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Introduction

Definition
The Fibonacci numbers Fi are defined by F1 = 1, F2 = 2 and
Fi = Fi−1 + Fi−2.

Theorem (Zeckendorf’s Theorem)
Every positive integer has a unique Zeckendorf
decomposition, i.e., it can be uniquely written as a sum of
non-adjacent Fibonacci numbers.

Example
100 = 89 + 8 + 3 = F10 + F5 + F3.
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Classical Game
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Classical Zeckendorf Game

Start with n lots of F1. Move as follows:

Merge: Fi ,Fi+1 → Fi+2

Split: Fi ,Fi → Fi−2,Fi+1

Split twos: F2,F2 → F1,F3

Merge ones: F1,F1 → F2

The last player to move wins.
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Example Game

n=5
{15}

{13 ∧ 21}
{12 ∧ 31}
{21 ∧ 31}
{51}

Player Two won in 4 moves.
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Game Lengths

Question: How long is the game?

Theorem
The shortest game is of length n − Z (n), where Z (n) is the
number of terms in the Zeckendorf decomposition of n.

Theorem
The length of the longest game is bounded by
3n − Z (n)− IZ (n) + 1, where IZ (n) is the sum of the indices in
the Zeckendorf decomposition of n.
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Who Wins?

Question: Who wins the Zeckendorf game?

Theorem
Player 2 has a winning strategy for n > 2.
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Proof that player 2 wins for n > 2

Prove by contradiction using parity-steal argument.
Assume player 1 has winning strategy, then show player 2
can steal it.

Non-constructive; don’t need to find winning strategy.
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Sketch of Proof for Player Two’s Winning Strategy
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Ordered Game
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Motivation

What happens if we replace {F1,F1, . . .F1} with
(F1,F1 . . . ,F1)...

and only allow ourselves to merge/split elements that are
adjacent?
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Ordered Zeckendorf Game Rules

Start with an ordered list of n copies of F1.

Possible moves:
Merge: (Fi ,Fi+1) → Fi+2

Split: (Fi ,Fi) → (Fi−2,Fi+1) for i > 2
Split Twos: (F2,F2) → (F1,F3)

Merge Ones: (F1,F1) → F2

Swap: (Fi ,Fj) → (Fj ,Fi) if i > j
The last player to move wins.
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Example Game

n = 5
(F1 F1 F1 F1 F1)

(F2 F1 F1 F1)
(F2 F2 F1)
(F1 F3 F1)
(F1 F1 F3)
(F2 F3)
(F4)

Player Two won in 6 moves.
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Termination & Length
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Game Termination

Question: Does the game always terminate?

Theorem
The ordered Zeckendorf game always terminates. The final
state is the Zeckendorf decomposition of n with the elements
placed in ascending order.

Proof of termination follows when we bound the game
length.
If not in ordered Zeckendorf decomposition, then we can
make a move.
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Shortest Game Length

Question: How short can the game be?

Theorem
The minimal length of the Ordered Zeckendorf Game is
n − Z (n), where Z (n) is the number of terms in n’s Zeckendorf
decomposition.
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Shortest Game Length Proof

Two steps:
1 Find a game of duration n − Z (n).

2 Show that no other game is shorter than our game.

For step 1, if P1 and P2 both merge as far right as
possible, then they merge every time.
For step 2, the number of elements the same or
decreases by 1. No game can move from n to Z (n) in
fewer steps.
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Longest game length

Question: What’s the longest the game can last?

Theorem (Longest game)
Let M(n) be the maximum game length. Then for n ≥ 2

n2

4
≤ M(n) ≤ n2

2
.
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Proof (Upper Bound)

Claim: M(n) ≤ n2/2.

Define the monovariant: f (S) :=
∑k

j=1(k + 1 − j)Fij for a
game state S = (Fi1 , . . . ,Fik ).
For example, if S = (5,3,8), then
f (S) = 3 · 5 + 2 · 3 + 1 · 8 = 29.
Can check that each move decreases f by at least 1.
f begins at n(n + 1)/2 and is bounded below by n, so
M(n) ≤ n(n − 1)/2.
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Proof (Lower Bound)

Claim: M(n) ≥ n2/4.

Inductive strategy as follows:
State Moves
(1,1,1, . . . ,1)︸ ︷︷ ︸

n

0

(2,1, . . . ,1) 1
(1, . . . ,1,2) n − 1
(Zeck decomp of n − 2,2) M(n − 2) + n − 1
(Zeck decomp of n) ≥ M(n − 2) + n − 1

So M(n) ≥ M(n − 2) + n − 1.
Induction gives M(n) ≥ n2/4.
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Improvements on bounds of M(n)

Previous bound of M(n) ≥ n2/4 can be improved
A more sophisticated argument gives us...

Theorem (Our best upper bound so far)

For n sufficiently large, 0.423n2 ≤ M(n) ≤ 0.5n2.
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Strategies

Question: Who has a winning strategy in the ordered
Zeckendorf game?

For n < 27, P2 has a winning strategy iff
n = 2,9,10,11,13,19,26.
Can use parity stealing to make statements about the
relationships between winning strategies.
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Upper bound calculations
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Upper Bound Calculations

When merging (Fi ,Fi+1) to Fi+2 in the j th position, the weights
of all terms to the left of (Fi ,Fi+1) in S are decreased by 1. The
change in the function at (Fi ,Fi+1) is

(k − j)Fi+2 − (k + 1 − j)Fi − (k − j)Fi+1

= (k − j)(Fi+2 − Fi − Fi+1)− Fi

= −Fi

< 0.
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Upper Bound Calculations

When splitting (Fi ,Fi) to (Fi−2,Fi+1), the weights on all other
terms stay the same. The change in the function is therefore

(k + 1 − j)Fi−2 + (k − j)Fi+1 − (k + 1 − j)Fi − (k − j)Fi

= (k − j)(Fi−2 + Fi+1 − 2Fi) + Fi−2 − Fi

= −Fi−1

< 0.
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Upper Bound Calculations

When splitting (F2,F2) to (F1,F3), the weights on all other
terms stay the same. The change in the function is therefore

(k + 1 − j)F1 + (k − j)F3 − (k + 1 − j)F2 − (k − j)F2

= (k − j)(F1 + F3 − 2F2) + F1 − F2

= −1.
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Upper Bound Calculations

When splitting ones, the weights of all summands to the left are
decreased by 1, and the value of the function at the pair of ones
decreases by 1, so the function decreases. When switching
(Fij ,Fij+1), given that Fij > Fij+1 , the weights of all other
summands stay the same, so the change in the function is

(k + 1 − j)Fij+1 + (k − j)Fij − (k + 1 − j)Fij − (k − j)Fij+1

= Fij+1 − Fij

< 0.
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Upper Bound Calculations

Since f begins at n(n + 1)/2, decreases by at least 1 per move,
and ends at at least n, the number of moves is bounded above
by

(n
2

)
. The final configuration must be the ordered Zeckendorf

decomposition because any configuration not satisfying the
Zeckendorf condition allows further moves.
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