Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References

Sum of Consecutive Terms of Pell and Related Sequences

Navvye Anand, Amit Basistha, Kenny B. Davenport, Alexander Gong, Steven J. Miller, Alexander Zhu

Polymath Jr. 2023

Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Table of	Contents				

Introduction and Definition Pell Numbers Second Order Recurrence Relations Other Results Conclusion

Introduction • 00000000	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Motivation					
Motivat	ion				

Let r be a non-negative integer. Consider a sequence $\{f(n)\}$ of non-negative integers recursively defined by

$$f(n) := rf(n-1) + f(n-2)$$

with initial conditions so that it is not identically zero (we call this a non-degenerate sequence).

Not only is this a natural generalization of the Fibonacci numbers (which are just the r = 1 case), but similar to how the Fibonacci numbers count various objects, this sequence as well has a combinatorial interpretation. In [DHW] the authors show that f(n) is the number of k-regular words over $\{1, 2, ..., n\}$ avoiding the patterns 122 and 213 (this means we cannot form a sub-word with three objects with this relative ordering).

Introduction OOOOOOOO	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Motivation					
Motivati	on				

Additionally, $\{f(n)\}$ also makes a surprising appearance in elliptic curve research. Recent work in [PiWa] shows under certain circumstances, there exists a bijection between the set of integral points on elliptic curves of the form $y^2 = (r^2 + 4)x^4 - 4$ and the set of squares in $\{f(n)\}$ with odd indices.

Introduction	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Definitions					
Pell Nur	nhers				

Pell numbers occur in the infinite sequence defined by the recurrence

$$P(n) = \begin{cases} 0 & n = 0\\ 1 & n = 1\\ 2P(n-1) + P(n-2) & n \ge 2. \end{cases}$$
(1)

We call the sequence defined by the above recursion *the Pell sequence*. The first few numbers of the Pell sequence are 0, 1, 2, 5, 12, 29, 70, 169, 408, and 985. They are also known as the 2–Fibonacci numbers.

Introduction	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Definitions					
Lucas N	umbers				

Lucas numbers occur in the infinite sequence defined by the recurrence

$$L(n) = \begin{cases} 2 & n = 0\\ 1 & n = 1\\ L(n-1) + L(n-2) & n \ge 2. \end{cases}$$
(2)

We call the sequence defined by the above recursion *the Lucas sequence*. The first few numbers of the Lucas sequence are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123 etc.

Introduction	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Definitions					

Closed Form of Fibonacci Numbers

The Fibonacci numbers have a closed form, given by *Binet's formula*:

$$F(n) = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$
(3)

where φ is the golden ratio and ψ is its negative inverse. These can be written explicitly as

$$arphi \ = \ rac{1+\sqrt{5}}{2} \qquad ext{and} \qquad \psi \ = \ rac{1-\sqrt{5}}{2} \ = \ -rac{1}{arphi}.$$

Introduction	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Definitions					
Binet Fo	ormula				

If terms of a recursively defined infinite sequence can be given in a closed form, we call the closed form *a Binet-like formula* or simply *a Binet formula*.

Example

Example: Let

$$a = 1 + \sqrt{2}$$
 and $b = 1 - \sqrt{2} = -\frac{1}{2}$. (4)

Then the *n*th Pell Number has a Binet formula given by

$$P(n) = \frac{a^n - b^n}{2\sqrt{2}}.$$
 (5)

Introduction	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Motivation and R	esults				
An Obse	ervation				

The sum of any four consecutive Pell Numbers is 4 times the third term of the consecutive terms. In other words, the equality

$$\sum_{i=0}^{3} P(n+i) = 4P(n+2)$$
 (6)

for all n.

g

Introduction	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Motivation and R	esults				
A Stron	ger Observ	vation			

For any $N \in \mathbb{N}$, the sum of any 4N consecutive Pell numbers is equal to a constant (dependent on N) multiplied by the (2N + 1)st term of the consecutive terms. In particular,

$$\sum_{i=0}^{4N-1} P(n+i) = \frac{(a^{2N}-b^{2N})}{\sqrt{2}} P(n+2N)$$
(7)

where is is easy to see that $\frac{(a^{2N} - b^{2N})}{\sqrt{2}}$ is an integer.

This result can be proven algebraically using the Binet formula for Pell numbers and the fact that ab = -1.

Introduction ○○○○○○●	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Motivation and Res	ults				
Question					

For which numbers $N \in \mathbb{N}$, does the sum of N consecutive Pell numbers equal a fixed constant, depending solely on N, times another Pell number?

Introduction 000000000	Pell Numbers ●000	Recurrence Relations	Other Results	Conclusion O	References
Sum of 4N+2 con	secutive Pell numbers				
$4N \perp 2c$	onsecutive	Poll numbers			

The *Pell-Lucas sequence* or the *Companion Pell sequence* is a sequence of natural numbers defined by

$$Q(n) = \left\{ egin{array}{cc} 2 & n = 0, 1 \ 2Q(n-1) + Q(n-2) & n \geq 2. \end{array}
ight.$$

(8)

Theorem

Fix any integer N. Then, there is no integer C(N) such that for every n there exists an integer index j(n; N) such that the following equation holds:

$$\sum_{i=0}^{4N+1} P(n+i) = C(N)P(j(n;N)).$$

Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References
Sum of 4N+2 cor	nsecutive Pell numbers				
Proof S	ketch				

Lemma

$$P(n+k) + (-1)^k P(n-k) = Q(k)P(n), \qquad k \in \mathbb{N} \cup \{0\}$$

Lemma

$$\sum_{k=0}^{n} P(k) = \frac{1}{2} (P(n+1) + P(n) - 1)$$

1. Prove the above lemmas.

2. Use these lemmas to conclude that the sum of any 4N + 2 consecutive Pell numbers is a fixed integer multiple of the sum of two consecutive Pell numbers.

$$\sum_{k=0}^{4N+1} P(n+k) = \frac{Q(2N+1)}{2} \left(P(n+2N+1) + P(n+2N) \right)$$

Introduction 000000000	Pell Numbers ○○●○	Recurrence Relations	Other Results	Conclusion O	References
Sum of 4N+2 cons	ecutive Pell numbers				
Proof Sk	etch				

3. Define the Pell sum sequence R(n) = P(n) + P(n+1).

4. Consider ratios of consecutive terms of the *Pell sequence* and the *Pell sum sequence*.

5. Conclude that consecutive terms of these sequences are relatively prime.

6. Use the observations made in steps 4 and 5 to prove that the sum of any 4N + 2 consecutive Pell numbers is not a fixed constant times another Pell number.

Introduction 000000000	Pell Numbers ○○○●	Recurrence Relations	Other Results	Conclusion O	References
Sum of 2N+1 conse	cutive Pell numbers				

2N+1 consecutive Pell numbers

Theorem

Fix any integer N > 0. Then, there is no integer C(N) such that for every n there exists an integer index j(n; N) such that the following equation holds:

$$\sum_{i=0}^{2N} P(n+i) = C(N)P(j(n;N)).$$

Introduction 000000000	Pell Numbers	Recurrence Relations ●0○	Other Results	Conclusion O	References
Sum of 4N+2 cor	nsecutive terms				
4N+2c	onsecutive	terms			

Consider sequences of the form f(n) = rf(n-1) + f(n-2) with $r \in \mathbb{N}$, $r \ge 2$, f(0) = 0 and f(1) = 1. Then, there is no integer C(N) such that for every n there exists an integer index j(n; N) such that the following equation holds:

$$\sum_{i=0}^{4N+1} P(n+i) = C(N)P(j(n;N)).$$

Proof.

Similar to the proof shown for Pell numbers. Our companion sequence is $g(n) = r \cdot g(n-1) + g(n-2)$ with g(0) = 2 and g(1) = r. The following theorem works for r = 1.

Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References			
Sum of 4N+2 consecutive terms								
4N+2c	onsecutive	terms						

The sum of 4N + 2 consecutive Fibonacci numbers is an integer multiple of the $(2N + 3)^{rd}$ term in the sum, where the fixed constant is L(2N + 1), the $(2N + 1)^{st}$ Lucas number.

Proof.

First, note that $\sum_{i=0}^{n} F(i) = F(n+2) - 1$. A straightforward induction yields $F(n+k) + (-1)^{k}F(n-k) = L(k)F(n)$. A straightforward manipulation now yields

$$\sum_{i=0}^{4N+1} F(n+i) = F(n+4N+3) - F(n+1)$$

= $L(2N+1)F(n+2N+2),$ (9)

which completes the proof.

Introduction 000000000	Pell Numbers	Recurrence Relations ○○●	Other Results	Conclusion O	References			
Sum of 2N+1 consecutive terms								
2N+1c	onsecutive	terms						

Consider a sequence of the form $\mathbf{f}(\mathbf{n}) = \mathbf{rf}(\mathbf{n} - 1) + \mathbf{f}(\mathbf{n} - 2)$ with $r \in \mathbb{N}$, $r \ge 3$, f(0) = 0, and f(1) = 1. Then the sum of any 2N + 1 consecutive terms of the sequence is a constant integer multiple of a term in the sequence if and only if N = 0.

In this case, the "generating matrix" for the sequence is $\begin{pmatrix} r & 1 \\ 1 & 0 \end{pmatrix}$. From here, we can proceed with the same proof used for sums of odd numbers of consecutive Pell and Fibonacci numbers to prove this theorem.

Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results ●○	Conclusion O	References
Other R	esults				

Let F(n) denote the nth Fibonacci number. Fix any integer N > 0. Then, there is no integer C(N) such that for every n there exists an integer index j(n; N) such that the following equation holds:

$$\sum_{i=0}^{2N} F(n+i) = C(N)F(j(n;N)).$$

We note that a trivial equality holds for N = 0.

Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results ○●	Conclusion O	References

Other Results

Define the order-k generalized Fibonacci sequence by

$$f_k(n) := \sum_{i=1}^k f_k(n-i)$$
(10)
with $f_k(1) = f_k(2) = \cdots = f_k(k-1) = 0$ and $f_k(k) = 1$.

Theorem

Let $F_k(n)$ denote the n^{th} order-k Fibonacci number, let $j(n; N), C(N) \in \mathbb{Z}$ be defined as above. Then,

$$\sum_{i=0}^{2N} F_k(n+i) = C(N) \cdot F_k(j(n;N))$$

has no solution which holds for all n, when $2 \mid k$ and N > 2k + 1.

Download the paper and give it a read!

1. Dr. Miller's website :

https://web.williams.edu/Mathematics/sjmiller/ public_html/math/papers/PellAndGeneralizations_ ConsecSum_Polymath2023v20.pdf

2. ResearchGate:

https://www.researchgate.net/publication/ 381996155_Sum_of_Consecutive_Terms_of_Pell_and_ Related_Sequences

Introduction 000000000	Pell Numbers	Recurrence Relations	Other Results	Conclusion O	References

References

- O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller and P. Tosteson, *The Average Gap Distribution for Generalized Zeckendorf Decompositions*, the Fibonacci Quarterly **51** (2013), 13–27. https://arxiv.org/abs/1208.5820.
- A. Benjamin, S. Plott and J. Sellers, *Tiling Proofs of Recent Sum Identities Involving Pell numbers*, Annals of Combinatorics 12 (2008), 271–278.
 https://doi.org/10.1007/s00026-008-0350-5.
- B. Bradie, Extensions and Refinements of Some Properties of Sums Involving Pell numbers, Missouri J. Math. Sci. 22 (2010), no. 1, 37-43, https://doi.org/10.35834/mjms/1312232719.
- R. D. Carmichael, On the Numerical Factors of the Arithmetic Forms $\alpha^n \pm \beta^n$, Annals of Mathematics **15** (1913–1914), no. 1, 30–48. https://doi.org/10.2307/1967797.

- roduction
 Pell Numbers
 Recurrence Relations
 Other Results
 Conclusion
 References

 Image: Conclusion
 E. Kilic, The generalized Pell (p, i)-numbers and their generalized Binet formulas, combinatorial representations, sums, Chaos, Solitons
 - https://doi.org/10.1016/j.chaos.2007.09.081.

& Fractals 40 (2009), no. 4, 2047–2063.

- E. Kilic and D. Tasci, *On the generalized Order-k Fibonacci and Lucas Numbers*, Rocky Mountain Journal of Mathematics **36** (2006), no. 6, 1915–1926. https://doi.org/10.1216/rmjm/1181069352.
- T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd Edition, Johm Wiley & Sons,Inc., 2017.
- A. D. Kumar and R. Sivaraman, *Analysis of Limiting Ratios of Special Sequences*, Mathematics and Statistics **10** (2022), no. 4, 825–832, https://doi.org/10.13189/ms.2022.100413.
- C. Levesque, On mth Order Linear Recurrences, Fibonacci Quarterly 23 (1985), no. 4, 290-293, https://www.fq.math.ca/Scanned/23-4/levesque.pdf.

Introduction 000000000 Pell Numbers

Recurrence Relations

Other Results

Conclusion

References

- E. Downing, E.Hartung and A.Williams, Pattern Avoidance for Fibonacci Sequences using k-Regular Words, arXiv preprint (2023). https://arxiv.org/abs/2312.16052.
- D.L Pincus, L.C Washington, On the Field Isomorphism Problem for the Family of Simplest Quartic Fields, arXiv preprint (2024). https://arxiv.org/abs/2406.10414.