Steven J Miller Dept of Math/Stats, Williams College sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu http://www.williams.edu/Mathematics/sjmiller Joint with E. Dueñez, D. Huynh, J. P. Keating, N. C. Snaith Duke Number Theory Seminar, September 7, 2016 #### Introduction #### Riemann Zeta Function $$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$ ### **Functional Equation:** $$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$ ### **Riemann Hypothesis (RH):** All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$. Convolutions Intro 00000000 $$L(s,f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s,f)^{-1}, \quad \text{Re}(s) > 1.$$ #### **Functional Equation:** $$\Lambda(s,f) = \Lambda_{\infty}(s,f)L(s,f) = \Lambda(1-s,f).$$ ## Generalized Riemann Hypothesis (GRH): All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$. 4 # Intro ## **Mordell-Weil Group** Elliptic curve $y^2 = x^3 + ax + b$ with rational solutions $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and connecting line y = mx + b. Addition of distinct points P and Q Adding a point P to itself $$E(\mathbb{Q}) \approx E(\mathbb{Q})_{\mathsf{tors}} \oplus \mathbb{Z}^r$$ ### Elliptic curve L-function $$E: y^2 = x^3 + ax + b$$, associate L-function $$L(s, E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$ where $$a_{E}(p) = p - \#\{(x, y) \in (\mathbb{Z}/p\mathbb{Z})^{2} : y^{2} \equiv x^{3} + ax + b \mod p\}.$$ ## **Birch and Swinnerton-Dyer Conjecture** Rank of group of rational solutions equals order of vanishing of L(s, E) at s = 1/2. Intro 000000000 ### One parameter family $$\mathcal{E}: y^2 = x^3 + A(T)x + B(T), \ A(T), B(T) \in \mathbb{Z}[T].$$ # Silverman's Specialization Theorem Assume (geometric) rank of $\mathcal{E}/\mathbb{Q}(T)$ is r. Then for all $t \in \mathbb{Z}$ sufficiently large, each $E_t : y^2 = x^3 + A(t)x + B(t)$ has (geometric) rank at least r. ### Average rank conjecture For a generic one-parameter family of rank r over $\mathbb{Q}(T)$, expect in the limit half the specialized curves have rank r and half have rank r+1. ### Measures of Spacings: *n*-Level Correlations $\{\alpha_i\}$ increasing sequence of numbers, $B \subset \mathbb{R}^{n-1}$ a compact box. Define the *n*-level correlation by $$\lim_{N\to\infty} \frac{\#\left\{\left(\alpha_{j_1}-\alpha_{j_2},\ldots,\alpha_{j_{n-1}}-\alpha_{j_n}\right)\in B, j_i\neq j_k\right\}}{N}$$ Instead of using a box, can use a smooth test function. ### Measures of Spacings: n-Level Correlations • Normalized spacings of $\zeta(s)$ starting at 10²⁰. (Odlyzko) 70 million spacings between adjacent normalized zeros of $\zeta(s)$, starting at the 10^{20th} zero (from Odlyzko). ### Measures of Spacings: n-Level Correlations $\{\alpha_j\}$ increasing sequence of numbers, $B \subset \mathbb{R}^{n-1}$ a compact box. Define the *n*-level correlation by $$\lim_{N\to\infty} \frac{\#\left\{\left(\alpha_{j_1}-\alpha_{j_2},\ldots,\alpha_{j_{n-1}}-\alpha_{j_n}\right)\in B, j_i\neq j_k\right\}}{N}$$ Instead of using a box, can use a smooth test function. - **①** Spacings of $\zeta(s)$ from 10^{20} (Odlyzko). - Pair and triple correlations of $\zeta(s)$ (Montgomery, Hejhal). - n-level correlations for all automorphic cupsidal L-functions (Rudnick-Sarnak). - n-level correlations for the classical compact groups (Katz-Sarnak). - insensitive to any finite set of zeros. Intro ### Measures of Spacings: n-Level Density and Families Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f : $$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\j_j\neq\pm j_k}} \phi_1\left(\gamma_{f,j_1}\frac{\log Q_f}{2\pi}\right)\cdots\phi_n\left(\gamma_{f,j_n}\frac{\log Q_f}{2\pi}\right)$$ 11 Excised Ensembles ### Measures of Spacings: n-Level Density and Families Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f : $$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\ j_\ell \neq \pm j_\ell}} \phi_1\left(\gamma_{f,j_1} \frac{\log Q_f}{2\pi}\right) \cdots \phi_n\left(\gamma_{f,j_n} \frac{\log Q_f}{2\pi}\right)$$ - Properties of n-level density: - Individual zeros contribute in limit. ### Measures of Spacings: *n*-Level Density and Families Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f : $$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\j_j\neq\pm j_k}} \phi_1\left(\gamma_{f,j_1}\frac{\log Q_f}{2\pi}\right)\cdots\phi_n\left(\gamma_{f,j_n}\frac{\log Q_f}{2\pi}\right)$$ - Properties of n-level density: - Individual zeros contribute in limit. - Most of contribution is from low zeros. ### Measures of Spacings: *n*-Level Density and Families Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f : $$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\j_j\neq\pm j_k}} \phi_1\left(\gamma_{f,j_1}\frac{\log Q_f}{2\pi}\right)\cdots\phi_n\left(\gamma_{f,j_n}\frac{\log Q_f}{2\pi}\right)$$ - Properties of n-level density: - Individual zeros contribute in limit. - Most of contribution is from low zeros. - ♦ Average over similar L-functions (family). Intro 00000000 ### n-Level Density *n*-level density: $\mathcal{F} = \cup \mathcal{F}_N$ a family of *L*-functions ordered by conductors, ϕ_k an even Schwartz function: $D_{n,\mathcal{F}}(\phi) =$ $$\lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{\substack{f\in\mathcal{F}_N \\ i_1,\dots,j_n \\ i\neq f,i_n}} \phi_1\left(\frac{\log Q_f}{2\pi} \gamma_{j_1;f}\right) \cdots \phi_n\left(\frac{\log Q_f}{2\pi} \gamma_{j_n;f}\right)$$ As $N \to \infty$, *n*-level density converges to $$\int \phi(\overrightarrow{x}) \rho_{n,\mathcal{G}(\mathcal{F})}(\overrightarrow{x}) d\overrightarrow{x} = \int \widehat{\phi}(\overrightarrow{u}) \widehat{\rho}_{n,\mathcal{G}(\mathcal{F})}(\overrightarrow{u}) d\overrightarrow{u}.$$ ## **Conjecture (Katz-Sarnak)** (In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group. ### **Testing Random Matrix Theory Predictions** Know the right model for large conductors, searching for the correct model for finite conductors. In the limit must recover the independent model, and want to explain data on: - **Excess Rank:** Rank r one-parameter family over $\mathbb{Q}(T)$: observed percentages with rank $\geq r + 2$. - First (Normalized) Zero above Central Point: Influence of zeros at the central point on the distribution of zeros near the central point. Aside: Identifying Family Symmetry (and finding arithmetic) ### **Some Number Theory Results** - Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer: 1-level density for holomorphic even weight k cuspidal newforms of square-free level N (SO(even) and SO(odd) if split by sign). - Symplectic: Rubinstein, Gao, Levinson-Miller, and Entin, Roddity-Gershon and Rudnick: n-level densities for twists $L(s, \chi_d)$ of the zeta-function. - Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of Primitive Dirichlet Characters. - Orthogonal: Miller, Young: One and two-parameter families of elliptic curves. #### **Main Tools** - Control of conductors: Usually monotone, gives scale to study low-lying zeros. - Explicit Formula: Relates sums over zeros to sums over primes. - Averaging Formulas: Petersson formula in Iwaniec-Luo-Sarnak, Orthogonality of characters in Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller, Rubinstein. ### Applications of *n*-level density One application: bounding the order of vanishing at the central point. Average rank $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$ if ϕ non-negative. ### Applications of *n*-level density One application: bounding the order of vanishing at the central point. Average rank $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$ if ϕ non-negative. Can also use to bound the percentage that vanish to order r for any r. ## Theorem (Miller, Hughes-Miller) Using n-level arguments, for the family of cuspidal newforms of prime level $N \to \infty$ (split or not split by sign), for any r there is a c_r such that probability of at least r zeros at the central point is at most $c_n r^{-n}$. Better results using 2-level than Iwaniec-Luo-Sarnak using the 1-level for $r \ge 5$. ### **Identifying the Symmetry Groups** - Often an analysis of the monodromy group in the function field case suggests the answer. - Tools: Explicit Formula, Orthogonality of Characters / Petersson Formula. - How to identify symmetry group in general? One possibility is by the signs of the functional equation: - Folklore Conjecture: If all signs are even and no corresponding family with odd signs, Symplectic symmetry; otherwise SO(even). (False!) Excised Ensembles ### **Explicit Formula** - π : cuspidal automorphic representation on GL_n . - $Q_{\pi} > 0$: analytic conductor of $L(s, \pi) = \sum \lambda_{\pi}(n)/n^{s}$. - By GRH the non-trivial zeros are $\frac{1}{2} + i\gamma_{\pi,i}$. - Satake parameters $\{\alpha_{\pi,i}(p)\}_{i=1}^n$; $\lambda_{\pi}(\mathbf{p}^{\nu}) = \sum_{i=1}^{n} \alpha_{\pi,i}(\mathbf{p})^{\nu}.$ - $L(s,\pi) = \sum_{n} \frac{\lambda_{\pi}(n)}{n^{s}} = \prod_{p} \prod_{i=1}^{n} (1 \alpha_{\pi,i}(p)p^{-s})^{-1}$. $$\sum_{j} g\left(\gamma_{\pi,j} \frac{\log Q_{\pi}}{2\pi}\right) = \widehat{g}(0) - 2\sum_{p,\nu} \widehat{g}\left(\frac{\nu \log p}{\log Q_{\pi}}\right) \frac{\lambda_{\pi}(p^{\nu}) \log p}{p^{\nu/2} \log Q_{\pi}}$$ Convolutions 000000 # Assuming conductors constant in family \mathcal{F} , have to study $$\lambda_{f}(p^{\nu}) = \alpha_{f,1}(p)^{\nu} + \dots + \alpha_{f,n}(p)^{\nu}$$ $$S_{1}(\mathcal{F}) = -2\sum_{p} \hat{g}\left(\frac{\log p}{\log R}\right) \frac{\log p}{\sqrt{p}\log R} \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_{f}(p)\right]$$ $$S_{2}(\mathcal{F}) = -2\sum_{p} \hat{g}\left(2\frac{\log p}{\log R}\right) \frac{\log p}{p\log R} \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_{f}(p^{2})\right]$$ The corresponding classical compact group is determined by $$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_f(\boldsymbol{p}^2) = \boldsymbol{c}_{\mathcal{F}} = \begin{cases} 0 & \text{Unitary} \\ 1 & \text{Symplectic} \\ -1 & \text{Orthogonal.} \end{cases}$$ ### Some Results: Rankin-Selberg Convolution of Families Symmetry constant: $c_{\mathcal{L}} = 0$ (resp, 1 or -1) if family \mathcal{L} has unitary (resp, symplectic or orthogonal) symmetry. Rankin-Selberg convolution: Satake parameters for $\pi_{1,p} \times \pi_{2,p}$ are $$\{\alpha_{\pi_1 \times \pi_2}(k)\}_{k=1}^{nm} = \{\alpha_{\pi_1}(i) \cdot \alpha_{\pi_2}(j)\}_{\substack{1 \le i \le n \ 1 \le j \le m}}.$$ ### Theorem (Dueñez-Miller) If $\mathcal F$ and $\mathcal G$ are *nice* families of L-functions, then $c_{\mathcal F \times \mathcal G} = c_{\mathcal F} \cdot c_{\mathcal G}$. Breaks analysis of compound families into simple ones. ### Some Results: Rankin-Selberg Convolution: Proof Symmetry constant: $c_{\mathcal{L}} = 0$ (resp, 1 or -1) if family \mathcal{L} has unitary (resp, symplectic or orthogonal) symmetry. Rankin-Selberg convolution: Moments of Satake parameters for $\pi_{1,p} \times \pi_{2,p}$ are $$\sum_{k=1}^{nm} \alpha_{\pi_1 \times \pi_2, k}(\boldsymbol{p})^{\nu} = \sum_{i=1}^{n} \alpha_{\pi_1, i}(\boldsymbol{p})^{\nu} \sum_{j=1}^{m} \alpha_{\pi_2, j}(\boldsymbol{p})^{\nu}.$$ ## Theorem (Dueñez-Miller) If $\mathcal F$ and $\mathcal G$ are *nice* families of L-functions, then $c_{\mathcal F \times \mathcal G} = c_{\mathcal F} \cdot c_{\mathcal G}$. Breaks analysis of compound families into simple ones. #### **Takeaways** ### Very similar to Central Limit Theorem. - Universal behavior: main term controlled by first two moments of Satake parameters, agrees with RMT. - First moment zero save for families of elliptic curves. - Higher moments control convergence and can depend on arithmetic of family. ## Theory and Models ### **Orthogonal Random Matrix Models** RMT: SO(2N): 2N eigenvalues in pairs $e^{\pm i\theta_j}$, probability measure on $[0, \pi]^N$: $$d\epsilon_0(\theta) \propto \prod_{j< k} (\cos\theta_k - \cos\theta_j)^2 \prod_j d\theta_j.$$ Independent Model: $$\mathcal{A}_{2N,2r} = \left\{ \begin{pmatrix} I_{2r \times 2r} & \\ & g \end{pmatrix} : g \in SO(2N-2r) \right\}.$$ Interaction Model: Sub-ensemble of SO(2N) with the last 2r of the 2N eigenvalues equal +1: $1 \le j, k \le N - r$: $$d\varepsilon_{2r}(\theta) \propto \prod_{j < k} (\cos \theta_k - \cos \theta_j)^2 \prod_j (1 - \cos \theta_j)^{2r} \prod_j d\theta_j,$$ 29 #### **Random Matrix Models and One-Level Densities** Fourier transform of 1-level density: $$\hat{\rho}_0(u) = \delta(u) + \frac{1}{2}\eta(u).$$ Fourier transform of 1-level density (Rank 2, Indep): $$\hat{ ho}_{2, ext{Independent}}(u) = \left\lceil \delta(u) + rac{1}{2} \eta(u) + 2 ight ceil.$$ Fourier transform of 1-level density (Rank 2, Interaction): $$\hat{ ho}_{2, ext{Interaction}}(u) = \left[\delta(u) + rac{1}{2}\eta(u) + 2 ight] + 2(|u| - 1)\eta(u).$$ ## **Comparing the RMT Models** #### Theorem: M- '04 For small support, one-param family of rank r over $\mathbb{Q}(T)$: $$\lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{E_t \in \mathcal{F}_N} \sum_j \varphi\left(\frac{\log C_{E_t}}{2\pi} \gamma_{E_t,j}\right)$$ $$= \int \varphi(x) \rho_{\mathcal{G}}(x) dx + r\varphi(0)$$ where $$\mathcal{G} \ = \ \left\{ \begin{array}{ll} \mathsf{SO} & \mathsf{if half odd} \\ \mathsf{SO}(\mathsf{even}) & \mathsf{if all even} \\ \mathsf{SO}(\mathsf{odd}) & \mathsf{if all odd.} \end{array} \right.$$ Supports Katz-Sarnak, B-SD, and Independent model in limit. Data ### RMT: Theoretical Results ($N \to \infty$) 1st normalized evalue above 1: SO(even) #### RMT: Theoretical Results ($N \to \infty$) 1st normalized evalue above 1: SO(odd) #### Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0 Figure 4a: 209 rank 0 curves from 14 rank 0 families, $log(cond) \in [3.26, 9.98]$, median = 1.35, mean = 1.36 35 #### Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0 Figure 4b: 996 rank 0 curves from 14 rank 0 families, $log(cond) \in [15.00, 16.00]$, median = .81, mean = .86. # Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$) 1st Normalized Zero above Central Point Figure 5*a*: 35 curves, $\log(\text{cond}) \in [7.8, 16.1], \ \widetilde{\mu} = 1.85, \ \mu = 1.92, \ \sigma_{\mu} = .41$ 37 # Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$) 1st Normalized Zero above Central Point Figure 5*b*: 34 curves, $\log(\text{cond}) \in [16.2, 23.3], \ \widetilde{\mu} = 1.37, \ \mu = 1.47, \ \sigma_{\mu} = .34$ 20 # Spacings b/w Norm Zeros: Rank 0 One-Param Families over $\mathbb{Q}(T)$ - All curves have log(cond) ∈ [15, 16]; - $z_j = \text{imaginary part of } j^{\text{th}}$ normalized zero above the central point; - 863 rank 0 curves from the 14 one-param families of rank 0 over $\mathbb{Q}(T)$; - 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$. | | 863 Rank 0 Curves | 701 Rank 2 Curves | t-Statistic | |--------------------|-------------------|-------------------|-------------| | Median $z_2 - z_1$ | 1.28 | 1.30 | | | Mean $z_2 - z_1$ | 1.30 | 1.34 | -1.60 | | StDev $z_2 - z_1$ | 0.49 | 0.51 | | | Median $z_3 - z_2$ | 1.22 | 1.19 | | | Mean $z_3 - z_2$ | 1.24 | 1.22 | 0.80 | | StDev $z_3 - z_2$ | 0.52 | 0.47 | | | Median $z_3 - z_1$ | 2.54 | 2.56 | | | Mean $z_3 - z_1$ | 2.55 | 2.56 | -0.38 | | StDev $z_3 - z_1$ | 0.52 | 0.52 | | # Spacings b/w Norm Zeros: Rank 2 one-param families over $\mathbb{Q}(T)$ - All curves have log(cond) ∈ [15, 16]; - z_j = imaginary part of the j^{th} norm zero above the central point; - 64 rank 2 curves from the 21 one-param families of rank 2 over ℚ(T); - 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T). | | 64 Rank 2 Curves | 23 Rank 4 Curves | t-Statistic | |--------------------|------------------|------------------|-------------| | Median $z_2 - z_1$ | 1.26 | 1.27 | | | Mean $z_2 - z_1$ | 1.36 | 1.29 | 0.59 | | StDev $z_2 - z_1$ | 0.50 | 0.42 | | | Median $z_3 - z_2$ | 1.22 | 1.08 | | | Mean $z_3 - z_2$ | 1.29 | 1.14 | 1.35 | | StDev $z_3 - z_2$ | 0.49 | 0.35 | | | Median $z_3 - z_1$ | 2.66 | 2.46 | | | Mean $z_3 - z_1$ | 2.65 | 2.43 | 2.05 | | StDev $z_3 - z_1$ | 0.44 | 0.42 | | # Rank 2 Curves from Rank 0 & Rank 2 Families over $\mathbb{Q}(T)$ - All curves have log(cond) ∈ [15, 16]; - z_j = imaginary part of the j^{th} norm zero above the central point; - 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$; - 64 rank 2 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$. | | 701 Rank 2 Curves | 64 Rank 2 Curves | t-Statistic | |--------------------|-------------------|------------------|-------------| | Median $z_2 - z_1$ | 1.30 | 1.26 | | | Mean $z_2 - z_1$ | 1.34 | 1.36 | 0.69 | | StDev $z_2 - z_1$ | 0.51 | 0.50 | | | Median $z_3 - z_2$ | 1.19 | 1.22 | | | Mean $z_3 - z_2$ | 1.22 | 1.29 | 1.39 | | StDev $z_3 - z_2$ | 0.47 | 0.49 | | | Median $z_3 - z_1$ | 2.56 | 2.66 | | | Mean $z_3 - z_1$ | 2.56 | 2.65 | 1.93 | | StDev $z_3 - z_1$ | 0.52 | 0.44 | | # **Summary of Data** - The repulsion of the low-lying zeros increased with increasing rank, and was present even for rank 0 curves. - As the conductors increased, the repulsion decreased. - Statistical tests failed to reject the hypothesis that, on average, the first three zeros were all repelled equally (i. e., shifted by the same amount). # Convergence to the RMT limit: What's the right matrix size? - RMT + Katz-Sarnak: Limiting behavior for random matrices as N → ∞ and L-functions as conductors tend to infinity agree. - How well do the classical matrix groups model local statistics of *L*-functions *outside* the scaling limit? (Arithmetic enters!) Keating and Snaith, Bogomolny, Bohigas, Leboeuf & Monastra compare the difference b/w the asymptotic and finite N_0 nearest-neighbor spacing for CUE matrices to that for ζ zeros: $$N_0 = \log \frac{E}{2\pi}$$ from equating local density of zeros of $\zeta(s)$ with local density of eigenvalues of matrices in U(N). # Convergence to the RMT limit L: 70 million $\zeta(s)$ nearest-neighbor spacings (Odlyzko). R: Difference b/w $\zeta(s)$ and asymptotic CUE curve (dots) compared to difference b/w CUE of size N_0 and asymptotic curve (dashed line) (from Bogomolny et. al.). # Convergence to the RMT limit: Incorporating Finite Matrix Size Difference b/w nearest-neighbor spacing of $\zeta(s)$ zeros and asymptotic CUE for a billion zeros in window near 2.504 \times 10¹⁵ (dots) compared to theory that takes into account arithmetic of lower order terms (full line) (from Bogomolny et. al.). New model should incorporate finite matrix size.... #### **New Model for Finite Conductors** - Replace conductor N with N_{effective}. - ♦ Arithmetic info, predict with *L*-function Ratios Conj. - Do the number theory computation. - Excised Orthogonal Ensembles. - $\diamond L(1/2, E)$ discretized. - ⋄ Study matrices in SO(2 N_{eff}) with $|\Lambda_A(1)| \ge ce^N$. - Painlevé VI differential equation solver. - Use explicit formulas for densities of Jacobi ensembles. - ⋄ Key input: Selberg-Aomoto integral for initial conditions. ### Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000 Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart), lowest eigenvalue of SO(2N) with N_{eff} (solid), standard N_0 (dashed). ### Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000 Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart); lowest eigenvalue of SO(2N): $N_{\rm eff}$ = 2 (solid) with discretisation, and $N_{\rm eff}$ = 2.32 (dashed) without discretisation. Ratio's Conjecture #### **History** • Farmer (1993): Considered $$\int_0^T \frac{\zeta(s+\alpha)\zeta(1-s+\beta)}{\zeta(s+\gamma)\zeta(1-s+\delta)} dt,$$ conjectured (for appropriate values) $$T\frac{(\alpha+\delta)(\beta+\gamma)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta}\frac{(\delta-\beta)(\gamma-\alpha)}{(\alpha+\beta)(\gamma+\delta)}.$$ # • Farmer (1993): Considered $$\int_0^T \frac{\zeta(s+\alpha)\zeta(1-s+\beta)}{\zeta(s+\gamma)\zeta(1-s+\delta)} dt,$$ conjectured (for appropriate values) $$T\frac{(\alpha+\delta)(\beta+\gamma)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta}\frac{(\delta-\beta)(\gamma-\alpha)}{(\alpha+\beta)(\gamma+\delta)}.$$ Conrey-Farmer-Zirnbauer (2007): conjecture formulas for averages of products of L-functions over families: $$R_{\mathcal{F}} = \sum_{f \in \mathcal{T}} \omega_f \frac{L\left(\frac{1}{2} + \alpha, f\right)}{L\left(\frac{1}{2} + \gamma, f\right)}.$$ #### **Uses of the Ratios Conjecture** # Applications: - ⋄ n-level correlations and densities; - mollifiers; - moments; - vanishing at the central point; # Advantages: - RMT models often add arithmetic ad hoc; - predicts lower order terms, often to square-root level. #### Inputs for 1-level density • Approximate Functional Equation: $$L(s, f) = \sum_{m \leq x} \frac{a_m}{m^s} + \epsilon \mathbb{X}_L(s) \sum_{n \leq y} \frac{a_n}{n^{1-s}};$$ - \diamond ϵ sign of the functional equation, - $\diamond X_L(s)$ ratio of Γ -factors from functional equation. # • Approximate Functional Equation: $$L(s, f) = \sum_{m \leq x} \frac{a_m}{m^s} + \epsilon \mathbb{X}_L(s) \sum_{n \leq y} \frac{a_n}{n^{1-s}};$$ - $\diamond \epsilon$ sign of the functional equation, - $\diamond \mathbb{X}_{L}(s)$ ratio of Γ -factors from functional equation. - Explicit Formula: g Schwartz test function, $$\sum_{f \in \mathcal{F}} \omega_f \sum_{\gamma} g\left(\gamma \frac{\log N_f}{2\pi}\right) = \frac{1}{2\pi i} \int_{(c)} - \int_{(1-c)} R'_{\mathcal{F}}(\cdots) g(\cdots)$$ $$\diamond R_{\mathcal{F}}'(r) = \frac{\partial}{\partial \alpha} R_{\mathcal{F}}(\alpha, \gamma) \Big|_{\alpha = \gamma = r}.$$ 55 ## **Procedure (Recipe)** Use approximate functional equation to expand numerator. - Use approximate functional equation to expand numerator. - Expand denominator by generalized Mobius function: cusp form $$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$ where $\mu_t(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise. - Use approximate functional equation to expand numerator. - Expand denominator by generalized Mobius function: cusp form $$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$ where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise. Execute the sum over F, keeping only main (diagonal) terms. # Procedure (Recipe) - Use approximate functional equation to expand numerator. - Expand denominator by generalized Mobius function: cusp form $$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$ where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise. - Execute the sum over F, keeping only main (diagonal) terms. - Extend the m and n sums to infinity (complete the products). # **Procedure (Recipe)** - Use approximate functional equation to expand numerator. - Expand denominator by generalized Mobius function: cusp form $$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$ where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise. - Execute the sum over F, keeping only main (diagonal) terms. - Extend the *m* and *n* sums to infinity (complete the products). - Differentiate with respect to the parameters. # Procedure ('Illegal Steps') - Use approximate functional equation to expand numerator. - Expand denominator by generalized Mobius function: cusp form $$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$ where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise. - Execute the sum over F, keeping only main (diagonal) terms. - Extend the *m* and *n* sums to infinity (complete the products). - Differentiate with respect to the parameters. $$A_{E}(\alpha, \gamma) = Y_{E}^{-1}(\alpha, \gamma) \times \prod_{p \mid M} \left(\sum_{m=0}^{\infty} \left(\frac{\lambda(p^{m})\omega_{E}^{m}}{p^{m(1/2+\alpha)}} - \frac{\lambda(p)}{p^{1/2+\gamma}} \frac{\lambda(p^{m})\omega_{E}^{m+1}}{p^{m(1/2+\alpha)}} \right) \right) \times \prod_{p \nmid M} \left(1 + \frac{p}{p+1} \left(\sum_{m=1}^{\infty} \frac{\lambda(p^{2m})}{p^{m(1+2\alpha)}} - \frac{\lambda(p)}{p^{1+\alpha+\gamma}} \sum_{m=0}^{\infty} \frac{\lambda(p^{2m+1})}{p^{m(1+2\alpha)}} + \frac{1}{p^{1+2\gamma}} \sum_{m=0}^{\infty} \frac{\lambda(p^{2m})}{p^{m(1+2\alpha)}} \right) \right)$$ where $$Y_E(\alpha, \gamma) = \frac{\zeta(1 + 2\gamma)L_E(\text{sym}^2, 1 + 2\alpha)}{\zeta(1 + \alpha + \gamma)L_E(\text{sym}^2, 1 + \alpha + \gamma)}.$$ Huynh, Morrison and Miller confirmed Ratios' prediction, which is # 1-Level Prediction from Ratio's Conjecture $$\begin{split} &\frac{1}{X^*}\sum_{d\in\mathcal{F}(X)}\sum_{\gamma_d}g\left(\frac{\gamma_dL}{\pi}\right)\\ &=\frac{1}{2LX^*}\int_{-\infty}^{\infty}g(\tau)\sum_{d\in\mathcal{F}(X)}\left[2\log\left(\frac{\sqrt{M}|d|}{2\pi}\right)+\frac{\Gamma'}{\Gamma}\left(1+\frac{i\pi\tau}{L}\right)+\frac{\Gamma'}{\Gamma}\left(1-\frac{i\pi\tau}{L}\right)\right]d\tau\\ &+\frac{1}{L}\int_{-\infty}^{\infty}g(\tau)\left(-\frac{\zeta'}{\zeta}\left(1+\frac{2\pi i\tau}{L}\right)+\frac{L'_E}{L_E}\left(\mathrm{sym}^2,1+\frac{2\pi i\tau}{L}\right)-\sum_{\ell=1}^{\infty}\frac{(M^\ell-1)\log M}{M^{(2+\frac{2i\pi\tau}{L})\ell}}\right)d\tau\\ &-\frac{1}{L}\sum_{k=0}^{\infty}\int_{-\infty}^{\infty}g(\tau)\frac{\log M}{M^{(k+1)(1+\frac{\pi i\tau}{L})}}d\tau+\frac{1}{L}\int_{-\infty}^{\infty}g(\tau)\sum_{\rho\nmid M}\frac{\log \rho}{(\rho+1)}\sum_{k=0}^{\infty}\frac{\lambda(\rho^{2k+2})-\lambda(\rho^{2k})}{\rho^{(k+1)(1+\frac{2\pi i\tau}{L})}}d\tau\\ &-\frac{1}{LX^*}\int_{-\infty}^{\infty}g(\tau)\sum_{d\in\mathcal{F}(X)}\left[\left(\frac{\sqrt{M}|d|}{2\pi}\right)^{-2i\pi\tau/L}\frac{\Gamma(1-\frac{i\pi\tau}{L})}{\Gamma(1+\frac{i\pi\tau}{L})}\frac{\zeta(1+\frac{2i\pi\tau}{L})L_E(\mathrm{sym}^2,1-\frac{2i\pi\tau}{L})}{L_E(\mathrm{sym}^2,1)}\right]\\ &\times A_E\Big(-\frac{i\pi\tau}{L},\frac{i\pi\tau}{L}\Big)\bigg]d\tau+O(X^{-1/2+\varepsilon}); \end{split}$$ # Numerics (J. Stopple): 1,003,083 negative fundamental discriminants $-d \in [10^{12}, 10^{12} + 3.3 \cdot 10^{6}]$ Histogram of normalized zeros ($\gamma \le 1$, about 4 million). \diamond Red: main term. \diamond Blue: includes $O(1/\log X)$ terms. \diamond Green: all lower order terms. # **Excised Orthogonal Ensembles** ### **Excised Orthogonal Ensemble: Preliminaries** Characteristic polynomial of $A \in SO(2N)$ is $$\Lambda_A(e^{i\theta},N) := \det(I - Ae^{-i\theta}) = \prod_{k=1}^N (1 - e^{i(\theta_k - \theta)})(1 - e^{i(-\theta_k - \theta)}),$$ with $e^{\pm i\theta_1}, \dots, e^{\pm i\theta_N}$ the eigenvalues of A. Motivated by the arithmetical size constraint on the central values of the L-functions, consider Excised Orthogonal Ensemble $T_{\mathcal{X}}$: $A \in SO(2N)$ with $|\Lambda_A(1, N)| > \exp(\mathcal{X})$. #### **One-Level Densities** One-level density $R_1^{G(N)}$ for a (circular) ensemble G(N): $$R_1^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$ where $P(\theta, \theta_2, \dots, \theta_N)$ is the joint probability density function of eigenphases. One-level density $R_1^{G(N)}$ for a (circular) ensemble G(N): $$R_1^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$ where $P(\theta, \theta_2, \dots, \theta_N)$ is the joint probability density function of eigenphases. The one-level density excised orthogonal ensemble: $$R_1^{T_{\mathcal{X}}}(\theta_1) := C_{\mathcal{X}} \cdot N \int_0^{\pi} \cdots \int_0^{\pi} H(\log |\Lambda_A(1, N)| - \mathcal{X}) \times \prod_{j < k} (\cos \theta_j - \cos \theta_k)^2 d\theta_2 \cdots d\theta_N,$$ Here H(x) denotes the Heaviside function $$H(x) = \begin{cases} 1 \text{ for } x > 0 \\ 0 \text{ for } x < 0, \end{cases}$$ and C_{x} is a normalization constant #### **One-Level Densities** One-level density $R_{s}^{G(N)}$ for a (circular) ensemble G(N): $$R_1^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$ where $P(\theta, \theta_2, \dots, \theta_N)$ is the joint probability density function of eigenphases. The one-level density excised orthogonal ensemble: $$R_1^{T_{\mathcal{X}}}(\theta_1) = \frac{C_{\mathcal{X}}}{2\pi i} \int_{c-i\infty}^{c+i\infty} 2^{Nr} \frac{\exp(-r\mathcal{X})}{r} R_1^{J_N}(\theta_1; r-1/2, -1/2) dr$$ where $C_{\mathcal{X}}$ is a normalization constant and $$R_1^{J_N}(\theta_1; r - 1/2, -1/2) = N \int_0^{\pi} \cdots \int_0^{\pi} \prod_{j=1}^N w^{(r-1/2, -1/2)}(\cos \theta_j) \times \prod_{j < k} (\cos \theta_j - \cos \theta_k)^2 d\theta_2 \cdots d\theta_N$$ is the one-level density for the Jacobi ensemble J_N with weight function $$w^{(\alpha,\beta)}(\cos\theta) = (1-\cos\theta)^{\alpha+1/2}(1+\cos\theta)^{\beta+1/2}, \qquad \alpha = r - 1/2 \text{ and } \beta = -1/2.$$ #### Results • With C_{χ} normalization constant and $P(N, r, \theta)$ defined in terms of Jacobi polynomials, $$\begin{split} R_1^{T_{\mathcal{X}}}(\theta) &= \frac{C_{\mathcal{X}}}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(-r\mathcal{X})}{r} 2^{N^2+2Nr-N} \times \\ &\times \prod_{j=0}^{N-1} \frac{\Gamma(2+j)\Gamma(1/2+j)\Gamma(r+1/2+j)}{\Gamma(r+N+j)} \times \\ &\times (1-\cos\theta)^r \frac{2^{1-r}}{2N+r-1} \frac{\Gamma(N+1)\Gamma(N+r)}{\Gamma(N+r-1/2)\Gamma(N-1/2)} P(N,r,\theta) \, dr. \end{split}$$ • Residue calculus implies $R_{\star}^{T_{\chi}}(\theta) = 0$ for $d(\theta, \chi) < 0$ and $$R_1^{T_{\mathcal{X}}}(\theta) = R_1^{\operatorname{SO}(2N)}(\theta) + C_{\mathcal{X}} \sum_{k=0}^{\infty} b_k \exp((k+1/2)\mathcal{X}) \quad \text{for } d(\theta,\mathcal{X}) \geq 0,$$ where $d(\theta, \mathcal{X}) := (2N - 1) \log 2 + \log(1 - \cos \theta) - \mathcal{X}$ and b_k are coefficients arising from the residues. As $\mathcal{X} \to -\infty$, θ fixed, $R_{\star}^{T_{\chi}}(\theta) \to R_{\star}^{SO(2N)}(\theta).$ #### **Numerical check** **Figure:** One-level density of excized SO(2*N*), N=2 with cut-off $|\Lambda_A(1,N)| \ge 0.1$. The red curve uses our formula. The blue crosses give the empirical one-level density of 200,000 numerically generated matrices. # **Theory vs Experiment** **Figure:** Cumulative probability density of the first eigenvalue from 3×10^6 numerically generated matrices $A \in SO(2N_{\rm std})$ with $|\Lambda_A(1,N_{\rm std})| \geq 2.188 \times \exp(-N_{\rm std}/2)$ and $N_{\rm std}=12$ red dots compared with the first zero of even quadratic twists $L_{E_{11}}(s,\chi_d)$ with prime fundamental discriminants $0 < d \leq 400,000$ blue crosses. The random matrix data is scaled so that the means of the two distributions agree. Conclusion and References #### **Conclusion and Future Work** - In the limit: Birch and Swinnerton-Dyer, Katz-Sarnak appear true. - Finite conductors: model with Excised Ensembles (cut-off on characteristic polynomials due to discretization at central point). - Future Work: Joint with Owen Barrett and Nathan Ryan (and possibly some of his students): looking at other GL2 families (and hopefully higher) to study the relationship between repulsion at finite conductors and central values (effect of weight, level). #### References - 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159 - Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257–279. http://arxiv.org/pdf/math/0508150 - Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137 (2009), 51–98. http://arxiv.org/pdf/0704.0924.pdf - The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Dueñez), Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018. http://arxiv.org/pdf/math/0607688.pdf - The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp). http://arxiv.org/pdf/1005.1298 - Models for zeros at the central point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp). http://arxiv.org/pdf/1107.4426