higher dimensional integral operators not as well-understood.

A Solution

Restrict to minimizing over \(\phi(x) = \phi_1(x_1) \cdots \phi_n(x_n) \) with \(\phi_j \) as in 1-level case (equivalent to minimizing over finite sums).
An Approach

Outline:

◊ Choose ϕ_2, \ldots, ϕ_n and integrate last $n - 1$ variables to obtain new weight function similar to 1-level weights.

◊ Use 1-level approach to minimize choice of ϕ_1.
Example: $W_{2,U}$

Problem

Minimize

\[
\int_{\mathbb{R}^2} \frac{\phi_1(x_1)\phi_2(x_2)W_{2,U}(x) \, dx_1 \, dx_2}{\phi_1(0)\phi_2(0)} = \int_{[-1,1]^2} \frac{\hat{\phi}_1(\xi_1)\hat{\phi}_2(\xi_2)\hat{W}_{2,U}(\xi) \, d\xi_1 \, d\xi_2}{\phi_1(0)\phi_2(0)}
\]

over

ϕ_1, ϕ_2 even, Schwartz, $\phi_1(0), \phi_2(0) > 0$, and

$\text{supp}(\hat{\phi}_1), \text{supp}(\hat{\phi}_2) \subset [-1, 1]$.

Example: $W_{2,U}$

Problem

Minimize

$$\int_{\mathbb{R}^2} \frac{\phi_1(x_1)\phi_2(x_2)W_{2,U}(x)}{\phi_1(0)\phi_2(0)} \, dx_1 \, dx_2 = \int_{[-1,1]^2} \frac{\hat{\phi}_1(\xi_1)\hat{\phi}_2(\xi_2)\hat{W}_{2,U}(\xi)}{\phi_1(0)\phi_2(0)} \, d\xi_1 \, d\xi_2$$

over

ϕ_1, ϕ_2 even, Schwartz, $\phi_1(0), \phi_2(0) > 0$, and $\text{supp}(\hat{\phi}_1), \text{supp}(\hat{\phi}_2) \subset [-1, 1]$.

1(x) characteristic function of appropriate set. A short computation:

$$W_{2,U}(x) = 1 - \frac{\sin^2(\pi(x_1 - x_2))}{\pi^2(x_1 - x_2)^2}$$

$$\hat{W}_{2,U}(\xi) = \delta(\xi_1)\delta(\xi_2) + \delta(\xi_1 + \xi_2)(|\xi_1| - 1)1(\xi_1).$$
Example: $\mathcal{W}_{2,U}$

For ϕ_2 arbitrary,

$$
\frac{1}{\phi_2(0)} \int_{\xi_2 \in \mathbb{R}} \hat{\phi}_2(\xi_2) \mathcal{W}_{2,U}(\xi) \, d\xi_2 = \frac{\hat{\phi}_2(0)}{\phi_2(0)} \delta(\xi_1) + \frac{\hat{\phi}_2(-\xi_1)}{\phi_2(0)} (|\xi_1| - 1) \mathbf{1}(\xi_1).
$$
Example: $W_{2,U}$

For ϕ_2 arbitrary,

$$\frac{1}{\phi_2(0)} \int_{\xi_2 \in \mathbb{R}} \hat{\phi}_2(\xi_2) \overline{W}_{2,U}(\xi) \, d\xi_2 = \frac{\hat{\phi}_2(0)}{\phi_2(0)} \delta(\xi_1) + \frac{\hat{\phi}_2(-\xi_1)}{\phi_2(0)} (|\xi_1| - 1) \mathbf{1}(\xi_1).$$

New Problem:

Normalizing by $\frac{\hat{\phi}_2(0)}{\phi_2(0)}$, minimize

$$\int_{\xi_1 \in \mathbb{R}} \frac{\hat{\phi}_1(\xi_1) \overline{W}(\xi_1)}{\phi_1(0)}$$

over ϕ_1, where $\overline{W}(\xi_1) = \delta(\xi_1) + \frac{\hat{\phi}_2(-\xi_1)}{\phi_2(0)} (|\xi_1| - 1) \mathbf{1}(\xi_1)$.
Example: $\mathcal{W}_{2,U}$

\[
\tilde{\mathcal{W}}(\xi_1) = \delta(\xi_1) + \frac{\hat{\phi}_2(-\xi_1)}{\hat{\phi}_2(0)}(|\xi_1| - 1)1(x)(\xi_1) = \delta(\xi_1) + m(\xi_1)
\]

- ϕ_2 even $\implies m$ is even.
Example: $W_{2,U}$

\[\widetilde{W}(\xi_1) = \delta(\xi_1) + \frac{\hat{\phi}_2(-\xi_1)}{\hat{\phi}_2(0)}(|\xi_1| - 1)1(x)(\xi_1) = \delta(\xi_1) + m(\xi_1) \]

- ϕ_2 even \implies m is even.
- 1-level case \implies optimal ϕ_1 has $\hat{\phi}_1(\xi_1) = (g \ast \mathring{g})(\xi_1)$
 where $g \in L^2\left[-\frac{1}{2}, \frac{1}{2}\right]$ satisfying

\[\int_{-\frac{1}{2}}^{\frac{1}{2}} m(x - y)g(y) \, dy. \]

Minimum value is $\frac{1}{\langle 1, g \rangle_{L^2}}$.

1-level case \implies optimal ϕ_1 has $\hat{\phi}_1(\xi_1) = (g \ast \mathring{g})(\xi_1)$
Example: \(W_{2,U} \)

\[
1(x) = g(x) + \int_{-\frac{1}{2}}^{\frac{1}{2}} m(x - y)g(y) \, dy.
\]

Solution is found by iteration:
Example: \(W_{2, U} \)

\[
1(x) = g(x) + \int_{-1/2}^{1/2} m(x - y)g(y) \, dy.
\]

Solution is found by iteration:

- \(K(x, y) := -m(x - y) \).
- \(K_n(x) := \int_{[-1/2, 1/2]^n} K(x, t_1) \cdots K(t_{n-1}, t_n) \, dt_1 \cdots dt_n \).
Example: $W_{2,U}$

\[
1(x) = g(x) + \int_{-\frac{1}{2}}^{\frac{1}{2}} m(x - y)g(y) \, dy.
\]

Solution is found by iteration:

- $K(x, y) := -m(x - y)$.
- $K_n(x) := \int_{[-\frac{1}{2}, \frac{1}{2}]^n} K(x, t_1) \cdots K(t_{n-1}, t_n) \, dt_1 \cdots \, dt_n$.
- $g(x) = 1(x) + \sum_{n=1}^{\infty} K_n(x)$.
- $\langle 1, g \rangle_{L^2} = 1 + \sum_{n=1}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} K_n(x) \, dx$.
Example: $\mathcal{W}_{2,U}$

\[
\langle 1, g \rangle_{L^2} = 1 + \sum_{n=1}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} K_n(x) \, dx
\]

- Numerical data $\rightarrow \hat{\phi}_2(\xi_2) = (1 - |\xi_2|)\chi_{[-1,1]}(\xi_2)$ is a good choice.
Example: \(\mathcal{W}_{2,U} \)

\[
\langle 1, g \rangle_{L^2} = 1 + \sum_{n=1}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} K_n(x) \, dx
\]

- Numerical data \(\to \hat{\phi}_2(\xi) = (1 - |\xi|)\chi_{[-1,1]}(\xi) \) is a good choice.
- Terms of series are nonnegative, so truncate after finitely many terms to get

\[
\frac{\hat{\phi}_2(0)}{\phi_2(0)} \frac{1}{\langle 1, g \rangle_{L^2}} \leq \frac{\hat{\phi}_2(0)}{\phi_2(0)} \left(1 + \sum_{n=1}^{100} \int_{-\frac{1}{2}}^{\frac{1}{2}} K_n(x) \, dx \right)^{-1} \approx 0.49386.
\]
Numerical Data for \(n = 2 \)

- Truncate at 100 terms with
 \[
 \hat{\phi}_2(\xi_2) = (1 - |\xi_2|) \chi_{[-1,1]}(\xi_2).
 \]
Numerical Data for $n = 2$

- Truncate at 100 terms with
 $$\hat{\phi}_2(\xi_2) = (1 - |\xi_2|)\chi_{[-1,1]}(\xi_2).$$
- Series converge uniformly, so integrate term-by-term.
Numerical Data for $n = 2$

- Truncate at 100 terms with
 \[\hat{\phi}_2(\xi_2) = (1 - |\xi_2|)\chi_{[-1,1]}(\xi_2). \]
- Series converge uniformly, so integrate term-by-term.
- Can show all series terms are non-negative, so have strict upper bounds by truncating.
Truncate at 100 terms with
\[\hat{\phi}_2(\xi_2) = (1 - |\xi_2|)\chi_{[-1,1]}(\xi_2). \]
Series converge uniformly, so integrate term-by-term.
Can show all series terms are non-negative, so have strict upper bounds by truncating.

<table>
<thead>
<tr>
<th>Bound</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{2,O})</td>
<td>0.222483</td>
</tr>
<tr>
<td>(W_{2,SO(Even)})</td>
<td>0.252298</td>
</tr>
<tr>
<td>(W_{2,SO(Odd)})</td>
<td>0.130293</td>
</tr>
<tr>
<td>(W_{2,U})</td>
<td>0.493856</td>
</tr>
<tr>
<td>(W_{2,Sp})</td>
<td>0.130293</td>
</tr>
</tbody>
</table>
Applications to Order of Vanishing

Assume \mathcal{F} finite, $\Pr(N) :=$ probability that $L(s, f)$ has zero of order N at $s = 1/2$.
Applications to Order of Vanishing

Assume F finite, $\Pr(N) :=$ probability that $L(s, f)$ has zero of order N at $s = 1/2$. If $F \leftrightarrow G$, then

$$\sum_{N=0}^{\infty} N(N - 1) \Pr(N) \leq \frac{\int_{\mathbb{R}^2} \phi(x, y) W_{2,G}(x, y) \, dx \, dy}{\phi(0, 0)}.$$
Assume \mathcal{F} finite, $\text{Pr}(N) :=$ probability that $L(s, f)$ has zero of order N at $s = 1/2$. If $\mathcal{F} \leftrightarrow \mathcal{G}$, then

$$\sum_{N=0}^{\infty} N(N - 1) \text{Pr}(N) \leq \frac{\int_{\mathbb{R}^2} \phi(x, y) W_{2,G}(x, y) \, dx \, dy}{\phi(0, 0)}.$$

$$\text{Pr}(0) + \text{Pr}(1) \geq \begin{cases} 0.777517 & W_{2,0} \\ 0.506144 & W_{2,U} \\ 0.869707 & W_{2,Sp} \end{cases}.$$
Better results if every $f \in \mathcal{F}$ has same parity functional equation.
Applications to Order of Vanishing

Better results if every $f \in \mathcal{F}$ has same parity functional equation.

\[
\begin{align*}
\Pr(0) & \geq 0.873851 & W_{2,\text{SO(Even)}} \\
\Pr(1) & \geq 0.978285 & W_{2,\text{SO(Odd)}}
\end{align*}
\]
References
References I

