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1) Project Context: Polymath Jr. 2025
2) Biological Background and Motivation

3) Model Formulation: ODE System



https://eeometrynyc.wixsite.com/polymathreu

Polymath Junior Program

e Provide research opportunities to undergraduates.

e Online, runs in the spirit of the Polymath Project.
e Projects run by researcher with experience in undergraduate mentoring.

e Most 15-25 students, a main mentor, grad students / postdocs assisting.


https://geometrynyc.wixsite.com/polymathreu
https://en.wikipedia.org/wiki/Polymath_Project

INTRO to PP models and Holling types and Harvesting

Lotka-Volterra Model: Let x(t) represent the prey population and y(t) represent the
predator population. The model is given by:

& = ax — Bxy,
d
% = 0xy — VY,



INTRO to PP models and Holling types and Harvesting

I _ G F H
ap 1(x) — o F(x)y — Hy(x)

dy
E = — Gz(y) + azF(x)y - HZ(y)

r

(a) Holling Type LI, and IV (b) Holling Type III



A point E* = (z*,y*) is called a fixed point of the dynamical system

&= f(z,y)

J=g(z,y)
if it satisfies f( £*) = g( £*) = 0. E* Is said to be hyperbolic if both of the Jacobian
eigenvalues are non-zero.

Hartman Grobman Theorem: Near a hyperbolic fixed point, the dynamics of a
nonlinear system are topologically conjugate to its linearization.



Bifurcations: qualitative change in the behavior of a system as a parameter is varied.
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A Hopf bifurcation occurs when a fixed point of a dynamical system loses stability as a pair of complex
conjugate eigenvalues crosses the imaginary axis, resulting in the emergence or disappearance of a
periodic orbit of small amplitude.
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Bogdanov Takens Bifurcation:
i=flz,p), =€R% p=(u1,m)

A Bogdanov Takens Bifurcation occurs when the system has an equilibrium point x* such
that the Jacobian Df(z*, 1*) has a double zero eigenvalue:

tr(Pf) =0, det(Df)=0, Df=£0

And Df(z*, 1*) has a single Jordan block (geometric multiplicity = 1). The system can then
be transformed to the normal form:

W= v,
v = B1 + Bou + u? + suw.



Background (Biology)

1800s to mid-1900s: Intense hunting for leather
and meat.

1950s to 1960s: Populations crash; poaching
persists; weak enforcement.

1967: Listed as endangered in the United States.

1973: Endangered Species Act; stronger
enforcement; interstate hide trade curbed.

1970s: States close hunting, protect nests, begin
science-based management.




Background (Biology)

VICELAND

Late 1970s to 1980s: Rebound via
protection, anti-poaching, wetland
conservation.

1987: Delisted federally; managed as
“threatened due to similarity of
appearance.”

Today: Millions across the Southeast,
especially Florida and Louisiana.

FWC lottery permits; two alligators per
permit.




Burmese Pythons

Invasive to the everglades, they were
released by means of

e Intentional releases by owners who
could no longer keep large snakes.

e Accidental escapes from pet stores,
breeders, and private collections.

e Facility damage during Hurricane
Andrew (1992) likely released additional
snakes into the Everglades.




Ecological implications

Sharp declines of midsized
mammals in parts of the Everglades
(raccoons, opossums, marsh
rabbits)

Predation on native birds, reptiles,
and occasional juvenile alligators

Pressure on threatened species that
nest or forage on the ground

Competition with native apex
predators for prey, altering food
webs



Intraguild Predation

Concept of intraguild predation:

Intraguild predation is the killing and
sometimes eating of a potential
competitor of a different species.

This interaction represents a G

combination of predation and
competition.

Typically modeled with 3 equations.

Intraquild Predation

Asymmetric

Symmetric

/7

i@



Model Illustrated:

P, - Racoon/prey population

P., - Juvenile Alligator population

P, - Adult Alligator population

P2- Burmese Python population



Initial Model (4B = f1(Py) — mao fa(Po) Pra— miso f3(Po)Py

) dCZH CQOfZ(PO)P12_ m31f4(P11)P3 == dlpll
dy Pii— doPia— Hy(Pro)

aby
]/;N(PH) = PI? dt
H(P,) = h \dd% = ¢30.f3(F0)Pa + c31fa(Pr1)Py — d3Py — H3(P,)

H3(P3) - 173P3

o
f dd% = TPO — m20P0P12— mggp()_PQ ( % = ’I“PO — szPOPlg— mBOPOPQ
djt” = Coo Py Pria— mg 1 PuuPs — di1 Pyy < dc‘g“ = Co9 Py Pio— m31P11Ps — di1 P
% = d12Pn— daPro— ho chlQ = dyo P11— dy Pio— ho (1,143—1.21312
e = CSOPOPQ + 631P2P11 — d3P2 — h3_P2 \% = C30P0.P2 -+ C31P2P11— d3P2 — h3P2

\ dt



Why constant harvesting doesn’t work

Applying constant harvesting in MATLAB
shows that /1 and P eventually become

negative, which is biologically unrealistic

Po

and highlights why constant harvesting

does not work.

P2

Simulation of 4-ODE system (P2 harvesting: constant)
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Model

Prey

Alligator

Python

Prey % = 1y — Mmoo Pia— m3oFoPy
Juvenile Alligator ddill = CooPyPia— ms1P1P5 — dqi1 Pyq
Adult Alligator ) %;12 = dy9Pj1—P1s P> — hy a,ilj%
Python \dd% = CSOPO-PQ + c31 Py Pi1— d3.P2 — h3P2‘

dFy
dt

d Py
dt

APy
dt

P
=rF (1 — EO) — myo o1 — Mmoo Py P,
hlpl
= ci0P0PA — di Py — — ms1 P P
Ci040L11 1] - mgzi1 1172,

= o0 o P2 + co1 PPy — do Py — hao Ps.



Equilibria: 7 Equilibrium points

e 2 Equilibria on the F, axis

e 2 equilibria on the P, - P, plane suggesting that the prey can
coexist with the alligators

e 2 non zero equilibria where all 3 species coexist.

e 1 equilibria in the P,—P,plane.



Equilibria: Analysis of Straightforward Points

Jacobian
1— 200 — Pimyg — Py —myo Py —Py
J(Po, P1, Pp) = c10P; c1oPop — dy — aflpl + (a’zﬁj)z — mg; Py —mg; Py
Py Py Po+ P, —ds — hs

Equilibria 1

1 0 0

J(Po=0,P=0,P=0)=|0 —d; — & 0
0 0 —dg — hs

1 positive, 2 negative
— Saddle Point

_d1a+h1
a

i
Eigenvalues: ! —dg — hg ]



Equilibria: Analysis of Straightforward Points

Equilibria 2
-1 —mwK —-K —1
JPo=K,Ph=0,P=0)=| 0 Kcpp—d; - 0 Eigenvalues: K—dy—hy
0 0 K—dg—hg KCI(}_dl_h_aI
Two Negative, One Positive
One negative, Two positive Three Negative
di hi
K>d2+h2 C10+GC10<K<d2+h2 K<ﬂ—|—hl
d h €10 acio
K>=24 "L OR
c1o 4e10 K < dy+ hy

do + ho < K < ﬁ%%-—k i

acio



Equilibria: Analysis of Straightforward Points

Equilibria 3

J(Pg = dy + hg, Py = 0, Py = K=ta=ha) —

1-— Z(dgghg) — i?. he —Mjo (dg + hg) —dg — hg ;
b gy i) Eigenvalues:
0 Ci1p0 (d2 + h,g) — d] — TI — # 0
K—dg—hg K_d.?_h.? O
K K

Equilibria 3 first eigenvalue

Z = —A(dg+hg) (K2 + (—ds — he) K — % — 12)

4 4

7 <10 imaginary
—do—1 VA
do 2;?-4_\/_——' Z =1 negative
4 =0

\ \/§>dg+h2
\/?<(12+h2

positive

negative

4 4

[dgh2+\/4(d2+h2)(K2+(d2h2)K12ﬁg)

2K

a5 h
*dgfhfz*\/*4(d2+h2)(K2+(*d2*h2)K*72*72)

2K
((=mg1+cip(dgt+hg)—ds) K+mg;(de+hg))a—hs; K
Ka




Equilibria: Analysis of Straightforward Points

Equilibria 3

Equilibria 3 second eigenvalue

Z = —4(ds+he) (K*+ (—ds —hg) K — 2 —

4

Z <1 imaginary
_d2 _2};%_\/2 — Z =0 ———+ negative
Z >0 negative

ha

4

)

Eigenvalues:

—d2—h2+\/—4(d2+h2)(K2+(—d2—h2)K—Ef—hf

)

7d27h27\/74(dg+h2)(K2+(7d27h2)K7{727%

)

2K
U—mssFcipldetheg)—ds )R F+mgr(dgFhe))a—hi K

Ka



2 equilibria on the P, - P,

When the two equilibria collide and merge, a saddle-node bifurcation occurs.
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By introducing additional parameters, this bifurcation can give rise to a Bogdanov—Takens bifurcation.

In other words, a saddle-node bifurcation takes place initially, and under further parameter constraints, the new
equilibrium point exhibits two zero eigenvalues.



Steps followed:

. Shift the equilibrium: Find the equilibrium P* = (F5, P, ;) and shift variables:

— J )* n — P )* P e 2 ¥
u=F—-F, v=P—-FP, w=PFP-PF,

so that the system becomes z = F'(z) with £/(0) = 0.

. Linearize and identify eigen-directions: Compute the Jacobian .J = DIF'(0). At the

BT point: spee(J) = {0,0, A} with Ay < 0. The eigenvectors corresponding to zero
eigenvalues define the center subspace.

. Center manifold reduction (3D — 2D): There exists a smooth invariant manifold

w = h(u,v) with h(0) = 0, Dh(0) = 0. Substituting w = h(u, v) reduces the system
to:

a = Fy(u,v), = Fu,v)

. Reduced dynamics: Expand 17‘1 : 17’2 in a Taylor series near the origin and retain quadratic

terms:
2=v+02), v=au’+buv+---

. Transform to BT normal form: Apply smooth coordinate and parameter changes to

obtain:

=y, 9=P5 +Bx+az’+bry+ O(3)




What happens at the remaining equilibria?
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Future Steps and Ultimate Goal

e The system exhibits even higher-codimension bifurcations, including
codimension-3 phenomena.

e The existence of an equilibrium indicating that prey and pythons can coexist
without the presence of alligators is concerning, as it may lead to the
extinction of the alligator population.

e As a next step, we aim to fit real data from Florida wildlife to the model to
validate and refine our theoretical predictions.



Thank you!



