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Plan of Part I: Continued Fractions and Maclaurin’s Inequal ity

Classical ergodic theory of continued fractions.
⋄ Almost surely geometric mean n

√
a1 · · · an → K0.

⋄ Almost surely arithmetic mean (a1 + · · ·+ an)/n → ∞.

Symmetric averages and Maclaurin’s inequalities.
⋄ S(x ,n, k) :=

(n
k

)−1∑
1≤i1<i2<···<ik≤n xi1xi2 · · · xik .

⋄ AM = S(x , n, 1)1/1 ≥ S(x , n, 2)1/2 ≥ · · · ≥ S(x , n, n)1/n = GM.

Results / conjectures on typical / periodic continued
fraction averages.

Elementary proofs of weak results, sketch of stronger
results.

To appear in Exp. Math.:http://arxiv.org/abs/1402.0208.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

The sequence {ai}i is finite iff α ∈ Q.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

x = p
q ∈ Q then ai ’s the partial quotients of Euclidean Alg.

333 = 3 · 106 + 15
106
333

= [3,7,15] 106 = 7 · 15 + 1

15 = 15 · 1 + 0.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

{ai}i preperiodic iff α a quadratic irrational;
ex:

√
3 − 1 = [1,2,1,2,1,2, . . . ].
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Gauss Map: Definition

The Gauss map T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates the continued fraction digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

corresponding to the Markov partition

(0,1] =

∞
⊔

k=1

(

1
k + 1

,
1
k

]

.

T preserves the measure dµ = 1
log 2

1
1+x dx and it is mixing.
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1 and

T 1(
√

3 − 1) =
1√

3 − 1
−
⌊

1√
3 − 1

⌋

=

√
3 + 1

3 − 1
− 1 =

√
3 − 1
2

a2 =

⌊

2√
3 − 1

⌋

= 2.
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1 and

T 1(
√

3 − 1) =
1√

3 − 1
−
⌊

1√
3 − 1

⌋

=

√
3 + 1

3 − 1
− 1 =

√
3 − 1
2

a2 =

⌊

2√
3 − 1

⌋

= 2.

T 2(
√

3 − 1) =
2√

3 − 1
−
⌊

2√
3 − 1

⌋

=
2
√

3 + 2
2

− 2 =
√

3 − 1

a3 =

⌊

1√
3 − 1

⌋

= 1.
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1 and

T 1(
√

3 − 1) =
1√

3 − 1
−
⌊

1√
3 − 1

⌋

=

√
3 + 1

3 − 1
− 1 =

√
3 − 1
2

a2 =

⌊

2√
3 − 1

⌋

= 2.

T 2(
√

3 − 1) =
2√

3 − 1
−
⌊

2√
3 − 1

⌋

=
2
√

3 + 2
2

− 2 =
√

3 − 1

a3 =

⌊

1√
3 − 1

⌋

= 1.
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Statistics of Continued Fraction Digits 1/3

The digits ai follow the Gauss-Kuzmin distribution:

lim
n→∞

P(an = k) = log2

(

1 +
1

k(k + 2)

)

(note the expectation is infinite).
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Statistics of Continued Fraction Digits 1/3

The digits ai follow the Gauss-Kuzmin distribution:

lim
n→∞

P(an = k) = log2

(

1 +
1

k(k + 2)

)

(note the expectation is infinite).

The function x 7→ f (x) = ⌊1/T (x)⌋ on (0,1] is not
integrable wrt µ. However, log f ∈ L1(µ).
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Statistics of Continued Fraction Digits 1/3

The digits ai follow the Gauss-Kuzmin distribution:

lim
n→∞

P(an = k) = log2

(

1 +
1

k(k + 2)

)

(note the expectation is infinite).

The function x 7→ f (x) = ⌊1/T (x)⌋ on (0,1] is not
integrable wrt µ. However, log f ∈ L1(µ).

Pointwise ergodic theorem (applied to f and log f ) reads

lim
n→∞

a1 + a2 + · · ·+ an

n
= ∞ almost surely

lim
n→∞

(a1a2 · · · an)
1/n = e

∫
log f dµ almost surely.
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.

Hölder means: For p < 1, almost surely

lim
n→∞

(

1
n

n
∑

i=1

ap
i

)1/p

= Kp =

( ∞
∑

k=1

−kp log2

(

1 − 1
(k + 1)2

)

)1/p

.
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.

Hölder means: For p < 1, almost surely

lim
n→∞

(

1
n

n
∑

i=1

ap
i

)1/p

= Kp =

( ∞
∑

k=1

−kp log2

(

1 − 1
(k + 1)2

)

)1/p

.

Example: The harmonic mean K−1 = 1.74540566 . . . .
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.

Hölder means: For p < 1, almost surely

lim
n→∞

(

1
n

n
∑

i=1

ap
i

)1/p

= Kp =

( ∞
∑

k=1

−kp log2

(

1 − 1
(k + 1)2

)

)1/p

.

Example: The harmonic mean K−1 = 1.74540566 . . . .

limp→0 Kp = K0.
19



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Statistics of Continued Fraction Digits 3/3

Khinchin also proved: For a′
m = am if am < m(log m)4/3

and 0 otherwise:

lim
n→∞

∑n
i=1 a′

i

n log n
=

1
log 2

in measure.
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Statistics of Continued Fraction Digits 3/3

Khinchin also proved: For a′
m = am if am < m(log m)4/3

and 0 otherwise:

lim
n→∞

∑n
i=1 a′

i

n log n
=

1
log 2

in measure.

Diamond and Vaaler (1986) showed that

lim
n→∞

∑n
i=1 ai − max1≤i≤n ai

n log n
=

1
log 2

almost surely.
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Maclaurin Inequalities

22
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Definitions and Maclaurin’s Inequalities

Both 1
n

∑n
i=1 xi and

(
∏n

i=1 xi
)1/n are defined in terms of

elementary symmetric polynomials in x1, . . . , xn.

Define k th elementary symmetric mean of x1, . . . , xn by

S(x ,n, k) :=
1
(n

k

)

∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik .
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Definitions and Maclaurin’s Inequalities

Both 1
n

∑n
i=1 xi and

(
∏n

i=1 xi
)1/n are defined in terms of

elementary symmetric polynomials in x1, . . . , xn.

Define k th elementary symmetric mean of x1, . . . , xn by

S(x ,n, k) :=
1
(n

k

)

∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik .

Maclaurin’s Inequalities

For positive x1, . . . , xn we have

AM := S(x ,n,1)1/1 ≥ S(x ,n,2)1/2 ≥ · · · ≥ S(x ,n,n)1/n =: GM

(and equalities hold iff x1 = · · · = xn).
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Maclaurin’s work
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Proof

Standard proof through Newton’s inequalities.

Define the k th elementary symmetric function by

sk (x) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik ,

and the k th elementary symmetric mean by

Ek (x) = sk (x)
/

(

n
k

)

.

Newton’s inequality: Ek (x)2 ≥ Ek−1(x)Ek+1(x).

New proof by Iddo Ben-Ari and Keith Conrad:

http://homepages.uconn.edu/benari/pdf/maclaurinMathMagFinal.pdf.
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Sketch of Ben-Ari and Conrad’s Proof

Bernoulli’s inequality: t > −1: (1 + t)n ≥ 1 + nt or
1 + 1

n x ≥ (1 + x)1/n.

Generalized Bernoulli: x > −1:

1 +
1
n

x ≥
(

1 +
2
n

x
)1/2

≥
(

1 +
3
n

x
)1/3

≥ · · · ≥
(

1 +
n
n

x
)1/n

.
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Sketch of Ben-Ari and Conrad’s Proof

Bernoulli’s inequality: t > −1: (1 + t)n ≥ 1 + nt or
1 + 1

n x ≥ (1 + x)1/n.

Generalized Bernoulli: x > −1:

1 +
1
n

x ≥
(

1 +
2
n

x
)1/2

≥
(

1 +
3
n

x
)1/3

≥ · · · ≥
(

1 +
n
n

x
)1/n

.

Proof: Equivalent to 1
k log

(

1 + k
n x
)

≥ 1
k+1 log

(

1 + k+1
n x

)

,
which follows by log t is strictly concave:

λ = 1
k+1 , 1 + k

n x = λ · 1 + (1 − λ) ·
(

1 + k+1
n x

)

.
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Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:

Trivial for n ∈ {1,2}, wlog assume x1 ≤ x2 ≤ · · · ≤ xn.

Set Ek := sk (x)/
(n

k

)

, ǫk := Ek (x1, . . . , xn−1).

Have
Ek (x1, . . . , xn) =

(

1 − k
n

)

Ek (x1, . . . , xn−1)+
k
n Ek (x1, . . . , xn−1)xn.

Proceed by induction in number of variables, use Generalized
Bernoulli.
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Main Results
(Elementary Techniques)
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Symmetric Averages and Maclaurin’s Inequalities

Recall: S(x ,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

xi1 · · · xik

and S(x ,n,1)1/1 ≥ S(x ,n,2)1/2 ≥ · · · ≥ S(x ,n,n)1/n.
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Symmetric Averages and Maclaurin’s Inequalities

Recall: S(x ,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

xi1 · · · xik

and S(x ,n,1)1/1 ≥ S(x ,n,2)1/2 ≥ · · · ≥ S(x ,n,n)1/n.

Khinchin’s results: almost surely as n → ∞

S(α,1,1)1/1 → ∞ and S(α,n,n)1/n → K0.

We study the intermediate means S(α,n, k)1/k as n → ∞
when k = k(n), with

S(α,n, k(n))1/k(n) = S(α,n, ⌈k(n)⌉)1/⌈k(n)⌉ .
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Our results on typical continued fraction averages

Recall: S(α,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

ai1 · · · aik

and S(α,n,1)1/1 ≥ S(α,n,2)1/2 ≥ · · · ≥ S(α,n,n)1/n .

Theorem 1
Let f (n) = o(log log n) as n → ∞. Then, almost surely,

lim
n→∞

S(α,n, f (n))1/f (n) = ∞.

Theorem 2
Let f (n) = o(n) as n → ∞. Then, almost surely,

lim
n→∞

S(α,n,n − f (n))1/(n−f (n)) = K0.

Note: Theorems do not cover the case f (n) = cn for 0 < c < 1.
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Sketch of Proofs of Theorems 1 and 2

Theorem 1: For f (n) = o(log log n) as n → ∞:

Almost surely lim
n→∞

S(α,n, f (n))1/f (n) = ∞.

Uses Niculescu’s strengthening of Maclaurin (2000):

S(n, tj + (1 − t)k) ≥ S(n, j)t · S(n, k)1−t .
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Sketch of Proofs of Theorems 1 and 2

Theorem 1: For f (n) = o(log log n) as n → ∞:

Almost surely lim
n→∞

S(α,n, f (n))1/f (n) = ∞.

Uses Niculescu’s strengthening of Maclaurin (2000):

S(n, tj + (1 − t)k) ≥ S(n, j)t · S(n, k)1−t .

Theorem 2: For f (n) = o(n) as n → ∞:

Almost surely lim
n→∞

S(α,n,n − f (n))1/(n−f (n)) = K0.

Use (a.s.) K0 ≤ lim sup
n→∞

S(α,n, cn)1/cn ≤ K 1/c
0 < ∞,0 < c < 1.
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Proof of Theorem 1: Preliminaries

Lemma
Let X be a sequence of positive real numbers. Suppose
limn→∞ S(X ,n, k(n))1/k(n) exists. Then, for any f (n) = o(k(n))
as n → ∞, we have

lim
n→∞

S(X ,n, k(n) + f (n))1/(k(n)+f (n)) = lim
n→∞

S(n, k(n))1/k(n) .

Proof: Assume f (n) ≥ 0 for large enough n, and for display
purposes write k and f for k(n) and f (n).

From Newton’s inequalities and Maclaurin’s inequalities, we get
(

S(X , n, k)1/k
) k

k+f
= S(X , n, k)1/(k+f )

≤ S(X , n, k+f )1/(k+f )
≤ S(X , n, k)1/k .
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Proof of Theorem 1: f (n) = o(log log n)

Each entry of α is at least 1.
Let f (n) = o(log log n). Set t = 1/2 and (j , k) = (1,2f (n)− 1),
so that tj + (1 − t)k = f (n). Niculescu’s result yields

S(α,n, f (n)) ≥
√

S(α,n,1) · S(α,n,2f (n) − 1) >
√

S(α,n,1).

Square both sides, raise to the power 1/f (n):

S(α,n, f (n))2/f (n) ≥ S(α,n,1)1/f (n).

From Khinchin almost surely if g(n) = o(log n)

lim
n→∞

S(α,n,1)
g(n)

= ∞.

Let g(n) = log n/ log log n. Taking logs:

log
(

S(α,n,1)1/f (n)
)

>
log g(n)

f (n)
>

log log n
2f (n)

.
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Proof of Theorem 2

Theorem 2: Let f (n) = o(n) as n → ∞. Then, almost surely,

lim
n→∞

S(α,n,n − f (n))1/(n−f (n)) = K0.

Proof: Follows immediately from:
For any constant 0 < c < 1 and almost all α have

K0 ≤ lim sup
n→∞

S(α,n, cn)1/cn ≤ K 1/c
0 < ∞.

To see this, note

S(α, n, cn)1/cn =

(

n
∏

i=1

ai(α)
1/n

)n/cn













∑

i1<···<i(1−c)n≤n

1/(ai1(α) · · · ai(1−c)n
(α))

(

n
cn

)













1/cn

.
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Limiting Behavior

Recall S(α,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

ai1 · · · aik

and S(α,n,1)1/1 ≥ S(α,n,2)1/2 ≥ · · · ≥ S(α,n,n)1/n .

Proposition

For 0 < c < 1 and for almost every α

K0 ≤ lim sup
n→∞

S(α,n, cn)1/cn ≤ K 1/c
0 (K−1)

1−1/c .

Conjecture

Almost surely Fα
+(c) = Fα

−(c) = F (c) for all 0 < c < 1, with

Fα
+(c) = lim sup

n→∞
S(α,n, cn)1/cn ,

Fα
−(c) = lim inf

n→∞
S(α,n, cn)1/cn .
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Limiting Behavior

Recall

Fα
+(c) = lim sup

n→∞
S(α,n, cn)1/cn

Fα
−(c) = lim inf

n→∞
S(α,n, cn)1/cn ,

and we conjecture Fα
+(c) = Fα

−(c) = F (c) a.s.

Assuming conjecture, can show that the function c 7→ F (c) is
continuous.

Assuming conjecture is false, we can show that for every
0 < c < 1 the set of limit points of the sequence
{S(α,n, cn)1/cn)}n∈N is a non-empty interval inside [K ,K 1/c].
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Evidence for Conjecture 1

n 7→ S(α,n, cn)1/cn for c = 1
4 ,

1
2 ,

3
4 and α = π − 3, γ, sin(1) .
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?

Consider the quadratic irrational α = [x , y , x , y , x , y , . . .].
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?

Consider the quadratic irrational α = [x , y , x , y , x , y , . . .].

Let us look at S(α,n, cn)1/cn for c = 1/2.

S(α,n, ⌈n
2⌉) =

{

S(α,n, n
2) if n ≡ 0 mod 2;

S(α,n, n+1
2 ) if n ≡ 1 mod 2.
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?

Consider the quadratic irrational α = [x , y , x , y , x , y , . . .].

Let us look at S(α,n, cn)1/cn for c = 1/2.

S(α,n, ⌈n
2⌉) =

{

S(α,n, n
2) if n ≡ 0 mod 2;

S(α,n, n+1
2 ) if n ≡ 1 mod 2.

We find the limit limn→∞ S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ in terms of x , y .

46



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Our results on periodic continued fraction averages 2/2

Theorem 3

Let α = [x , y ]. Then S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ converges as n → ∞ to

the 1
2 -Hölder mean of x and y :

lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.
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Our results on periodic continued fraction averages 2/2

Theorem 3

Let α = [x , y ]. Then S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ converges as n → ∞ to

the 1
2 -Hölder mean of x and y :

lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.

Suffices to show for n ≡ 0 mod 2, say n = 2k .

In this case we have that S(α,2k , k)1/k →
(

x1/2+y1/2

2

)2

monotonically as k → ∞.
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On the proof of Theorem 3, 1/2

Goal : α = [x , y ] ⇒ lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.

The proof uses an asymptotic formula for Legendre
polynomials Pk (with t = x

y < 1 and u = 1+t
1−t > 1):

Pk (u) =
1
2k

k
∑

j = 0

(

k
j

)2

(u − 1)k−j(u + 1)j

S(α,2k , k) =
1
(2k

k

)

k
∑

j=0

(

k
j

)2

x jyk−j =
yk

(2k
k

)

k
∑

j=0

(

k
j

)2

t j

=
yk

(2k
k

)
(1 − t)k Pk(u).
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On the proof of Theorem 3, 2/2

Goal : α = [x , y ] ⇒ lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.

Using the generalized Laplace-Heine asymptotic formula for
Pk (u) for u > 1 and t = x

y < 1 and u = 1+t
1−t > 1 gives

S(α,2k , k)1/k = y(1 − t)

(

Pk(u)
(2k

k

)

)1/k

−→ y(1 − t)
u +

√
u2 − 1
4

= y

(

1 +
√

t
2

)2

=

(

x1/2 + y1/2

2

)2

.
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A conjecture on periodic continued fraction averages 1/3

Expect the same result of Theorem 3 to hold for every quadratic
irrational α and for every c.

Conjecture 2

For every α = [x1, . . . , xL] and every 0 ≤ c ≤ 1 the limit

lim
n→∞

S(α,n, ⌈cn⌉)1/⌈cn⌉ =: F (α, c)

exists and it is a continuous function of c.

Notice c 7→ F (α, c) is automatically decreasing by Maclaurin’s
inequalities.
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A conjecture on periodic continued fraction averages 2/3

Conjecture 2 for period 2 and period 3, 0 ≤ c ≤ 1.
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Main Results
(Sketch of More Technical Arguments)
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Explicit Formula for F (c)

Result of Halász and Székely yields conjecture and F (c).

Theorem 4

If limn→∞
k
n = c ∈ (0, 1], then for almost all α ∈ [0, 1]

lim
n→∞

S(α, n, k)1/k =: F (c)

exists, and F (c) is continuous and given explicitly by

c(1−c)
1−c

c exp

{

1
c

(

(c − 1) log rc −

∞
∑

k=1

log (rc + k) log2

(

1 −
1

(k + 1)2

)

)}

,

where rc is the unique nonnegative solution of the equation

∞
∑

k=1

r
r + k

log2

(

1 − 1
(k + 1)2

)

= c − 1.
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Proof: Work of Halász and Székely

Halász and Székely calculate asymptotic properties of iidrv
ξ1, . . . , ξn when

⋄ c = limn→∞ k/n ∈ [0,1].
⋄ ξj non-negative.
⋄ E[log ξj ] < ∞ if c = 1.
⋄ E[log(1 + ξj) < ∞ if 0 < c < 1.
⋄ E[ξj ] < ∞ if c = 0.

Prove limn→∞ k
√

S(ξ,n, k)/
(n

k

)

exists with probability 1 and
determine it.

55



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Proof: Work of Halász and Székely

Random variables ai(α) not independent, but Halász and
Székely only use independence to conclude sum of the form

1
n

n
∑

k=1

f (T k(α))

(where T is the Gauss map and f is some function integrable
with respect to the Gauss measure) converges a.e. to Ef as
n → ∞.

Arrive at the same conclusion by appealing to the pointwise
ergodic theorem.
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References

57



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

References

I. Ben-Ari and K. Conrad, Maclaurin’s inequality and a generalized
Bernoulli inequality, Math. Mag. 87 (2014), 14–24.

F. Cellarosi, D. Hensley, S. J. Miller and J. Wellens, Continued Fraction
Digit Averages and Maclaurin’s Inequalities, to appear in Experimental
Mathematics. http://arxiv.org/abs/1402.0208.

H. G. Diamond and J. D. Vaaler, Estimates for Partial Sums of Continued
Fraction Partial Quotients, Pacific Journal of Mathematics 122 (1986),
73–82.

G. Halász and G. J. Székely, On the elementary symmetric polynomials
of independent random variables, Acta Math. Acad. Sci. Hungar. 28
(1976), no. 3-4, 397–400.

A. Y. Khinchin, Continued Fractions, 3rd edition, University of Chicago
Press, Chicago, 1964.

Work supported by AMS-Simons Travel grant, NSF grants DMS0850577,
DMS0970067, DMS1265673 and DMS1363227, and Williams College.

58

http://arxiv.org/abs/1402.0208


Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Introduction to MSTD
Joint with Peter Hegarty (Chambers), Oleg Lazarev (SMALL

’12), Kevin O’Bryant (CUNY), ...
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj ,aj ∈ A}.

Difference set: A − A = {ai − aj : aj ,aj ∈ A}.

Arise in Goldbach’s Problem, Twin Primes, Fermat’s Last
Theorem, ....
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj ,aj ∈ A}.

Difference set: A − A = {ai − aj : aj ,aj ∈ A}.

Arise in Goldbach’s Problem, Twin Primes, Fermat’s Last
Theorem, ....

Definition
We say A is difference dominated if |A − A| > |A + A|, balanced
if |A − A| = |A + A| and sum dominated (or an MSTD set) if
|A + A| > |A − A|.
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Questions

Expect generic set to be difference dominated:

addition is commutative, subtraction isn’t:

Generic pair (x , y) gives 1 sum, 2 differences.

62



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Questions

Expect generic set to be difference dominated:

addition is commutative, subtraction isn’t:

Generic pair (x , y) gives 1 sum, 2 differences.

Questions
Do there exist sum-dominated sets?

If yes, how many?
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Examples

Conway: {0,2,3,4,7,11,12,14}.

Marica (1969): {0,1,2,4,7,8,12,14,15}.

Freiman and Pigarev (1973): {0,1,2,4,5, 9,12,13,
14,16,17, 21,24,25,26,28,29}.

Computer search of random subsets of {1, . . . ,100}:
{2,6,7,9,13,14,16,18,19,22,23,25,30,31,33,37,39,
41,42,45,46,47,48,49,51,52,54,57,58,59,61,64,65,
66,67,68,72,73,74,75,81,83,84,87,88,91,93,94,95,
98,100}.

Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.

Proof:

WLOG, A = {0,1, . . . ,n} as A → αA + β doesn’t change
|A + A|, |A − A|.

A + A = {0, . . . ,2n}, A − A = {−n, . . . ,n}, both of size
2n + 1. �
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Previous Constructions

Most constructions perturb an arithmetic progression.

Example:

MSTD set A = {0,2,3,4,7,11,12,14}.

A = {0,2} ∪ {3,7,11} ∪ (14 − {0,2}) ∪ {4}.
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Example (Nathanson)

Theorem
m,d , k ∈ N with m ≥ 4, 1 ≤ d ≤ m − 1, d 6= m/2, k ≥ 3 if
d < m/2 else k ≥ 4. Let

B = [0,m − 1]\{d}.

L = {m − d ,2m − d , . . . , km − d}.

a∗ = (k + 1)m − 2d.

A∗ = B ∪ L ∪ (a∗ − B).

A = A∗ ∪ {m}.

Then A is an MSTD set.

Note: gives exponentially low density of MSTD sets.
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New Explicit Constructions: Results and Notation

Previous best explicit sub-family of {1, . . . ,n} gave density of
C1nd/2n/2.

Our new family gives C2/n2, almost a positive percent.

Current record by Zhao: C3/n.

Notation:

[a,b] = {k ∈ Z : a ≤ k ≤ b}.

A is a Pn-set if its sumset and difference sets contain all
but the first and last n possible elements (may or may not
contain some of these fringe elements).
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New Construction

Theorem (Miller-Orosz-Scheinerman ’09)

A = L ∪ R be a Pn, MSTD set where L ⊂ [1,n],
R ⊂ [n + 1,2n], and 1,2n ∈ A.

Fix a k ≥ n and let m be arbitrary.

M any subset of [n + k + 1,n + k + m] st no run of more
than k missing elements. Assume n + k + 1 6∈ M.

Set A(M) = L∪O1 ∪M ∪O2 ∪R′, where O1 = [n+1,n+k ],
O2 = [n + k + m + 1,n + 2k + m], and R′ = R + 2k + m.

Then A(M) is an MSTD set, and ∃C > 0 st the percentage of
subsets of {0, . . . , r} that are in this family (and thus are MSTD
sets) is at least C/r2.
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Phase Transition
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Probability Review

X random variable with density f (x) means

f (x) ≥ 0;
∫∞
−∞ f (x) = 1;

Prob(X ∈ [a,b]) =
∫ b

a f (x)dx .

Key quantities:

Expected (Average) Value: E[X ] =
∫

xf (x)dx .

Variance: σ2 =
∫

(x − E[X ])2f (x)dx .
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Binomial model

Binomial model, parameter p(n)

Each k ∈ {0, . . . ,n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

Let A ∈ {0, . . . ,n}. Most elements in {0, . . . ,2n} in A + A
and in {−n, . . . ,n} in A − A.

E[|A + A|] = 2n − 11, E[|A − A|] = 2n − 7.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the binomial
model with constant parameter p (thus k ∈ A with probability p).
At least kSD;p2N+1 subsets are sum dominated.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the binomial
model with constant parameter p (thus k ∈ A with probability p).
At least kSD;p2N+1 subsets are sum dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . ,N} according to the binomial
model with constant parameter p (thus k ∈ A with probability p).
At least kSD;p2N+1 subsets are sum dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.

Proof (p = 1/2): Generically |A| = N
2 + O(

√
N).

⋄ about N
4 − |N−k |

4 ways write k ∈ A + A.

⋄ about N
4 − |k |

4 ways write k ∈ A − A.
⋄ Almost all numbers that can be in A ± A are.
⋄ Win by controlling fringes.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.

New model: Binomial with parameter p(N):

1/N = o(p(N)) and p(N) = o(1);

Prob(k ∈ A) = p(N).

Conjecture (Martin-O’Bryant)

As N → ∞, A is a.s. difference dominated.
79



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 2e−x−(1−x)
x .

p(N) = o(N−1/2): D ∼ 2S ∼ (Np(N))2;

p(N) = cN−1/2: D ∼ g(c2)N, S ∼ g
(

c2

2

)

N

(c → 0, D/S → 2; c → ∞, D/S → 1);

N−1/2 = o(p(N)): Sc ∼ 2Dc ∼ 4/p(N)2.

Can generalize to binary linear forms or arbitrarily many
summands, still have critical threshold.
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Inputs

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs,
...).

Need to allow dependent random variables.
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Inputs

Key input: recent strong concentration results of Kim and Vu
(Applications: combinatorial number theory, random graphs,
...).

Need to allow dependent random variables.

Sketch of proofs: X ∈ {S,D,Sc,Dc}.

1 Prove E[X ] behaves asymptotically as claimed;
2 Prove X is strongly concentrated about mean.
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Setup

Only need new strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary (i.e.,
Chebyshev: Prob(|Y − E[Y ]| ≥ kσY ) ≤ 1/k2)).
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Setup

Only need new strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary (i.e.,
Chebyshev: Prob(|Y − E[Y ]| ≥ kσY ) ≤ 1/k2)).

For convenience let p(N) = N−δ, δ ∈ (1/2,1).

IID binary indicator variables:

Xn;N =

{

1 with probability N−δ

0 with probability 1 − N−δ.

X =
∑N

i=1 Xn;N , E[X ] = N1−δ.
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Proof

Lemma

P1(N) = 4N−(1−δ), O = #{(m,n) : m < n ∈ {1, . . . ,N}⋂A}.
With probability at least 1 − P1(N) have

1 X ∈
[1

2N1−δ, 3
2N1−δ

]

.

2
1
2 N1−δ( 1

2 N1−δ−1)
2 ≤ O ≤

3
2 N1−δ( 3

2 N1−δ−1)
2 .
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Proof

Lemma

P1(N) = 4N−(1−δ), O = #{(m,n) : m < n ∈ {1, . . . ,N}⋂A}.
With probability at least 1 − P1(N) have

1 X ∈
[1

2N1−δ, 3
2N1−δ

]

.

2
1
2 N1−δ( 1

2 N1−δ−1)
2 ≤ O ≤

3
2 N1−δ( 3

2 N1−δ−1)
2 .

Proof:

(1) is Chebyshev: Var(X ) = NVar(Xn;N) ≤ N1−δ.

(2) follows from (1) and
(r

2

)

ways to choose 2 from r .
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Concentration

Lemma

f (δ) = min
(1

2 ,
3δ−1

2

)

, g(δ) satisfies 0 < g(δ) < f (δ).

p(N) = N−δ, δ ∈ (1/2,1), P1(N) = 4N−(1−δ),
P2(N) = CN−(f (δ)−g(δ)) .

With probability at least 1 − P1(N)− P2(N) have
D/S = 2 + O(N−g(δ)).
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Concentration

Lemma

f (δ) = min
(1

2 ,
3δ−1

2

)

, g(δ) satisfies 0 < g(δ) < f (δ).

p(N) = N−δ, δ ∈ (1/2,1), P1(N) = 4N−(1−δ),
P2(N) = CN−(f (δ)−g(δ)) .

With probability at least 1 − P1(N)− P2(N) have
D/S = 2 + O(N−g(δ)).

Proof: Show D ∼ 2O + O(N3−4δ), S ∼ O + O(N3−4δ).

As O is of size N2−2δ with high probability, need 2− 2δ > 3− 4δ
or δ > 1/2.

88



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m,n) and (m′,n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{

1 if n − m = n′ − m′

0 otherwise.

E[Y ] ≤ N3 · N−4δ + N2 · N−3δ ≤ 2N3−4δ. As δ > 1/2,
#{bad pairs} ≪ O.

Claim: σY ≤ N r(δ)with r(δ) = 1
2 max(3 − 4δ,5 − 7δ). This and

Chebyshev conclude proof of theorem.
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).

Write
∑

Ym,n,m′,n′ =
∑

Um,n,m′,n′ +
∑

Vm,n,n′

with all indices distinct (at most one in common, if so must be
n = m′).

Var(U) =
∑

Var(Um,n,m′,n′)+2
∑

(m,n,m′,n′) 6=
(m̃,ñ,m̃′,ñ′)

CoVar(Um,n,m′,n′ ,Um̃,ñ,m̃′,ñ′).
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Analyzing Var(Um,n,m′,n′)

At most N3 tuples.

Each has variance N−4δ − N−8δ ≤ N−4δ.

Thus
∑

Var(Um,n,m′,n′) ≤ N3−4δ.
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Analyzing CoVar(Um,n,m′,n′ ,Um̃,ñ,m̃′,ñ′)

All 8 indices distinct: independent, covariance of 0.

7 indices distinct: At most N3 choices for first tuple, at most
N2 for second, get

E[U(1)U(2)]− E[U(1)]E[U(2)] = N−7δ − N−4δN−4δ ≤ N−7δ.

Argue similarly for rest, get ≪ N5−7δ + N3−4δ.
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Ongoing Research
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Current and Open Problems

Similar results for arbitrary finite groups (with Kevin
Vissuet).

Generalize phase transition results for more summands
(SMALL ’13 hopefully).

Generalize to subsets of Z+ × Z+ (SMALL ’13 hopefully).

Study the dependence of the divot on p(N).
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Divot: Lazarev - Miller - O’Bryant

Let m(k) be the probability a uniformly drawn subset A of [0, n] has A + A
missing exactly k summands as n → ∞.

0 5 10 15 20 25 30
k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

mHkL

Figure: Experimental values of m(k), vertical bars error (often
smaller than dot!).

What happens if draw A from binomial with parameter p(N)?
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Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter p(N) as
before, u, v be non-zero integers with u ≥ |v |, gcd(u, v) = 1 and
(u, v) 6= (1, 1). Put f (x , y) := ux + vy and let Df denote the random
variable |f (A)|. Then the following three situations arise:

1 p(N) = o(N−1/2) : Then

Df ∼ (N · p(N))2.

2 p(N) = c · N−1/2 for some c ∈ (0,∞) : Define the function
gu,v : (0,∞) → (0, u + |v |) by

gu,v (x) := (u + |v |)− 2|v |
(

1 − e−x

x

)

− (u − |v |)e−x .

Then

Df ∼ gu,v

(

c2

u

)

N.

3 N−1/2 = o(p(N)) : Let Dc
f := (u + |v |)N −Df . Then Dc

f ∼ 2u|v |
p(N)2 .
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Generalization of Hegarty-Miller

Let f , g be two binary linear forms. Say f dominates g for the
parameter p(N) if, as N → ∞, |f (A)| > |g(A)| almost surely when A is
a random subset (binomial model with parameter p(N)).
Theorem (Hegarty-M): f (x , y) = u1x + u2y and g(x , y) = u2x + g2y ,
where ui ≥ |vi | > 0, gcd(ui , vi) = 1 and (u2, v2) 6= (u1,±v1). Let

α(u, v) :=
1
u2

( |v |
3

+
u − |v |

2

)

=
3u − |v |

6u2 .

The following two situations can be distinguished :

u1 + |v1| ≥ u2 + |v2| and α(u1, v1) < α(u2, v2). Then f dominates
g for all p such that N−3/5 = o(p(N)) and p(N) = o(1). In
particular, every other difference form dominates the form x − y
in this range.

u1 + |v1| > u2 + |v2| and α(u1, v1) > α(u2, v2). Then there exists
cf ,g > 0 such that one form dominates for p(N) < cN−1/2

(c < cf ,g) and other dominates for p(N) > cN−1/2 (c > cf ,g).

97



Intro Maclaurin Inequalities Main Results Refs Intro Phase Transition Ongoing Research Bibliograph

Open Problems

One unresolved matter is the comparison of arbitrary difference
forms in the range where N−3/4 = O(p) and p = O(N−3/5).
Note that the property of one binary form dominating another is
not monotone, or even convex.

A very tantalizing problem is to investigate what happens while
crossing a sharp threshold.

One can ask if the various concentration estimates can be
improved (i.e., made explicit).
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