Sum of Consecutive Terms of Pell and Related Sequences

Navvye Anand, Amit Basistha, Kenny B. Davenport, Alexander Gong, Steven J. Miller, Alexander Zhu

Polymath Jr. 2023

Table of Contents

Introduction and Definition
Pell Numbers
Second Order Recurrence Relations
Other Results
Conclusion

Motivation

Definition

Let r be a non-negative integer. Consider a sequence $\{f(n)\}$ of non-negative integers recursively defined by

$$
f(n):=r f(n-1)+f(n-2)
$$

with initial conditions so that it is not identically zero (we call this a non-degenerate sequence).

Not only is this a natural generalization of the Fibonacci numbers (which are just the $r=1$ case), but similar to how the Fibonacci numbers count various objects, this sequence as well has a combinatorial interpretation. In [DHW] the authors show that $f(n)$ is the number of k-regular words over $\{1,2, \ldots, n\}$ avoiding the patterns 122 and 213 (this means we cannot form a sub-word with three objects with this relative ordering).

Motivation

Additionally, $\{f(n)\}$ also makes a surprising appearance in elliptic curve research. Recent work in [PiWa] shows under certain circumstances, there exists a bijection between the set of integral points on elliptic curves of the form $y^{2}=\left(r^{2}+4\right) x^{4}-4$ and the set of squares in $\{f(n)\}$ with odd indices.

Pell Numbers

Definition

Pell numbers occur in the infinite sequence defined by the recurrence

$$
P(n)=\left\{\begin{array}{cc}
0 & n=0 \tag{1}\\
1 & n=1 \\
2 P(n-1)+P(n-2) & n \geq 2
\end{array}\right.
$$

We call the sequence defined by the above recursion the Pell sequence. The first few numbers of the Pell sequence are $0,1,2$, $5,12,29,70,169,408$, and 985 . They are also known as the $2-$ Fibonacci numbers.

Definitions

Lucas Numbers

Definition

Lucas numbers occur in the infinite sequence defined by the recurrence

$$
L(n)=\left\{\begin{array}{cc}
2 & n=0 \tag{2}\\
1 & n=1 \\
L(n-1)+L(n-2) & n \geq 2
\end{array}\right.
$$

We call the sequence defined by the above recursion the Lucas sequence. The first few numbers of the Lucas sequence are $2,1,3,4,7,11,18,29,47,76,123$ etc.

Closed Form of Fibonacci Numbers

The Fibonacci numbers have a closed form, given by Binet's formula:

$$
\begin{equation*}
F(n)=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}} \tag{3}
\end{equation*}
$$

where φ is the golden ratio and ψ is its negative inverse. These can be written explicitly as

$$
\varphi=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \psi=\frac{1-\sqrt{5}}{2}=-\frac{1}{\varphi} .
$$

Definitions

Binet Formula

Definition

If terms of a recursively defined infinite sequence can be given in a closed form, we call the closed form a Binet-like formula or simply a Binet formula.

Example

Example: Let

$$
\begin{equation*}
a=1+\sqrt{2} \quad \text { and } \quad b=1-\sqrt{2}=-\frac{1}{a} . \tag{4}
\end{equation*}
$$

Then the $n^{\text {th }}$ Pell Number has a Binet formula given by

$$
\begin{equation*}
P(n)=\frac{a^{n}-b^{n}}{2 \sqrt{2}} . \tag{5}
\end{equation*}
$$

An Observation

Theorem

The sum of any four consecutive Pell Numbers is 4 times the third term of the consecutive terms. In other words, the equality

$$
\begin{equation*}
\sum_{i=0}^{3} P(n+i)=4 P(n+2) \tag{6}
\end{equation*}
$$

for all n.

A Stronger Observation

Theorem

For any $N \in \mathbb{N}$, the sum of any $4 N$ consecutive Pell numbers is equal to a constant (dependent on N) multiplied by the $(2 N+1) s t$ term of the consecutive terms. In particular,

$$
\begin{equation*}
\sum_{i=0}^{4 N-1} P(n+i)=\frac{\left(a^{2 N}-b^{2 N}\right)}{\sqrt{2}} P(n+2 N) \tag{7}
\end{equation*}
$$

where is is easy to see that $\frac{\left(a^{2 N}-b^{2 N}\right)}{\sqrt{2}}$ is an integer.
This result can be proven algebraically using the Binet formula for Pell numbers and the fact that $a b=-1$.

Question

For which numbers $N \in \mathbb{N}$, does the sum of N consecutive Pell numbers equal a fixed constant, depending solely on N, times another Pell number?

$4 N+2$ consecutive Pell numbers

Definition

The Pell-Lucas sequence or the Companion Pell sequence is a sequence of natural numbers defined by

$$
Q(n)=\left\{\begin{array}{cc}
2 & n=0,1 \tag{8}\\
2 Q(n-1)+Q(n-2) & n \geq 2
\end{array}\right.
$$

Theorem

Fix any integer N. Then, there is no integer $C(N)$ such that for every n there exists an integer index $j(n ; N)$ such that the following equation holds:

$$
\sum_{i=0}^{4 N+1} P(n+i)=C(N) P(j(n ; N))
$$

Proof Sketch

Lemma

$$
P(n+k)+(-1)^{k} P(n-k)=Q(k) P(n), \quad k \in \mathbb{N} \cup\{0\}
$$

Lemma

$$
\sum_{k=0}^{n} P(k)=\frac{1}{2}(P(n+1)+P(n)-1)
$$

1. Prove the above lemmas.
2. Use these lemmas to conclude that the sum of any $4 N+2$ consecutive Pell numbers is a fixed integer multiple of the sum of two consecutive Pell numbers.

$$
\sum_{k=0}^{4 N+1} P(n+k)=\frac{Q(2 N+1)}{2}(P(n+2 N+1)+P(n+2 N))
$$

Proof Sketch

3. Define the Pell sum sequence $R(n)=P(n)+P(n+1)$.
4. Consider ratios of consecutive terms of the Pell sequence and the Pell sum sequence.
5. Conclude that consecutive terms of these sequences are relatively prime.
6. Use the observations made in steps 4 and 5 to prove that the sum of any $4 N+2$ consecutive Pell numbers is not a fixed constant times another Pell number.

$2 \mathrm{~N}+1$ consecutive Pell numbers

Theorem

Fix any integer $N>0$. Then, there is no integer $C(N)$ such that for every n there exists an integer index $j(n ; N)$ such that the following equation holds:

$$
\sum_{i=0}^{2 N} P(n+i)=C(N) P(j(n ; N))
$$

$4 N+2$ consecutive terms

Theorem

Consider sequences of the form $f(n)=r f(n-1)+f(n-2)$ with $r \in \mathbb{N}, r \geq 2, f(0)=0$ and $f(1)=1$. Then, there is no integer $C(N)$ such that for every n there exists an integer index $j(n ; N)$ such that the following equation holds:

$$
\sum_{i=0}^{4 N+1} P(n+i)=C(N) P(j(n ; N))
$$

Proof.

Similar to the proof shown for Pell numbers. Our companion sequence is $g(n)=r \cdot g(n-1)+g(n-2)$ with $g(0)=2$ and $g(1)=r$. The following theorem works for $r=1$.

$4 N+2$ consecutive terms

Theorem

The sum of $4 N+2$ consecutive Fibonacci numbers is an integer multiple of the $(2 N+3)^{r d}$ term in the sum, where the fixed constant is $L(2 N+1)$, the $(2 N+1)^{\text {st }}$ Lucas number.

Proof.

First, note that $\sum_{i=0}^{n} F(i)=F(n+2)-1$. A straightforward induction yields $F(n+k)+(-1)^{k} F(n-k)=L(k) F(n)$. A straightforward manipulation now yields

$$
\begin{align*}
\sum_{i=0}^{4 N+1} F(n+i) & =F(n+4 N+3)-F(n+1) \tag{9}\\
& =L(2 N+1) F(n+2 N+2)
\end{align*}
$$

which completes the proof.

$2 \mathrm{~N}+1$ consecutive terms

Theorem

Consider a sequence of the form $\mathbf{f}(\mathbf{n})=\mathbf{r f}(\mathbf{n}-\mathbf{1})+\mathbf{f}(\mathbf{n}-\mathbf{2})$ with $r \in \mathbb{N}, r \geq 3, f(0)=0$, and $f(1)=1$. Then the sum of any $2 N+1$ consecutive terms of the sequence is a constant integer multiple of a term in the sequence if and only if $N=0$.

In this case, the "generating matrix" for the sequence is $\left(\begin{array}{ll}r & 1 \\ 1 & 0\end{array}\right)$.
From here, we can proceed with the same proof used for sums of odd numbers of consecutive Pell and Fibonacci numbers to prove this theorem.

Other Results

Theorem

Let $F(n)$ denote the nth Fibonacci number. Fix any integer $N>0$. Then, there is no integer $C(N)$ such that for every n there exists an integer index $j(n ; N)$ such that the following equation holds:

$$
\sum_{i=0}^{2 N} F(n+i)=C(N) F(j(n ; N))
$$

We note that a trivial equality holds for $N=0$.

Other Results

Define the order- k generalized Fibonacci sequence by

$$
\begin{align*}
& f_{k}(n):=\sum_{i=1}^{k} f_{k}(n-i) \tag{10}\\
& \text { with } f_{k}(1)=f_{k}(2)=\cdots=f_{k}(k-1)=0 \text { and } f_{k}(k)=1
\end{align*}
$$

Theorem

Let $F_{k}(n)$ denote the $n^{\text {th }}$ order-k Fibonacci number, let $j(n ; N), C(N) \in \mathbb{Z}$ be defined as above. Then,

$$
\sum_{i=0}^{2 N} F_{k}(n+i)=C(N) \cdot F_{k}(j(n ; N))
$$

has no solution which holds for all n, when $2 \mid k$ and $N>2 k+1$.

Download the paper and give it a read!

1. Dr. Miller's website :
https://web.williams.edu/Mathematics/sjmiller/ public_html/math/papers/PellAndGeneralizations_ ConsecSum_Polymath2023v20.pdf
2. ResearchGate:
https://www.researchgate.net/publication/ 381996155_Sum_of_Consecutive_Terms_of_Pell_and_ Related_Sequences

References

O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The Average Gap Distribution for Generalized Zeckendorf Decompositions, the Fibonacci Quarterly 51 (2013), 13-27. https://arxiv.org/abs/1208.5820.
囯 A. Benjamin, S. Plott and J. Sellers, Tiling Proofs of Recent Sum Identities Involving Pell numbers, Annals of Combinatorics 12 (2008), 271-278.
https://doi.org/10.1007/s00026-008-0350-5.
R B. Bradie, Extensions and Refinements of Some Properties of Sums Involving Pell numbers, Missouri J. Math. Sci. 22 (2010), no. 1, 37-43, https://doi.org/10.35834/mjms/1312232719.
图 R. D. Carmichael, On the Numerical Factors of the Arithmetic Forms $\alpha^{n} \pm \beta^{n}$, Annals of Mathematics 15 (1913-1914), no. 1, 30-48. https://doi.org/10.2307/1967797.
E. Kilic, The generalized Pell (p, i)-numbers and their generalized Binet formulas, combinatorial representations, sums, Chaos, Solitons \& Fractals 40 (2009), no. 4, 2047-2063.
https://doi.org/10.1016/j.chaos.2007.09.081.

:
E. Kilic and D. Tasci, On the generalized Order-k Fibonacci and Lucas Numbers, Rocky Mountain Journal of Mathematics 36 (2006), no. 6, 1915-1926. https://doi.org/10.1216/rmjm/1181069352.

T- T. Koshy, Fibonacci and Lucas Numbers with Applications, 2nd Edition, Johm Wiley \& Sons,Inc., 2017.

R A. D. Kumar and R. Sivaraman, Analysis of Limiting Ratios of Special Sequences, Mathematics and Statistics 10 (2022), no. 4, 825-832, https://doi.org/10.13189/ms.2022.100413.

R C. Levesque, On $m^{\text {th }}$ Order Linear Recurrences, Fibonacci Quarterly 23 (1985), no. 4, 290-293, https://www.fq.math.ca/Scanned/23-4/levesque.pdf.

㵢
E. Downing, E.Hartung and A.Williams, Pattern Avoidance for Fibonacci Sequences using k-Regular Words, arXiv preprint (2023). https://arxiv.org/abs/2312.16052.
D.L Pincus, L.C Washington, On the Field Isomorphism Problem for the Family of Simplest Quartic Fields, arXiv preprint (2024). https://arxiv.org/abs/2406.10414.

