Steven J Miller Dept of Math/Stats, Williams College

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu http://www.williams.edu/Mathematics/sjmiller Joint with E. Dueñez, D. Huynh, J. P. Keating, N. C. Snaith

Duke Number Theory Seminar, September 7, 2016

Introduction

Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Convolutions

Intro

00000000

$$L(s,f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s,f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s,f) = \Lambda_{\infty}(s,f)L(s,f) = \Lambda(1-s,f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

4

Intro

Mordell-Weil Group

Elliptic curve $y^2 = x^3 + ax + b$ with rational solutions $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and connecting line y = mx + b.

Addition of distinct points P and Q

Adding a point P to itself

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{\mathsf{tors}} \oplus \mathbb{Z}^r$$

Elliptic curve L-function

$$E: y^2 = x^3 + ax + b$$
, associate L-function

$$L(s, E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

$$a_{E}(p) = p - \#\{(x, y) \in (\mathbb{Z}/p\mathbb{Z})^{2} : y^{2} \equiv x^{3} + ax + b \mod p\}.$$

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of L(s, E) at s = 1/2.

Intro

000000000

One parameter family

$$\mathcal{E}: y^2 = x^3 + A(T)x + B(T), \ A(T), B(T) \in \mathbb{Z}[T].$$

Silverman's Specialization Theorem

Assume (geometric) rank of $\mathcal{E}/\mathbb{Q}(T)$ is r. Then for all $t \in \mathbb{Z}$ sufficiently large, each $E_t : y^2 = x^3 + A(t)x + B(t)$ has (geometric) rank at least r.

Average rank conjecture

For a generic one-parameter family of rank r over $\mathbb{Q}(T)$, expect in the limit half the specialized curves have rank r and half have rank r+1.

Measures of Spacings: *n*-Level Correlations

 $\{\alpha_i\}$ increasing sequence of numbers, $B \subset \mathbb{R}^{n-1}$ a compact box. Define the *n*-level correlation by

$$\lim_{N\to\infty} \frac{\#\left\{\left(\alpha_{j_1}-\alpha_{j_2},\ldots,\alpha_{j_{n-1}}-\alpha_{j_n}\right)\in B, j_i\neq j_k\right\}}{N}$$

Instead of using a box, can use a smooth test function.

Measures of Spacings: n-Level Correlations

• Normalized spacings of $\zeta(s)$ starting at 10²⁰. (Odlyzko)

70 million spacings between adjacent normalized zeros of $\zeta(s)$, starting at the 10^{20th} zero (from Odlyzko).

Measures of Spacings: n-Level Correlations

 $\{\alpha_j\}$ increasing sequence of numbers, $B \subset \mathbb{R}^{n-1}$ a compact box. Define the *n*-level correlation by

$$\lim_{N\to\infty} \frac{\#\left\{\left(\alpha_{j_1}-\alpha_{j_2},\ldots,\alpha_{j_{n-1}}-\alpha_{j_n}\right)\in B, j_i\neq j_k\right\}}{N}$$

Instead of using a box, can use a smooth test function.

- **①** Spacings of $\zeta(s)$ from 10^{20} (Odlyzko).
- Pair and triple correlations of $\zeta(s)$ (Montgomery, Hejhal).
- n-level correlations for all automorphic cupsidal L-functions (Rudnick-Sarnak).
- n-level correlations for the classical compact groups (Katz-Sarnak).
- insensitive to any finite set of zeros.

Intro

Measures of Spacings: n-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f :

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\j_j\neq\pm j_k}} \phi_1\left(\gamma_{f,j_1}\frac{\log Q_f}{2\pi}\right)\cdots\phi_n\left(\gamma_{f,j_n}\frac{\log Q_f}{2\pi}\right)$$

11

Excised Ensembles

Measures of Spacings: n-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f :

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\ j_\ell \neq \pm j_\ell}} \phi_1\left(\gamma_{f,j_1} \frac{\log Q_f}{2\pi}\right) \cdots \phi_n\left(\gamma_{f,j_n} \frac{\log Q_f}{2\pi}\right)$$

- Properties of n-level density:
 - Individual zeros contribute in limit.

Measures of Spacings: *n*-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f :

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\j_j\neq\pm j_k}} \phi_1\left(\gamma_{f,j_1}\frac{\log Q_f}{2\pi}\right)\cdots\phi_n\left(\gamma_{f,j_n}\frac{\log Q_f}{2\pi}\right)$$

- Properties of n-level density:
 - Individual zeros contribute in limit.
 - Most of contribution is from low zeros.

Measures of Spacings: *n*-Level Density and Families

Let ϕ_i be even Schwartz functions whose Fourier Transform is compactly supported, L(s, f) an L-function with zeros $\frac{1}{2} + i\gamma_f$ and conductor Q_f :

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n\\j_j\neq\pm j_k}} \phi_1\left(\gamma_{f,j_1}\frac{\log Q_f}{2\pi}\right)\cdots\phi_n\left(\gamma_{f,j_n}\frac{\log Q_f}{2\pi}\right)$$

- Properties of n-level density:
 - Individual zeros contribute in limit.
 - Most of contribution is from low zeros.
 - ♦ Average over similar L-functions (family).

Intro

00000000

n-Level Density

n-level density: $\mathcal{F} = \cup \mathcal{F}_N$ a family of *L*-functions ordered by conductors, ϕ_k an even Schwartz function: $D_{n,\mathcal{F}}(\phi) =$

$$\lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{\substack{f\in\mathcal{F}_N \\ i_1,\dots,j_n \\ i\neq f,i_n}} \phi_1\left(\frac{\log Q_f}{2\pi} \gamma_{j_1;f}\right) \cdots \phi_n\left(\frac{\log Q_f}{2\pi} \gamma_{j_n;f}\right)$$

As $N \to \infty$, *n*-level density converges to

$$\int \phi(\overrightarrow{x}) \rho_{n,\mathcal{G}(\mathcal{F})}(\overrightarrow{x}) d\overrightarrow{x} = \int \widehat{\phi}(\overrightarrow{u}) \widehat{\rho}_{n,\mathcal{G}(\mathcal{F})}(\overrightarrow{u}) d\overrightarrow{u}.$$

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group.

Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for the correct model for finite conductors.

In the limit must recover the independent model, and want to explain data on:

- **Excess Rank:** Rank r one-parameter family over $\mathbb{Q}(T)$: observed percentages with rank $\geq r + 2$.
- First (Normalized) Zero above Central Point: Influence of zeros at the central point on the distribution of zeros near the central point.

Aside: Identifying Family Symmetry (and finding arithmetic)

Some Number Theory Results

- Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer:
 1-level density for holomorphic even weight k cuspidal newforms of square-free level N (SO(even) and SO(odd) if split by sign).
- Symplectic: Rubinstein, Gao, Levinson-Miller, and Entin, Roddity-Gershon and Rudnick: n-level densities for twists $L(s, \chi_d)$ of the zeta-function.
- Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of Primitive Dirichlet Characters.
- Orthogonal: Miller, Young: One and two-parameter families of elliptic curves.

Main Tools

- Control of conductors: Usually monotone, gives scale to study low-lying zeros.
- Explicit Formula: Relates sums over zeros to sums over primes.
- Averaging Formulas: Petersson formula in Iwaniec-Luo-Sarnak, Orthogonality of characters in Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller, Rubinstein.

Applications of *n*-level density

One application: bounding the order of vanishing at the central point.

Average rank $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$ if ϕ non-negative.

Applications of *n*-level density

One application: bounding the order of vanishing at the central point.

Average rank $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$ if ϕ non-negative. Can also use to bound the percentage that vanish to order r for any r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal newforms of prime level $N \to \infty$ (split or not split by sign), for any r there is a c_r such that probability of at least r zeros at the central point is at most $c_n r^{-n}$.

Better results using 2-level than Iwaniec-Luo-Sarnak using the 1-level for $r \ge 5$.

Identifying the Symmetry Groups

- Often an analysis of the monodromy group in the function field case suggests the answer.
- Tools: Explicit Formula, Orthogonality of Characters / Petersson Formula.
- How to identify symmetry group in general? One possibility is by the signs of the functional equation:
- Folklore Conjecture: If all signs are even and no corresponding family with odd signs, Symplectic symmetry; otherwise SO(even). (False!)

Excised Ensembles

Explicit Formula

- π : cuspidal automorphic representation on GL_n .
- $Q_{\pi} > 0$: analytic conductor of $L(s, \pi) = \sum \lambda_{\pi}(n)/n^{s}$.
- By GRH the non-trivial zeros are $\frac{1}{2} + i\gamma_{\pi,i}$.
- Satake parameters $\{\alpha_{\pi,i}(p)\}_{i=1}^n$; $\lambda_{\pi}(\mathbf{p}^{\nu}) = \sum_{i=1}^{n} \alpha_{\pi,i}(\mathbf{p})^{\nu}.$
- $L(s,\pi) = \sum_{n} \frac{\lambda_{\pi}(n)}{n^{s}} = \prod_{p} \prod_{i=1}^{n} (1 \alpha_{\pi,i}(p)p^{-s})^{-1}$.

$$\sum_{j} g\left(\gamma_{\pi,j} \frac{\log Q_{\pi}}{2\pi}\right) = \widehat{g}(0) - 2\sum_{p,\nu} \widehat{g}\left(\frac{\nu \log p}{\log Q_{\pi}}\right) \frac{\lambda_{\pi}(p^{\nu}) \log p}{p^{\nu/2} \log Q_{\pi}}$$

Convolutions

000000

Assuming conductors constant in family \mathcal{F} , have to study

$$\lambda_{f}(p^{\nu}) = \alpha_{f,1}(p)^{\nu} + \dots + \alpha_{f,n}(p)^{\nu}$$

$$S_{1}(\mathcal{F}) = -2\sum_{p} \hat{g}\left(\frac{\log p}{\log R}\right) \frac{\log p}{\sqrt{p}\log R} \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_{f}(p)\right]$$

$$S_{2}(\mathcal{F}) = -2\sum_{p} \hat{g}\left(2\frac{\log p}{\log R}\right) \frac{\log p}{p\log R} \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_{f}(p^{2})\right]$$

The corresponding classical compact group is determined by

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_f(\boldsymbol{p}^2) = \boldsymbol{c}_{\mathcal{F}} = \begin{cases} 0 & \text{Unitary} \\ 1 & \text{Symplectic} \\ -1 & \text{Orthogonal.} \end{cases}$$

Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: $c_{\mathcal{L}} = 0$ (resp, 1 or -1) if family \mathcal{L} has unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for $\pi_{1,p} \times \pi_{2,p}$ are

$$\{\alpha_{\pi_1 \times \pi_2}(k)\}_{k=1}^{nm} = \{\alpha_{\pi_1}(i) \cdot \alpha_{\pi_2}(j)\}_{\substack{1 \le i \le n \ 1 \le j \le m}}.$$

Theorem (Dueñez-Miller)

If $\mathcal F$ and $\mathcal G$ are *nice* families of L-functions, then $c_{\mathcal F \times \mathcal G} = c_{\mathcal F} \cdot c_{\mathcal G}$.

Breaks analysis of compound families into simple ones.

Some Results: Rankin-Selberg Convolution: Proof

Symmetry constant: $c_{\mathcal{L}} = 0$ (resp, 1 or -1) if family \mathcal{L} has unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Moments of Satake parameters for $\pi_{1,p} \times \pi_{2,p}$ are

$$\sum_{k=1}^{nm} \alpha_{\pi_1 \times \pi_2, k}(\boldsymbol{p})^{\nu} = \sum_{i=1}^{n} \alpha_{\pi_1, i}(\boldsymbol{p})^{\nu} \sum_{j=1}^{m} \alpha_{\pi_2, j}(\boldsymbol{p})^{\nu}.$$

Theorem (Dueñez-Miller)

If $\mathcal F$ and $\mathcal G$ are *nice* families of L-functions, then $c_{\mathcal F \times \mathcal G} = c_{\mathcal F} \cdot c_{\mathcal G}$.

Breaks analysis of compound families into simple ones.

Takeaways

Very similar to Central Limit Theorem.

- Universal behavior: main term controlled by first two moments of Satake parameters, agrees with RMT.
- First moment zero save for families of elliptic curves.
- Higher moments control convergence and can depend on arithmetic of family.

Theory and Models

Orthogonal Random Matrix Models

RMT: SO(2N): 2N eigenvalues in pairs $e^{\pm i\theta_j}$, probability measure on $[0, \pi]^N$:

$$d\epsilon_0(\theta) \propto \prod_{j< k} (\cos\theta_k - \cos\theta_j)^2 \prod_j d\theta_j.$$

Independent Model:

$$\mathcal{A}_{2N,2r} = \left\{ \begin{pmatrix} I_{2r \times 2r} & \\ & g \end{pmatrix} : g \in SO(2N-2r) \right\}.$$

Interaction Model: Sub-ensemble of SO(2N) with the last 2r of the 2N eigenvalues equal +1: $1 \le j, k \le N - r$:

$$d\varepsilon_{2r}(\theta) \propto \prod_{j < k} (\cos \theta_k - \cos \theta_j)^2 \prod_j (1 - \cos \theta_j)^{2r} \prod_j d\theta_j,$$

29

Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

$$\hat{\rho}_0(u) = \delta(u) + \frac{1}{2}\eta(u).$$

Fourier transform of 1-level density (Rank 2, Indep):

$$\hat{
ho}_{2, ext{Independent}}(u) = \left\lceil \delta(u) + rac{1}{2} \eta(u) + 2
ight
ceil.$$

Fourier transform of 1-level density (Rank 2, Interaction):

$$\hat{
ho}_{2, ext{Interaction}}(u) = \left[\delta(u) + rac{1}{2}\eta(u) + 2
ight] + 2(|u| - 1)\eta(u).$$

Comparing the RMT Models

Theorem: M- '04

For small support, one-param family of rank r over $\mathbb{Q}(T)$:

$$\lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{E_t \in \mathcal{F}_N} \sum_j \varphi\left(\frac{\log C_{E_t}}{2\pi} \gamma_{E_t,j}\right)$$

$$= \int \varphi(x) \rho_{\mathcal{G}}(x) dx + r\varphi(0)$$

where

$$\mathcal{G} \ = \ \left\{ \begin{array}{ll} \mathsf{SO} & \mathsf{if half odd} \\ \mathsf{SO}(\mathsf{even}) & \mathsf{if all even} \\ \mathsf{SO}(\mathsf{odd}) & \mathsf{if all odd.} \end{array} \right.$$

Supports Katz-Sarnak, B-SD, and Independent model in limit.

Data

RMT: Theoretical Results ($N \to \infty$)

1st normalized evalue above 1: SO(even)

RMT: Theoretical Results ($N \to \infty$)

1st normalized evalue above 1: SO(odd)

Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

Figure 4a: 209 rank 0 curves from 14 rank 0 families, $log(cond) \in [3.26, 9.98]$, median = 1.35, mean = 1.36

35

Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

Figure 4b: 996 rank 0 curves from 14 rank 0 families, $log(cond) \in [15.00, 16.00]$, median = .81, mean = .86.

Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$) 1st Normalized Zero above Central Point

Figure 5*a*: 35 curves, $\log(\text{cond}) \in [7.8, 16.1], \ \widetilde{\mu} = 1.85, \ \mu = 1.92, \ \sigma_{\mu} = .41$

37

Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$) 1st Normalized Zero above Central Point

Figure 5*b*: 34 curves, $\log(\text{cond}) \in [16.2, 23.3], \ \widetilde{\mu} = 1.37, \ \mu = 1.47, \ \sigma_{\mu} = .34$

20

Spacings b/w Norm Zeros: Rank 0 One-Param Families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- $z_j = \text{imaginary part of } j^{\text{th}}$ normalized zero above the central point;
- 863 rank 0 curves from the 14 one-param families of rank 0 over $\mathbb{Q}(T)$;
- 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$.

	863 Rank 0 Curves	701 Rank 2 Curves	t-Statistic
Median $z_2 - z_1$	1.28	1.30	
Mean $z_2 - z_1$	1.30	1.34	-1.60
StDev $z_2 - z_1$	0.49	0.51	
Median $z_3 - z_2$	1.22	1.19	
Mean $z_3 - z_2$	1.24	1.22	0.80
StDev $z_3 - z_2$	0.52	0.47	
Median $z_3 - z_1$	2.54	2.56	
Mean $z_3 - z_1$	2.55	2.56	-0.38
StDev $z_3 - z_1$	0.52	0.52	

Spacings b/w Norm Zeros: Rank 2 one-param families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- z_j = imaginary part of the j^{th} norm zero above the central point;
- 64 rank 2 curves from the 21 one-param families of rank 2 over ℚ(T);
- 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

	64 Rank 2 Curves	23 Rank 4 Curves	t-Statistic
Median $z_2 - z_1$	1.26	1.27	
Mean $z_2 - z_1$	1.36	1.29	0.59
StDev $z_2 - z_1$	0.50	0.42	
Median $z_3 - z_2$	1.22	1.08	
Mean $z_3 - z_2$	1.29	1.14	1.35
StDev $z_3 - z_2$	0.49	0.35	
Median $z_3 - z_1$	2.66	2.46	
Mean $z_3 - z_1$	2.65	2.43	2.05
StDev $z_3 - z_1$	0.44	0.42	

Rank 2 Curves from Rank 0 & Rank 2 Families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- z_j = imaginary part of the j^{th} norm zero above the central point;
- 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$;
- 64 rank 2 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$.

	701 Rank 2 Curves	64 Rank 2 Curves	t-Statistic
Median $z_2 - z_1$	1.30	1.26	
Mean $z_2 - z_1$	1.34	1.36	0.69
StDev $z_2 - z_1$	0.51	0.50	
Median $z_3 - z_2$	1.19	1.22	
Mean $z_3 - z_2$	1.22	1.29	1.39
StDev $z_3 - z_2$	0.47	0.49	
Median $z_3 - z_1$	2.56	2.66	
Mean $z_3 - z_1$	2.56	2.65	1.93
StDev $z_3 - z_1$	0.52	0.44	

Summary of Data

- The repulsion of the low-lying zeros increased with increasing rank, and was present even for rank 0 curves.
- As the conductors increased, the repulsion decreased.
- Statistical tests failed to reject the hypothesis that, on average, the first three zeros were all repelled equally (i. e., shifted by the same amount).

Convergence to the RMT limit: What's the right matrix size?

- RMT + Katz-Sarnak: Limiting behavior for random matrices as N → ∞ and L-functions as conductors tend to infinity agree.
- How well do the classical matrix groups model local statistics of *L*-functions *outside* the scaling limit? (Arithmetic enters!)

 Keating and Snaith, Bogomolny, Bohigas, Leboeuf & Monastra compare the difference b/w the asymptotic and finite N_0 nearest-neighbor spacing for CUE matrices to that for ζ zeros:

$$N_0 = \log \frac{E}{2\pi}$$

from equating local density of zeros of $\zeta(s)$ with local density of eigenvalues of matrices in U(N).

Convergence to the RMT limit

L: 70 million $\zeta(s)$ nearest-neighbor spacings (Odlyzko).

R: Difference b/w $\zeta(s)$ and asymptotic CUE curve (dots) compared to difference b/w CUE of size N_0 and asymptotic curve (dashed line) (from Bogomolny et. al.).

Convergence to the RMT limit: Incorporating Finite Matrix Size

Difference b/w nearest-neighbor spacing of $\zeta(s)$ zeros and asymptotic CUE for a billion zeros in window near 2.504 \times 10¹⁵ (dots) compared to theory that takes into account arithmetic of lower order terms (full line) (from Bogomolny et. al.).

New model should incorporate finite matrix size....

New Model for Finite Conductors

- Replace conductor N with N_{effective}.
 - ♦ Arithmetic info, predict with *L*-function Ratios Conj.
 - Do the number theory computation.
- Excised Orthogonal Ensembles.
 - $\diamond L(1/2, E)$ discretized.
 - ⋄ Study matrices in SO(2 N_{eff}) with $|\Lambda_A(1)| \ge ce^N$.
- Painlevé VI differential equation solver.
 - Use explicit formulas for densities of Jacobi ensembles.
 - ⋄ Key input: Selberg-Aomoto integral for initial conditions.

Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000

Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart), lowest eigenvalue of SO(2N) with N_{eff} (solid), standard N_0 (dashed).

Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000

Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart); lowest eigenvalue of SO(2N): $N_{\rm eff}$ = 2 (solid) with discretisation, and $N_{\rm eff}$ = 2.32 (dashed) without discretisation.

Ratio's Conjecture

History

• Farmer (1993): Considered

$$\int_0^T \frac{\zeta(s+\alpha)\zeta(1-s+\beta)}{\zeta(s+\gamma)\zeta(1-s+\delta)} dt,$$

conjectured (for appropriate values)

$$T\frac{(\alpha+\delta)(\beta+\gamma)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta}\frac{(\delta-\beta)(\gamma-\alpha)}{(\alpha+\beta)(\gamma+\delta)}.$$

• Farmer (1993): Considered

$$\int_0^T \frac{\zeta(s+\alpha)\zeta(1-s+\beta)}{\zeta(s+\gamma)\zeta(1-s+\delta)} dt,$$

conjectured (for appropriate values)

$$T\frac{(\alpha+\delta)(\beta+\gamma)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta}\frac{(\delta-\beta)(\gamma-\alpha)}{(\alpha+\beta)(\gamma+\delta)}.$$

 Conrey-Farmer-Zirnbauer (2007): conjecture formulas for averages of products of L-functions over families:

$$R_{\mathcal{F}} = \sum_{f \in \mathcal{T}} \omega_f \frac{L\left(\frac{1}{2} + \alpha, f\right)}{L\left(\frac{1}{2} + \gamma, f\right)}.$$

Uses of the Ratios Conjecture

Applications:

- ⋄ n-level correlations and densities;
- mollifiers;
- moments;
- vanishing at the central point;

Advantages:

- RMT models often add arithmetic ad hoc;
- predicts lower order terms, often to square-root level.

Inputs for 1-level density

• Approximate Functional Equation:

$$L(s, f) = \sum_{m \leq x} \frac{a_m}{m^s} + \epsilon \mathbb{X}_L(s) \sum_{n \leq y} \frac{a_n}{n^{1-s}};$$

- \diamond ϵ sign of the functional equation,
- $\diamond X_L(s)$ ratio of Γ -factors from functional equation.

• Approximate Functional Equation:

$$L(s, f) = \sum_{m \leq x} \frac{a_m}{m^s} + \epsilon \mathbb{X}_L(s) \sum_{n \leq y} \frac{a_n}{n^{1-s}};$$

- $\diamond \epsilon$ sign of the functional equation,
- $\diamond \mathbb{X}_{L}(s)$ ratio of Γ -factors from functional equation.
- Explicit Formula: g Schwartz test function,

$$\sum_{f \in \mathcal{F}} \omega_f \sum_{\gamma} g\left(\gamma \frac{\log N_f}{2\pi}\right) = \frac{1}{2\pi i} \int_{(c)} - \int_{(1-c)} R'_{\mathcal{F}}(\cdots) g(\cdots)$$

$$\diamond R_{\mathcal{F}}'(r) = \frac{\partial}{\partial \alpha} R_{\mathcal{F}}(\alpha, \gamma) \Big|_{\alpha = \gamma = r}.$$

55

Procedure (Recipe)

 Use approximate functional equation to expand numerator.

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$

where $\mu_t(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise.

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$

where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise.

 Execute the sum over F, keeping only main (diagonal) terms.

Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$

where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise.

- Execute the sum over F, keeping only main (diagonal) terms.
- Extend the m and n sums to infinity (complete the products).

Procedure (Recipe)

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$

where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise.

- Execute the sum over F, keeping only main (diagonal) terms.
- Extend the *m* and *n* sums to infinity (complete the products).
- Differentiate with respect to the parameters.

Procedure ('Illegal Steps')

- Use approximate functional equation to expand numerator.
- Expand denominator by generalized Mobius function: cusp form

$$\frac{1}{L(s,f)} = \sum_{h} \frac{\mu_f(h)}{h^s},$$

where $\mu_f(h)$ is the multiplicative function equaling 1 for h = 1, $-\lambda_f(p)$ if n = p, $\chi_0(p)$ if $h = p^2$ and 0 otherwise.

- Execute the sum over F, keeping only main (diagonal) terms.
- Extend the *m* and *n* sums to infinity (complete the products).
- Differentiate with respect to the parameters.

$$A_{E}(\alpha, \gamma) = Y_{E}^{-1}(\alpha, \gamma) \times \prod_{p \mid M} \left(\sum_{m=0}^{\infty} \left(\frac{\lambda(p^{m})\omega_{E}^{m}}{p^{m(1/2+\alpha)}} - \frac{\lambda(p)}{p^{1/2+\gamma}} \frac{\lambda(p^{m})\omega_{E}^{m+1}}{p^{m(1/2+\alpha)}} \right) \right) \times \prod_{p \nmid M} \left(1 + \frac{p}{p+1} \left(\sum_{m=1}^{\infty} \frac{\lambda(p^{2m})}{p^{m(1+2\alpha)}} - \frac{\lambda(p)}{p^{1+\alpha+\gamma}} \sum_{m=0}^{\infty} \frac{\lambda(p^{2m+1})}{p^{m(1+2\alpha)}} + \frac{1}{p^{1+2\gamma}} \sum_{m=0}^{\infty} \frac{\lambda(p^{2m})}{p^{m(1+2\alpha)}} \right) \right)$$

where

$$Y_E(\alpha, \gamma) = \frac{\zeta(1 + 2\gamma)L_E(\text{sym}^2, 1 + 2\alpha)}{\zeta(1 + \alpha + \gamma)L_E(\text{sym}^2, 1 + \alpha + \gamma)}.$$

Huynh, Morrison and Miller confirmed Ratios' prediction, which is

1-Level Prediction from Ratio's Conjecture

$$\begin{split} &\frac{1}{X^*}\sum_{d\in\mathcal{F}(X)}\sum_{\gamma_d}g\left(\frac{\gamma_dL}{\pi}\right)\\ &=\frac{1}{2LX^*}\int_{-\infty}^{\infty}g(\tau)\sum_{d\in\mathcal{F}(X)}\left[2\log\left(\frac{\sqrt{M}|d|}{2\pi}\right)+\frac{\Gamma'}{\Gamma}\left(1+\frac{i\pi\tau}{L}\right)+\frac{\Gamma'}{\Gamma}\left(1-\frac{i\pi\tau}{L}\right)\right]d\tau\\ &+\frac{1}{L}\int_{-\infty}^{\infty}g(\tau)\left(-\frac{\zeta'}{\zeta}\left(1+\frac{2\pi i\tau}{L}\right)+\frac{L'_E}{L_E}\left(\mathrm{sym}^2,1+\frac{2\pi i\tau}{L}\right)-\sum_{\ell=1}^{\infty}\frac{(M^\ell-1)\log M}{M^{(2+\frac{2i\pi\tau}{L})\ell}}\right)d\tau\\ &-\frac{1}{L}\sum_{k=0}^{\infty}\int_{-\infty}^{\infty}g(\tau)\frac{\log M}{M^{(k+1)(1+\frac{\pi i\tau}{L})}}d\tau+\frac{1}{L}\int_{-\infty}^{\infty}g(\tau)\sum_{\rho\nmid M}\frac{\log \rho}{(\rho+1)}\sum_{k=0}^{\infty}\frac{\lambda(\rho^{2k+2})-\lambda(\rho^{2k})}{\rho^{(k+1)(1+\frac{2\pi i\tau}{L})}}d\tau\\ &-\frac{1}{LX^*}\int_{-\infty}^{\infty}g(\tau)\sum_{d\in\mathcal{F}(X)}\left[\left(\frac{\sqrt{M}|d|}{2\pi}\right)^{-2i\pi\tau/L}\frac{\Gamma(1-\frac{i\pi\tau}{L})}{\Gamma(1+\frac{i\pi\tau}{L})}\frac{\zeta(1+\frac{2i\pi\tau}{L})L_E(\mathrm{sym}^2,1-\frac{2i\pi\tau}{L})}{L_E(\mathrm{sym}^2,1)}\right]\\ &\times A_E\Big(-\frac{i\pi\tau}{L},\frac{i\pi\tau}{L}\Big)\bigg]d\tau+O(X^{-1/2+\varepsilon}); \end{split}$$

Numerics (J. Stopple): 1,003,083 negative fundamental discriminants $-d \in [10^{12}, 10^{12} + 3.3 \cdot 10^{6}]$

Histogram of normalized zeros ($\gamma \le 1$, about 4 million). \diamond Red: main term. \diamond Blue: includes $O(1/\log X)$ terms. \diamond Green: all lower order terms.

Excised Orthogonal Ensembles

Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of $A \in SO(2N)$ is

$$\Lambda_A(e^{i\theta},N) := \det(I - Ae^{-i\theta}) = \prod_{k=1}^N (1 - e^{i(\theta_k - \theta)})(1 - e^{i(-\theta_k - \theta)}),$$

with $e^{\pm i\theta_1}, \dots, e^{\pm i\theta_N}$ the eigenvalues of A.

Motivated by the arithmetical size constraint on the central values of the L-functions, consider Excised Orthogonal Ensemble $T_{\mathcal{X}}$: $A \in SO(2N)$ with $|\Lambda_A(1, N)| > \exp(\mathcal{X})$.

One-Level Densities

One-level density $R_1^{G(N)}$ for a (circular) ensemble G(N):

$$R_1^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$

where $P(\theta, \theta_2, \dots, \theta_N)$ is the joint probability density function of eigenphases.

One-level density $R_1^{G(N)}$ for a (circular) ensemble G(N):

$$R_1^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$

where $P(\theta, \theta_2, \dots, \theta_N)$ is the joint probability density function of eigenphases. The one-level density excised orthogonal ensemble:

$$R_1^{T_{\mathcal{X}}}(\theta_1) := C_{\mathcal{X}} \cdot N \int_0^{\pi} \cdots \int_0^{\pi} H(\log |\Lambda_A(1, N)| - \mathcal{X}) \times \prod_{j < k} (\cos \theta_j - \cos \theta_k)^2 d\theta_2 \cdots d\theta_N,$$

Here H(x) denotes the Heaviside function

$$H(x) = \begin{cases} 1 \text{ for } x > 0 \\ 0 \text{ for } x < 0, \end{cases}$$

and C_{x} is a normalization constant

One-Level Densities

One-level density $R_{s}^{G(N)}$ for a (circular) ensemble G(N):

$$R_1^{G(N)}(\theta) = N \int \ldots \int P(\theta, \theta_2, \ldots, \theta_N) d\theta_2 \ldots d\theta_N,$$

where $P(\theta, \theta_2, \dots, \theta_N)$ is the joint probability density function of eigenphases. The one-level density excised orthogonal ensemble:

$$R_1^{T_{\mathcal{X}}}(\theta_1) = \frac{C_{\mathcal{X}}}{2\pi i} \int_{c-i\infty}^{c+i\infty} 2^{Nr} \frac{\exp(-r\mathcal{X})}{r} R_1^{J_N}(\theta_1; r-1/2, -1/2) dr$$

where $C_{\mathcal{X}}$ is a normalization constant and

$$R_1^{J_N}(\theta_1; r - 1/2, -1/2) = N \int_0^{\pi} \cdots \int_0^{\pi} \prod_{j=1}^N w^{(r-1/2, -1/2)}(\cos \theta_j) \times \prod_{j < k} (\cos \theta_j - \cos \theta_k)^2 d\theta_2 \cdots d\theta_N$$

is the one-level density for the Jacobi ensemble J_N with weight function

$$w^{(\alpha,\beta)}(\cos\theta) = (1-\cos\theta)^{\alpha+1/2}(1+\cos\theta)^{\beta+1/2}, \qquad \alpha = r - 1/2 \text{ and } \beta = -1/2.$$

Results

• With C_{χ} normalization constant and $P(N, r, \theta)$ defined in terms of Jacobi polynomials,

$$\begin{split} R_1^{T_{\mathcal{X}}}(\theta) &= \frac{C_{\mathcal{X}}}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(-r\mathcal{X})}{r} 2^{N^2+2Nr-N} \times \\ &\times \prod_{j=0}^{N-1} \frac{\Gamma(2+j)\Gamma(1/2+j)\Gamma(r+1/2+j)}{\Gamma(r+N+j)} \times \\ &\times (1-\cos\theta)^r \frac{2^{1-r}}{2N+r-1} \frac{\Gamma(N+1)\Gamma(N+r)}{\Gamma(N+r-1/2)\Gamma(N-1/2)} P(N,r,\theta) \, dr. \end{split}$$

• Residue calculus implies $R_{\star}^{T_{\chi}}(\theta) = 0$ for $d(\theta, \chi) < 0$ and

$$R_1^{T_{\mathcal{X}}}(\theta) = R_1^{\operatorname{SO}(2N)}(\theta) + C_{\mathcal{X}} \sum_{k=0}^{\infty} b_k \exp((k+1/2)\mathcal{X}) \quad \text{for } d(\theta,\mathcal{X}) \geq 0,$$

where $d(\theta, \mathcal{X}) := (2N - 1) \log 2 + \log(1 - \cos \theta) - \mathcal{X}$ and b_k are coefficients arising from the residues. As $\mathcal{X} \to -\infty$, θ fixed, $R_{\star}^{T_{\chi}}(\theta) \to R_{\star}^{SO(2N)}(\theta).$

Numerical check

Figure: One-level density of excized SO(2*N*), N=2 with cut-off $|\Lambda_A(1,N)| \ge 0.1$. The red curve uses our formula. The blue crosses give the empirical one-level density of 200,000 numerically generated matrices.

Theory vs Experiment

Figure: Cumulative probability density of the first eigenvalue from 3×10^6 numerically generated matrices $A \in SO(2N_{\rm std})$ with $|\Lambda_A(1,N_{\rm std})| \geq 2.188 \times \exp(-N_{\rm std}/2)$ and $N_{\rm std}=12$ red dots compared with the first zero of even quadratic twists $L_{E_{11}}(s,\chi_d)$ with prime fundamental discriminants $0 < d \leq 400,000$ blue crosses. The random matrix data is scaled so that the means of the two distributions agree.

Conclusion and References

Conclusion and Future Work

- In the limit: Birch and Swinnerton-Dyer, Katz-Sarnak appear true.
- Finite conductors: model with Excised Ensembles (cut-off on characteristic polynomials due to discretization at central point).
- Future Work: Joint with Owen Barrett and Nathan Ryan (and possibly some of his students): looking at other GL2 families (and hopefully higher) to study the relationship between repulsion at finite conductors and central values (effect of weight, level).

References

- 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
 Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159
- Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257–279. http://arxiv.org/pdf/math/0508150
- Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137 (2009), 51–98. http://arxiv.org/pdf/0704.0924.pdf
- The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Dueñez), Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018. http://arxiv.org/pdf/math/0607688.pdf
- The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010) 405204 (27pp). http://arxiv.org/pdf/1005.1298
- Models for zeros at the central point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207 (32pp). http://arxiv.org/pdf/1107.4426