From the Manhattan Project to Elliptic Curves

Steven J Miller
Dept of Math/Stats, Williams College

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu
http://www.williams.edu/Mathematics/sjmiller
Joint with E. Dueñez, D. Huynh,
J. P. Keating, N. C. Snaith

CNTA XV, Université Laval, July 9, 2018
<table>
<thead>
<tr>
<th>Intro</th>
<th>Old Theory/Models</th>
<th>Data/New Model</th>
<th>Ratios Conj</th>
<th>Excised Ensembles</th>
<th>Conclusion / Refs</th>
</tr>
</thead>
</table>

Introduction
Riemann Zeta Function

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1. \]

Functional Equation:

\[\xi(s) = \Gamma\left(\frac{s}{2}\right) \pi^{-\frac{s}{2}} \zeta(s) = \xi(1 - s). \]

Riemann Hypothesis (RH):

All non-trivial zeros have Re\(s\) = \(\frac{1}{2}\); can write zeros as \(\frac{1}{2} + i\gamma\).
General L-functions

\[L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{\text{prime } p} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1. \]

Functional Equation:

\[\Lambda(s, f) = \Lambda_\infty(s, f)L(s, f) = \Lambda(1 - s, f). \]

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have \(\text{Re}(s) = \frac{1}{2} \); can write zeros as \(\frac{1}{2} + i\gamma \).
Mordell-Weil Group

Elliptic curve \(y^2 = x^3 + ax + b \) with rational solutions \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \) and connecting line \(y = mx + b \).

![Diagram of elliptic curve with points P, Q, and R illustrating addition of distinct points and adding a point to itself.]

Addition of distinct points \(P \) and \(Q \)

Adding a point \(P \) to itself

\[E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text{tors}} \oplus \mathbb{Z}^r \]
Elliptic curve L-function

$E : y^2 = x^3 + ax + b$, associate L-function

$$L(s, E) = \sum_{n=1}^{\infty} \frac{a_E(n)/\sqrt{n}}{n^s} = \prod_{\rho \text{ prime}} L_E(p^{-s}),$$

where

$$a_E(p) = p - \#\{(x, y) \in (\mathbb{Z}/p\mathbb{Z})^2 : y^2 \equiv x^3 + ax + b \mod p\}.$$

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of $L(s, E)$ at $s = 1/2$.
One parameter family

$$\mathcal{E} : y^2 = x^3 + A(T)x + B(T), \ A(T), B(T) \in \mathbb{Z}[T].$$

Silverman’s Specialization Theorem

Assume (geometric) rank of $\mathcal{E}/\mathbb{Q}(T)$ is r. Then for all $t \in \mathbb{Z}$ sufficiently large, each $E_t : y^2 = x^3 + A(t)x + B(t)$ has (geometric) rank at least r.

Average rank conjecture

For a generic one-parameter family of rank r over $\mathbb{Q}(T)$, expect in the limit half the specialized curves have rank r and half have rank $r + 1$.
Measures of Spacings: n-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, $L(s, f)$ an L-function with zeros $\frac{1}{2} + i \gamma_f$ and conductor Q_f:

$$D_{n,f}(\phi) = \sum_{j_1, \ldots, j_n, j_i \neq \pm j_k} \phi_1 \left(\gamma_{f,j_1} \frac{\log Q_f}{2\pi} \right) \cdots \phi_n \left(\gamma_{f,j_n} \frac{\log Q_f}{2\pi} \right)$$
Measures of Spacings: n-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, $L(s, f)$ an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f:

$$D_{n,f}(\phi) = \sum_{\substack{j_1, \ldots, j_n \\ j_i \neq \pm j_k}} \phi_1 \left(\gamma_{f,j_1} \frac{\log Q_f}{2\pi} \right) \cdots \phi_n \left(\gamma_{f,j_n} \frac{\log Q_f}{2\pi} \right)$$

- Properties of n-level density:
 - Individual zeros contribute in limit.
Measures of Spacings: n-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, $L(s, f)$ an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f:

$$D_{n,f}(\phi) = \sum_{j_1, \ldots, j_n} \phi_1 \left(\gamma_{f,j_1} \frac{\log Q_f}{2\pi} \right) \cdots \phi_n \left(\gamma_{f,j_n} \frac{\log Q_f}{2\pi} \right)$$

- Properties of n-level density:
 - Individual zeros contribute in limit.
 - Most of contribution is from low zeros.
Measures of Spacings: n-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, $L(s, f)$ an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f:

$$D_{n,f}(\phi) = \sum_{j_1, \ldots, j_n} \phi_1 \left(\frac{\gamma_{f,j_1} \log Q_f}{2\pi} \right) \cdots \phi_n \left(\frac{\gamma_{f,j_n} \log Q_f}{2\pi} \right)$$

- Properties of n-level density:
 - Individual zeros contribute in limit.
 - Most of contribution is from low zeros.
 - Average over similar L-functions (family).
n-Level Density

n-level density: $\mathcal{F} = \cup \mathcal{F}_N$ a family of L-functions ordered by conductors, ϕ_k an even Schwartz function: $D_{n,\mathcal{F}}(\phi) = \lim_{N \to \infty} \frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} \sum_{j_1, \ldots, j_n} \phi_1 \left(\frac{\log Q_f}{2\pi} \gamma_{j_1;f} \right) \cdots \phi_n \left(\frac{\log Q_f}{2\pi} \gamma_{j_n;f} \right)$

As $N \to \infty$, *n*-level density converges to

$$\int \phi(\mathbf{x}) \rho_{n,\mathcal{G}(\mathcal{F})}(\mathbf{x}) d\mathbf{x} = \int \hat{\phi}(\mathbf{u}) \hat{\rho}_{n,\mathcal{G}(\mathcal{F})}(\mathbf{u}) d\mathbf{u}.$$

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group.
Correspondences

Similarities between L-Functions and Nuclei:

Zeros \leftrightarrow Energy Levels

Schwartz test function \rightarrow Neutron

Support of test function \leftrightarrow Neutron Energy.
Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for the correct model for finite conductors.

In the limit must recover the independent model, and want to explain data on:

1. **Excess Rank**: Rank r one-parameter family over $\mathbb{Q}(T)$: observed percentages with rank $\geq r + 2$.

2. **First (Normalized) Zero above Central Point**: Influence of zeros at the central point on the distribution of zeros near the central point.
Theory and Models
Orthogonal Random Matrix Models

RMT: $SO(2N)$: $2N$ eigenvalues in pairs $e^{\pm i\theta_j}$, probability measure on $[0, \pi]^N$:

$$
 d\epsilon_0(\theta) \propto \prod_{j<k} (\cos \theta_k - \cos \theta_j)^2 \prod_j d\theta_j.
$$

Independent Model:

$$
 \mathcal{A}_{2N,2r} = \left\{ \left(I_{2r \times 2r} \ g \right) : g \in SO(2N - 2r) \right\}.
$$

Interaction Model: Sub-ensemble of $SO(2N)$ with the last $2r$ of the $2N$ eigenvalues equal +1: $1 \leq j, k \leq N - r$:

$$
 d\epsilon_{2r}(\theta) \propto \prod_{j<k} (\cos \theta_k - \cos \theta_j)^2 \prod_j (1 - \cos \theta_j)^{2r} \prod_j d\theta_j,
$$
Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

$$\hat{\rho}_0(u) = \delta(u) + \frac{1}{2} \eta(u).$$

Fourier transform of 1-level density (Rank 2, Indep):

$$\hat{\rho}_{2,\text{Independent}}(u) = \left[\delta(u) + \frac{1}{2} \eta(u) + 2 \right] .$$

Fourier transform of 1-level density (Rank 2, Interaction):

$$\hat{\rho}_{2,\text{Interaction}}(u) = \left[\delta(u) + \frac{1}{2} \eta(u) + 2 \right] + 2(|u| - 1) \eta(u).$$
Comparing the RMT Models

Theorem: M– ’04

For small support, one-param family of rank r over $\mathbb{Q}(T)$:

$$\lim_{N \to \infty} \frac{1}{|F_N|} \sum_{E_t \in F_N} \sum_j \phi \left(\frac{\log C_{E_t}}{2\pi} \gamma_{E_t,j} \right)$$

$$= \int \varphi(x) \rho_G(x) dx + r \varphi(0)$$

where

$$G = \begin{cases}
SO & \text{if half odd} \\
SO(\text{even}) & \text{if all even} \\
SO(\text{odd}) & \text{if all odd.}
\end{cases}$$

Supports Katz-Sarnak, B-SD, and Independent model in limit.
Data
RMT: Theoretical Results ($N \rightarrow \infty$)

1st normalized evalve above 1: SO(even)
RMT: Theoretical Results ($N \to \infty$)

1st normalized eigenvalue above 1: SO(odd)
Figure 4a: 209 rank 0 curves from 14 rank 0 families, $\log(\text{cond}) \in [3.26, 9.98]$, median $= 1.35$, mean $= 1.36$
Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

Figure 4b: 996 rank 0 curves from 14 rank 0 families, log(\text{cond}) \in [15.00, 16.00], median = .81, mean = .86.
Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$)

1st Normalized Zero above Central Point

Figure 5a: 35 curves, $\log(\text{cond}) \in [7.8, 16.1]$, $\bar{\mu} = 1.85$, $\mu = 1.92$, $\sigma_{\mu} = .41$
Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$)
1st Normalized Zero above Central Point

Figure 5b: 34 curves, $\log(\text{cond}) \in [16.2, 23.3]$, $\tilde{\mu} = 1.37$, $\mu = 1.47$, $\sigma_\mu = .34$
Spacings b/w Norm Zeros: Rank 0 One-Param Families over $\mathbb{Q}(T)$

- All curves have $\log(\text{cond}) \in [15, 16]$;
- $z_j =$ imaginary part of j^{th} normalized zero above the central point;
- 863 rank 0 curves from the 14 one-param families of rank 0 over $\mathbb{Q}(T)$;
- 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$.

<table>
<thead>
<tr>
<th></th>
<th>863 Rank 0 Curves</th>
<th>701 Rank 2 Curves</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median $z_2 - z_1$</td>
<td>1.28</td>
<td>1.30</td>
<td>-1.60</td>
</tr>
<tr>
<td>Mean $z_2 - z_1$</td>
<td>1.30</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>StDev $z_2 - z_1$</td>
<td>0.49</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Median $z_3 - z_2$</td>
<td>1.22</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Mean $z_3 - z_2$</td>
<td>1.24</td>
<td>1.22</td>
<td>0.80</td>
</tr>
<tr>
<td>StDev $z_3 - z_2$</td>
<td>0.52</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Median $z_3 - z_1$</td>
<td>2.54</td>
<td>2.56</td>
<td>-0.38</td>
</tr>
<tr>
<td>Mean $z_3 - z_1$</td>
<td>2.55</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>StDev $z_3 - z_1$</td>
<td>0.52</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>
All curves have log(cond) ∈ [15, 16];

$z_j = \text{imaginary part of the } j^{\text{th}} \text{ norm zero above the central point}$;

64 rank 2 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$;

23 rank 4 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$.

<table>
<thead>
<tr>
<th></th>
<th>64 Rank 2 Curves</th>
<th>23 Rank 4 Curves</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_2 - z_1$</td>
<td>1.26</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_2 - z_1$</td>
<td>1.36</td>
<td>1.29</td>
<td>0.59</td>
</tr>
<tr>
<td>StDev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_2 - z_1$</td>
<td>0.50</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_2$</td>
<td>1.22</td>
<td>1.08</td>
<td>1.35</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_2$</td>
<td>1.29</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>StDev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_2$</td>
<td>0.49</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_1$</td>
<td>2.66</td>
<td>2.46</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_1$</td>
<td>2.65</td>
<td>2.43</td>
<td>2.05</td>
</tr>
<tr>
<td>StDev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_1$</td>
<td>0.44</td>
<td>0.42</td>
<td></td>
</tr>
</tbody>
</table>
Rank 2 Curves from Rank 0 & Rank 2 Families over $\mathbb{Q}(T)$

- All curves have $\log(\text{cond}) \in [15, 16]$;
- $z_j =$ imaginary part of the j^{th} norm zero above the central point;
- 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$;
- 64 rank 2 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$.

<table>
<thead>
<tr>
<th></th>
<th>701 Rank 2 Curves</th>
<th>64 Rank 2 Curves</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_2 - z_1$</td>
<td>1.30</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_2 - z_1$</td>
<td>1.34</td>
<td>1.36</td>
<td>0.69</td>
</tr>
<tr>
<td>StDev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_2 - z_1$</td>
<td>0.51</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_2$</td>
<td>1.19</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_2$</td>
<td>1.22</td>
<td>1.29</td>
<td>1.39</td>
</tr>
<tr>
<td>StDev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_2$</td>
<td>0.47</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_1$</td>
<td>2.56</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_1$</td>
<td>2.56</td>
<td>2.65</td>
<td>1.93</td>
</tr>
<tr>
<td>StDev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_3 - z_1$</td>
<td>0.52</td>
<td>0.44</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Data

• The repulsion of the low-lying zeros increased with increasing rank, and was present even for rank 0 curves.

• As the conductors increased, the repulsion decreased.

• Statistical tests failed to reject the hypothesis that, on average, the first three zeros were all repelled equally (i.e., shifted by the same amount).
Convergence to the RMT limit: What’s the right matrix size?

- RMT + Katz-Sarnak: *Limiting behavior* for random matrices as $N \to \infty$ and L-functions as conductors tend to infinity agree.

- How well do the classical matrix groups model local statistics of L-functions *outside* the scaling limit? (Arithmetic enters!)
Convergence to the RMT limit

L: 70 million $\zeta(s)$ nearest-neighbor spacings (Odlyzko).

R: Difference b/w $\zeta(s)$ and asymptotic CUE curve (dots) compared to difference b/w CUE of size N_0 and asymptotic curve (dashed line) (from Bogomolny et. al.).
Convergence to the RMT limit: Incorporating Finite Matrix Size

Difference b/w nearest-neighbor spacing of $\zeta(s)$ zeros and asymptotic CUE for a billion zeros in window near 2.504×10^{15} (dots) compared to theory that takes into account arithmetic of lower order terms (full line) (from Bogomolny et. al.).

New model should incorporate finite matrix size....
New Model for Finite Conductors

- Replace conductor N with $N_{\text{effective}}$.
 - Arithmetic info, predict with L-function Ratios Conj.
 - Do the number theory computation.

- Excised Orthogonal Ensembles.
 - $L(1/2, E)$ discretized.
 - Study matrices in $SO(2N_{\text{eff}})$ with $|\Lambda_A(1)| \geq ce^N$.

- Painlevé VI differential equation solver.
 - Use explicit formulas for densities of Jacobi ensembles.
 - Key input: Selberg-Aomoto integral for initial conditions.
Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with $0 < d < 400,000$

Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart), lowest eigenvalue of $\text{SO}(2N)$ with N_{eff} (solid), standard N_0 (dashed).
Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with $0 < d < 400,000$

Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart); lowest eigenvalue of $SO(2N)$: $N_{\text{eff}} = 2$ (solid) with discretisation, and $N_{\text{eff}} = 2.32$ (dashed) without discretisation.
Ratio’s Conjecture
Farmer (1993): Considered

\[\int_0^T \frac{\zeta(s + \alpha)\zeta(1 - s + \beta)}{\zeta(s + \gamma)\zeta(1 - s + \delta)} \, dt, \]

conjectured (for appropriate values)

\[T \frac{(\alpha + \delta)(\beta + \gamma)}{(\alpha + \beta)(\gamma + \delta)} - T^{1-\alpha-\beta} \frac{(\delta - \beta)(\gamma - \alpha)}{(\alpha + \beta)(\gamma + \delta)}. \]
History

- Farmer (1993): Considered

\[
\int_0^T \frac{\zeta(s + \alpha) \zeta(1 - s + \beta)}{\zeta(s + \gamma) \zeta(1 - s + \delta)} \, dt,
\]

conjectured (for appropriate values)

\[
T \frac{(\alpha + \delta)(\beta + \gamma)}{\alpha + \beta)(\gamma + \delta)} - T^{1-\alpha-\beta} \frac{(\delta - \beta)(\gamma - \alpha)}{\alpha + \beta)(\gamma + \delta)}.
\]

- Conrey-Farmer-Zirnbauer (2007): conjecture formulas for averages of products of \(L\)-functions over families:

\[
R_{\mathcal{F}} = \sum_{f \in \mathcal{F}} \omega_f \frac{L \left(\frac{1}{2} + \alpha, f \right)}{L \left(\frac{1}{2} + \gamma, f \right)}.
\]
Uses of the Ratios Conjecture

- **Applications:**
 - n-level correlations and densities;
 - mollifiers;
 - moments;
 - vanishing at the central point;

- **Advantages:**
 - RMT models often add arithmetic ad hoc;
 - predicts lower order terms, often to square-root level.
Inputs for 1-level density

- **Approximate Functional Equation:**

\[
L(s, f) = \sum_{m \leq x} \frac{a_m}{m^s} + \epsilon X_L(s) \sum_{n \leq y} \frac{a_n}{n^{1-s}};
\]

- \(\epsilon\) sign of the functional equation,
- \(X_L(s)\) ratio of \(\Gamma\)-factors from functional equation.
Inputs for 1-level density

- **Approximate Functional Equation:**

\[
L(s, f) = \sum_{m \leq x} \frac{a_m}{m^s} + \epsilon X_L(s) \sum_{n \leq y} \frac{a_n}{n^{1-s}};
\]

- \(\epsilon \): sign of the functional equation,
- \(X_L(s) \): ratio of \(\Gamma \)-factors from functional equation.

- **Explicit Formula:** \(g \): Schwartz test function,

\[
\sum_{f \in \mathcal{F}} \omega_f \sum_{\gamma} g \left(\gamma \frac{\log N_f}{2\pi} \right) = \frac{1}{2\pi i} \int_{(c)} - \int_{(1-c)} R'_{\mathcal{F}}(\cdots) g (\cdots)
\]

- \(R'_{\mathcal{F}}(r) = \left. \frac{\partial}{\partial \alpha} R_{\mathcal{F}}(\alpha, \gamma) \right|_{\alpha=\gamma=r} \).
Procedure (Recipe)

- Use approximate functional equation to expand numerator.
Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

\[
\frac{1}{L(s, f)} = \sum_h \frac{\mu_f(h)}{h^s},
\]

where \(\mu_f(h) \) is the multiplicative function equaling 1 for \(h = 1 \), \(-\lambda_f(p) \) if \(n = p \), \(\chi_0(p) \) if \(h = p^2 \) and 0 otherwise.
Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

\[
\frac{1}{L(s, f)} = \sum_{h} \frac{\mu_f(h)}{h^s},
\]

where \(\mu_f(h) \) is the multiplicative function equaling 1 for \(h = 1 \), \(-\lambda_f(p) \) if \(n = p \), \(\chi_0(p) \) if \(h = p^2 \) and 0 otherwise.

- Execute the sum over \(\mathcal{F} \), keeping only main (diagonal) terms.
Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

\[
\frac{1}{L(s, f)} = \sum_h \frac{\mu_f(h)}{h^s},
\]

where \(\mu_f(h)\) is the multiplicative function equaling 1 for \(h = 1\), \(-\lambda_f(p)\) if \(n = p\), \(\chi_0(p)\) if \(h = p^2\) and 0 otherwise.
- Execute the sum over \(\mathcal{F}\), keeping only main (diagonal) terms.
- Extend the \(m\) and \(n\) sums to infinity (complete the products).
Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

\[
\frac{1}{L(s, f)} = \sum_{h} \frac{\mu_f(h)}{h^s},
\]

where \(\mu_f(h)\) is the multiplicative function equaling 1 for \(h = 1\), \(-\lambda_f(p)\) if \(n = p\), \(\chi_0(p)\) if \(h = p^2\) and 0 otherwise.

- Execute the sum over \(\mathcal{F}\), keeping only main (diagonal) terms.
- Extend the \(m\) and \(n\) sums to infinity (complete the products).
- Differentiate with respect to the parameters.
Procedure (‘Illegal Steps’)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

\[\frac{1}{L(s, f)} = \sum_{h} \frac{\mu_f(h)}{h^s}, \]

where \(\mu_f(h) \) is the multiplicative function equaling 1 for \(h = 1 \), \(-\lambda_f(p) \) if \(n = p \), \(\chi_0(p) \) if \(h = p^2 \) and 0 otherwise.
- Execute the sum over \(\mathcal{F} \), keeping only main (diagonal) terms.
- Extend the \(m \) and \(n \) sums to infinity (complete the products).
- Differentiate with respect to the parameters.
1-Level Prediction from Ratio’s Conjecture

\[
A_E(\alpha, \gamma) = Y_E^{-1}(\alpha, \gamma) \times \prod_{p \nmid M} \left(\sum_{m=0}^{\infty} \left(\frac{\lambda(p^m)\omega_E^m}{p^{m(1/2+\alpha)}} - \frac{\lambda(p)}{p^{1/2+\gamma}} \frac{\lambda(p^m)\omega_E^{m+1}}{p^{m(1/2+\alpha)}} \right) \right)
\times
\prod_{p|M} \left(1 + \frac{p}{p+1} \left(\sum_{m=1}^{\infty} \frac{\lambda(p^{2m})}{p^{m(1+2\alpha)}} - \frac{\lambda(p)}{p^{1+\alpha+\gamma}} \sum_{m=0}^{\infty} \frac{\lambda(p^{2m+1})}{p^{m(1+2\alpha)}} \right) \right)
\]

where

\[
Y_E(\alpha, \gamma) = \frac{\zeta(1 + 2\gamma)L_E(\text{sym}^2, 1 + 2\alpha)}{\zeta(1 + \alpha + \gamma)L_E(\text{sym}^2, 1 + \alpha + \gamma)}.
\]

Huynh, Morrison and Miller confirmed Ratios’ prediction, which is
1-Level Prediction from Ratio’s Conjecture

\[
\begin{align*}
\frac{1}{X^*} & \sum_{d \in \mathcal{F}(X)} \sum_{\gamma_d} g\left(\frac{\gamma_d L}{\pi}\right) \\
& = \frac{1}{2LX^*} \int_{-\infty}^{\infty} g(\tau) \left[2 \log \left(\frac{\sqrt{M}|d|}{2\pi} \right) + \frac{\Gamma'}{\Gamma} \left(1 + \frac{i\pi \tau}{L} \right) + \frac{\Gamma'}{\Gamma} \left(1 - \frac{i\pi \tau}{L} \right) \right] d\tau \\
& + \frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \left(-\frac{\zeta'}{\zeta} \left(1 + \frac{2\pi i\tau}{L} \right) + \frac{L'_E}{L_E} \left(\text{sym}^2, 1 + \frac{2\pi i\tau}{L} \right) - \sum_{\ell=1}^{\infty} \frac{(M^\ell - 1) \log M}{M^{(2 + 2\pi i\tau/L)\ell}} \right) d\tau \\
& - \frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)(1 + \pi i\tau/L)}} d\tau + \frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p|M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda(p^{2k+2}) - \lambda(p^{2k})}{p^{(k+1)(1 + \frac{\pi i\tau}{L})}} d\tau \\
& - \frac{1}{LX^*} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)} \left[\left(\frac{\sqrt{M}|d|}{2\pi} \right)^{-2i\pi \tau/L} \Gamma(1 - \frac{i\pi \tau}{L}) \Gamma(1 + \frac{i\pi \tau}{L}) \frac{\zeta(1 + \frac{2i\pi \tau}{L})}{L_E(\text{sym}^2, 1 - \frac{2i\pi \tau}{L})} \right] d\tau + O(X^{-1/2+\varepsilon}).
\end{align*}
\]
Numerics (J. Stopple): 1,003,083 negative fundamental discriminants $-d \in [10^{12}, 10^{12} + 3.3 \cdot 10^6]$

Histogram of normalized zeros ($\gamma \leq 1$, about 4 million).

- Red: main term.
- Blue: includes $O(1/\log X)$ terms.
- Green: all lower order terms.
Excised Orthogonal Ensembles
Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of $A \in \text{SO}(2N)$ is

$$\Lambda_A(e^{i\theta}, N) := \det(I - Ae^{-i\theta}) = \prod_{k=1}^{N} (1 - e^{i(\theta_k - \theta)})(1 - e^{i(-\theta_k - \theta)}),$$

with $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_N}$ the eigenvalues of A.

Motivated by the arithmetical size constraint on the central values of the L-functions, consider Excised Orthogonal Ensemble $T_{\chi}: A \in \text{SO}(2N)$ with $|\Lambda_A(1, N)| \geq \exp(\chi)$.
One-Level Densities

One-level density $R_1^{G(N)}$ for a (circular) ensemble $G(N)$:

$$R_1^{G(N)}(\theta) = N \int \cdots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$

where $P(\theta, \theta_2, \ldots, \theta_N)$ is the joint probability density function of eigenphases.
One-Level Densities

One-level density $R_{1}^{G(N)}$ for a (circular) ensemble $G(N)$:

$$
R_{1}^{G(N)}(\theta) = N \int \cdots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \cdots d\theta_N,
$$

where $P(\theta, \theta_2, \ldots, \theta_N)$ is the joint probability density function of eigenphases. The one-level density excised orthogonal ensemble:

$$
R_{1}^{T_X}(\theta_1) := C_X \cdot N \int_0^{\pi} \cdots \int_0^{\pi} H(|\Lambda_A(1, N)| - X) \times
$$

$$
\times \prod_{j<k} (\cos \theta_j - \cos \theta_k)^2 d\theta_2 \cdots d\theta_N,
$$

Here $H(x)$ denotes the Heaviside function

$$
H(x) = \begin{cases}
1 & \text{for } x > 0 \\
0 & \text{for } x < 0,
\end{cases}
$$

and C_X is a normalization constant.
One-Level Densities

One-level density $R_{1}^{G(N)}$ for a (circular) ensemble $G(N)$:

$$R_{1}^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$

where $P(\theta, \theta_2, \ldots, \theta_N)$ is the joint probability density function of eigenphases. The one-level density excised orthogonal ensemble:

$$R_{1}^{T_{c}(\theta_1)} = \frac{C_{c}}{2\pi i} \int_{c-i\infty}^{c+i\infty} 2^{N} \exp\left(-r\chi\right) \frac{R_{1}^{J_N}(\theta_1; r - 1/2, -1/2)}{r} dr$$

where C_{c} is a normalization constant and

$$R_{1}^{J_N}(\theta_1; r - 1/2, -1/2) = N \int_{0}^{\pi} \ldots \int_{0}^{\pi} \prod_{j=1}^{N} w^{(r-1/2,-1/2)}(\cos \theta_j) \times \prod_{j<k} (\cos \theta_j - \cos \theta_k)^2 d\theta_2 \ldots d\theta_N$$

is the one-level density for the Jacobi ensemble J_N with weight function

$$w^{(\alpha,\beta)}(\cos \theta) = (1-\cos \theta)^{\alpha+1/2}(1+\cos \theta)^{\beta+1/2}, \quad \alpha = r - 1/2 \text{ and } \beta = -1/2.$$
Results

With $C_\mathcal{X}$ normalization constant and $P(N, r, \theta)$ defined in terms of Jacobi polynomials,

$$R_{1,\mathcal{X}}^T(\theta) = \frac{C_\mathcal{X}}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(-r\mathcal{X})}{r} \frac{2^{N^2+2Nr-N}}{r} \prod_{j=0}^{N-1} \frac{\Gamma(2+j)\Gamma(1/2+j)\Gamma(r+1/2+j)}{\Gamma(r+N+j)} \times$$

$$\times (1 - \cos \theta)^r \frac{2^{1-r}}{2N+r-1} \frac{\Gamma(N+1)\Gamma(N+r)}{\Gamma(N+r-1/2)\Gamma(N-1/2)} P(N, r, \theta) \, dr.$$

Residue calculus implies $R_{1,\mathcal{X}}^T(\theta) = 0$ for $d(\theta, \mathcal{X}) < 0$ and

$$R_{1,\mathcal{X}}^T(\theta) = R_{1,\mathcal{SO}(2N)}^T(\theta) + C_\mathcal{X} \sum_{k=0}^{\infty} b_k \exp((k+1/2)\mathcal{X}) \quad \text{for} \ d(\theta, \mathcal{X}) \geq 0,$$

where $d(\theta, \mathcal{X}) := (2N-1) \log 2 + \log(1 - \cos \theta) - \mathcal{X}$ and b_k are coefficients arising from the residues. As $\mathcal{X} \to -\infty$, θ fixed, $R_{1,\mathcal{X}}^T(\theta) \to R_{1,\mathcal{SO}(2N)}^T(\theta)$.

Numerical check

Figure: One-level density of excized $\text{SO}(2N)$, $N = 2$ with cut-off $|\Lambda_A(1, N)| \geq 0.1$. The red curve uses our formula. The blue crosses give the empirical one-level density of 200,000 numerically generated matrices.
Theory vs Experiment

Figure: Cumulative probability density of the first eigenvalue from 3×10^6 numerically generated matrices $A \in SO(2N_{\text{std}})$ with $|\Lambda_A(1, N_{\text{std}})| \geq 2.188 \times \exp(-N_{\text{std}}/2)$ and $N_{\text{std}} = 12$ red dots compared with the first zero of even quadratic twists $L_{E_{11}}(s, \chi_d)$ with prime fundamental discriminants $0 < d \leq 400,000$ blue crosses. The random matrix data is scaled so that the means of the two distributions agree.
Conclusion and References
In the limit: Birch and Swinnerton-Dyer, Katz-Sarnak appear true.

Finite conductors: model with Excised Ensembles (cut-off on characteristic polynomials due to discretization at central point).

Future Work: Joint with Owen Barrett and Nathan Ryan (and possibly some of his students): looking at other GL2 families (and hopefully higher) to study the relationship between repulsion at finite conductors and central values (effect of weight, level).
References

