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Introduction to the Pythagorean Won–Loss Theorem
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Goals of the Talk

Give derivation Pythagorean Won–Loss formula.

Observe ideas / techniques of modeling.

See how advanced theory enters in simple problems.

Opportunities from inefficiencies.

Xtra: further avenues for research for students.

3



Intro Prob & Modeling Analysis of ’04 Head-to-Head Refs Pythag Thm Appendices

Goals of the Talk

Give derivation Pythagorean Won–Loss formula.

Observe ideas / techniques of modeling.

See how advanced theory enters in simple problems.

Opportunities from inefficiencies.

Xtra: further avenues for research for students.

GO SOX!
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Statistics

Goal is to find good statistics to describe real world.
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Statistics

Goal is to find good statistics to describe real world.

Figure: Mass Ave Bridge, about 620.1 meters.
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Statistics

Goal is to find good statistics to describe real world.

Figure: Harvard Bridge, 364.1 Smoots (± one ear).
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Numerical Observation: Pythagorean Won–Loss Formula

Parameters
RSobs: average number of runs scored per game;
RAobs: average number of runs allowed per game;
γ: some parameter, constant for a sport.
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Numerical Observation: Pythagorean Won–Loss Formula

Parameters
RSobs: average number of runs scored per game;
RAobs: average number of runs allowed per game;
γ: some parameter, constant for a sport.

James’ Won–Loss Formula (NUMERICAL
Observation)

Won − Loss Percentage =
#Wins
#Games

=
RSγ

obs

RSγ
obs + RAγ

obs

γ originally taken as 2, numerical studies show best γ for
baseball is about 1.82.
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Pythagorean Won–Loss Formula: Example

James’ Won–Loss Formula

Won − Loss Percentage =
#Wins
#Games

=
RSγ

obs

RSγ
obs + RAγ

obs

Example (γ = 1.82): In 2009 the Red Sox were 95–67.
They scored 872 runs and allowed 736, for a Pythagorean
prediction record of 93.4 wins and 68.6 losses; the
Yankees were 103–59 but predicted to be 95.2–66.8 (they
scored 915 runs and allowed 753).

2011: Red Sox ‘should’ be 95-67, Tampa ‘should’ be
92-70....
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Applications of the Pythagorean Won–Loss Formula

Extrapolation: use half-way through season to predict
a team’s performance for rest of season.

Evaluation: see if consistently over-perform or
under-perform.

Advantage: Other statistics / formulas (run-differential
per game); this is easy to use, depends only on two
simple numbers for a team.

Red Sox: 2004 Predictions: May 1: 99 wins; June 1: 93
wins; July 1: 90 wins; August 1: 92 wins.
Finished season with 98 wins.

11



Intro Prob & Modeling Analysis of ’04 Head-to-Head Refs Pythag Thm Appendices

Probability and Modeling
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Modeling the Real World

Guidelines for Modeling:
Model should capture key features of the system;
Model should be mathematically tractable (solvable).
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Modeling the Real World (cont)

Possible Model:
Runs Scored and Runs Allowed independent random
variables;
fRS(x), gRA(y): probability density functions for runs
scored (allowed).

Won–Loss formula follows from computing

∫ ∞

x=0

[∫
y≤x

fRS(x)gRA(y)dy
]

dx or
∞∑

i=0

∑
j<i

fRS(i)gRA(j)

 .
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Problems with the Model

Reduced to calculating

∫ ∞

x=0

[∫
y≤x

fRS(x)gRA(y)dy
]

dx or
∞∑

i=0

∑
j<i

fRS(i)gRA(j)

 .

Problems with the model:
What are explicit formulas for fRS and gRA?
Are the runs scored and allowed independent random
variables?
Can the integral (or sum) be computed in closed
form?
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Three Parameter Weibull

Weibull distribution:

f (x ;α, β, γ) =

{
γ
α

( x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

α: scale (variance: meters versus centimeters);
β: origin (mean: translation, zero point);
γ: shape (behavior near β and at infinity).

Various values give different shapes, but can we find
α, β, γ such that it fits observed data? Is the Weibull
justifiable by some reasonable hypotheses?
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Weibull Plots: Parameters (α, β, γ):

f (x ;α, β, γ) =

 γ
α

(
x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.
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Red:(1, 0, 1) (exponential); Green:(1, 0, 2); Cyan:(1, 2, 2);
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Three Parameter Weibull: Applications

f (x ;α, β, γ) =

{
γ
α

( x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

Arises in many places, such as survival analysis.
γ < 1: high infant mortality;
γ = 1: constant failure rate;
γ > 1: aging process.
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Analysis of 2004
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Boston Red Sox
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Using as bins [−.5, .5] ∪ [.5,1.5] ∪ · · · ∪ [7.5,8.5]
∪ [8.5,9.5] ∪ [9.5,11.5] ∪ [11.5,∞).
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Best Fit Weibulls to Data: Method of Least Squares

Bin(k) is the k th bin;
RSobs(k) (resp. RAobs(k)) the observed number of
games with the number of runs scored (allowed) in
Bin(k);
A(α, γ, k) the area under the Weibull with parameters
(α,−1/2, γ) in Bin(k).

Find the values of (αRS, αRA, γ) that minimize

#Bins∑
k=1

(RSobs(k)−#Games · A(αRS, γ, k))
2

+

#Bins∑
k=1

(RAobs(k)−#Games · A(αRA, γ, k))
2 .
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Boston Red Sox
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the New York Yankees
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∪ [8.5,9.5] ∪ [9.5,11.5] ∪ [11.5,∞).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Baltimore Orioles
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Tampa Bay Devil Rays
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Toronto Blue Jays

5 10 15 20

5

10

15

20

25

 5 10 15 20

5

10

15

20

25

Using as bins [−.5, .5] ∪ [.5,1.5] ∪ · · · ∪ [7.5,8.5]
∪ [8.5,9.5] ∪ [9.5,11.5] ∪ [11.5,∞).
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Head-to-Head
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Issues with Pythagorean Head-to-Head

Does not ensure league averages to 500.

In 2025 predicts teams win on average 81.30 and lose
80.70 games.

In a 7 game series predicts Blue Jays win 3.82 out of 7,
Dodgers win 4.10.

Issue: Does not take into account data from both teams.
How to fix?
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New Application: Head-to-Head

James Log-5 Method estimates the probability A beats B
if A wins p and B wins q percent of the time:

p − pq
p + q − 2pq

=
p(1 − q)

p(1 − q) + (1 − p)q
.

How to generalize with Pythagorean formula?

Joint with: Jake Jeffries, Cam Miller, James Murray,
Sasha Palma and Nick Skiera.
Preprint: https://web.williams.edu/
Mathematics/sjmiller/public_html/math/
papers/PythagBothTeams10.pdf.
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New Application: Head-to-Head
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New Application: Head-to-Head (cont)

Adjust Pythagorean Formula, use both teams:
home team RSh,RAh,
away team RSa,RAa,
league average runs scored per game is R,

adjusted home numbers:
RSh,adj = RSh(RAa/R),
RAh,adj = RAh(RSa/R):

Prob(Home Team Wins)

=
RSγ

h,adj

RSγ
h,adj + RAγ

h,adj
=

(RShRAa)
γ

(RShRAa)γ + (RAhRSa)γ
.
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New Application: Head-to-Head (cont)

Adjust Pythagorean Formula, use both teams:
home team RSh,RAh,
away team RSa,RAa,
league average runs scored per game is R,
adjusted home numbers:
RSh,adj = RSh(RAa/R),
RAh,adj = RAh(RSa/R):

Prob(Home Team Wins)

=
RSγ

h,adj

RSγ
h,adj + RAγ

h,adj
=

(RShRAa)
γ

(RShRAa)γ + (RAhRSa)γ
.
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New Application: Head-to-Head (cont)

Adjust Pythagorean Formula, use both teams:
home team RSh,RAh,
away team RSa,RAa,
league average runs scored per game is R,
adjusted home numbers:
RSh,adj = RSh(RAa/R),
RAh,adj = RAh(RSa/R):

Prob(Home Team Wins)

=
RSγ

h,adj

RSγ
h,adj + RAγ

h,adj
=

(RShRAa)
γ

(RShRAa)γ + (RAhRSa)γ
.
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New Application: Head-to-Head: Data

Looked at playoffs from 2001 – 2019.

Compared observed series won by home team to
predicted (if predict home team wins with probability .72,
count that as .72 of a win for home and .28 of a win for
away).

Log-5: home wins 83.19 and loses 65.81.
Observed: home wins 80.00 and loses 69.00.

Predicted: home wins 80.18 and loses 68.82!
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New Application: Head-to-Head: Data

Looked at playoffs from 2001 – 2019.

Compared observed series won by home team to
predicted (if predict home team wins with probability .72,
count that as .72 of a win for home and .28 of a win for
away).

Log-5: home wins 83.19 and loses 65.81.
Observed: home wins 80.00 and loses 69.00.

Predicted: home wins 80.18 and loses 68.82!
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New Application: Head-to-Head: Exponent

New adjusted numbers: What exponent b is best?
RSh,adj = RSh(RAa/R)b.
RAh,adj = RAh(RSa/R)b.
b = 0 no adjustment; none if league average.
b → ∞: tremendous impact to small changes.

If symmetric (so average to .500) only possibility is b = 1.
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Head-to-Head: Exponent II (from paper)
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2025 World Series: Dodgers vs Rays

Predicts 46% chance of Toronto winning.
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Conclusions

Find parameters such that Weibulls are good fits;

Runs scored and allowed per game are statistically
independent;

Pythagorean Won–Loss Formula is a consequence of
our model;

Best γ (both close to observed best 1.82):
⋄ Method of Least Squares: 1.79;
⋄ Method of Maximum Likelihood: 1.74.

Adjusted Pythagorean formula for head-to-head
match-ups.
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Smoots

Sieze opportunities: Never know where they will lead.

Oliver Smoot: Chairman of the American National
Standards Institute (ANSI) from 2001 to 2002, President
of the International Organization for Standardization (ISO)
from 2003 to 2004.
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Some References
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The Pythagorean Theorem
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The Gamma Distribution and Weibulls

For s > 0, define the Γ-function by

Γ(s) =

∫ ∞

0
e−uus−1du =

∫ ∞

0
e−uus du

u
.

Generalizes factorial function: Γ(n) = (n − 1)! for
n ≥ 1 an integer.

A Weibull distribution with parameters α, β, γ has:
Mean: αΓ (1 + 1/γ) + β.
Variance: α2Γ (1 + 2/γ)− α2Γ (1 + 1/γ)2.
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x · γ
α

(
x − β

α

)γ−1

e−((x−β)/α)γdx

=

∫ ∞

β

α
x − β

α
· γ
α

(
x − β

α

)γ−1

e−((x−β)/α)γdx + β.

Change variables: u =
( x−β

α

)γ
, so du = γ

α

( x−β
α

)γ−1
dx and

µα,β,γ =

∫ ∞

0
αu1/γ · e−udu + β

= α

∫ ∞

0
e−u u1+1/γ du

u
+ β

= αΓ(1 + 1/γ) + β.

A similar calculation determines the variance.
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Pythagorean Won–Loss Formula: RSγ
obs

RSγ
obs+RAγ

obs

Theorem: Pythagorean Won–Loss Formula (Miller ’06)
Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (αRS, β, γ) and (αRA, β, γ); αRS and αRA are
chosen so that the Weibull means are the observed
sample values RS and RA. If γ > 0 then the Won–Loss
Percentage is (RS−β)γ

(RS−β)γ+(RA−β)γ
.

Take β = −1/2 (since runs must be integers).
RS − β estimates average runs scored, RA − β estimates
average runs allowed.
Weibull with parameters (α, β, γ) has mean
αΓ (1 + 1/γ) + β.
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Pythagorean Won–Loss Formula: RSγ
obs

RSγ
obs+RAγ

obs
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chosen so that the Weibull means are the observed
sample values RS and RA. If γ > 0 then the Won–Loss
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.

Take β = −1/2 (since runs must be integers).
RS − β estimates average runs scored, RA − β estimates
average runs allowed.
Weibull with parameters (α, β, γ) has mean
αΓ (1 + 1/γ) + β.
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Proof of the Pythagorean Won–Loss Formula

Let X and Y be independent random variables with Weibull
distributions (αRS, β, γ) and (αRA, β, γ) respectively. To have means of
RS − β and RA − β our calculations for the means imply

αRS =
RS − β

Γ(1 + 1/γ)
, αRA =

RA − β

Γ(1 + 1/γ)
.

We need only calculate the probability that X exceeds Y . We use the
integral of a probability density is 1.
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Proof of the Pythagorean Won–Loss Formula (cont)

Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β

f (x ;αRS, β, γ)f (y ;αRA, β, γ)dy dx

=

∫ ∞

β

∫ x

β

γ

αRS

(
x − β

αRS

)γ−1

e−
(

x−β
αRS

)γ γ

αRA

(
y − β

αRA

)γ−1

e−
(

y−β
αRA

)γ

dydx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−
(

x
αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e−
(

y
αRA

)γ

dy

]
dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)
γ
[
1 − e−(x/αRA)

γ
]

dx

= 1 −
∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/α)γ dx ,

where we have set
1
αγ

=
1
αγ

RS
+

1
αγ

RA
=

αγ
RS + αγ

RA

αγ
RSα

γ
RA

.
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Proof of the Pythagorean Won–Loss Formula (cont)

Prob(X > Y ) = 1 − αγ

αγ
RS

∫ ∞

0

γ

α

(x
α

)γ−1
e(x/α)γ dx

= 1 − αγ

αγ
RS

= 1 − 1
αγ

RS

αγ
RSα

γ
RA

αγ
RS + αγ

RA

=
αγ

RS

αγ
RS + αγ

RA
.

We substitute the relations for αRS and αRA and find that

Prob(X > Y ) =
(RS − β)γ

(RS − β)γ + (RA − β)γ
.

Note RS − β estimates RSobs, RA − β estimates RAobs.
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Proof of the Pythagorean Won–Loss Formula (cont)

Prob(X > Y ) = 1 − αγ

αγ
RS

∫ ∞

0

γ

α

(x
α

)γ−1
e(x/α)γ dx

= 1 − αγ

αγ
RS

= 1 − 1
αγ

RS

αγ
RSα

γ
RA

αγ
RS + αγ

RA

=
αγ

RS

αγ
RS + αγ

RA
.

We substitute the relations for αRS and αRA and find that

Prob(X > Y ) =
(RS − β)γ

(RS − β)γ + (RA − β)γ
.

Note RS − β estimates RSobs, RA − β estimates RAobs.
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Appendices
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Appendix I: Proof of the Pythagorean Won–Loss Formula

Let X and Y be independent random variables with Weibull
distributions (αRS, β, γ) and (αRA, β, γ) respectively. To have means of
RS − β and RA − β our calculations for the means imply

αRS =
RS − β

Γ(1 + 1/γ)
, αRA =

RA − β

Γ(1 + 1/γ)
.

We need only calculate the probability that X exceeds Y . We use the
integral of a probability density is 1.
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Appendix I: Proof of the Pythagorean Won–Loss Formula (cont)

Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β

f (x ;αRS, β, γ)f (y ;αRA, β, γ)dy dx

=

∫ ∞

β

∫ x

β

γ

αRS

(
x − β

αRS

)γ−1

e−
(

x−β
αRS

)γ γ

αRA

(
y − β

αRA

)γ−1

e−
(

y−β
αRA

)γ

dydx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−
(

x
αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e−
(

y
αRA

)γ

dy

]
dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)
γ
[
1 − e−(x/αRA)

γ
]

dx

= 1 −
∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/α)γ dx ,

where we have set
1
αγ

=
1
αγ

RS
+

1
αγ

RA
=

αγ
RS + αγ

RA

αγ
RSα

γ
RA

.
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Appendix I: Proof of the Pythagorean Won–Loss Formula (cont)

Prob(X > Y ) = 1 − αγ

αγ
RS

∫ ∞

0

γ

α

(x
α

)γ−1
e(x/α)γ dx

= 1 − αγ

αγ
RS

= 1 − 1
αγ

RS

αγ
RSα

γ
RA

αγ
RS + αγ

RA

=
αγ

RS

αγ
RS + αγ

RA
.

We substitute the relations for αRS and αRA and find that

Prob(X > Y ) =
(RS − β)γ

(RS − β)γ + (RA − β)γ
.

Note RS − β estimates RSobs, RA − β estimates RAobs.
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Appendix II: Best Fit Weibulls and Structural Zeros

The fits look good, but are they? Do χ2-tests:
Let Bin(k) denote the k th bin.
Or ,c: the observed number of games where the
team’s runs scored is in Bin(r) and the runs allowed
are in Bin(c).

Er ,c =
∑

c′ Or,c′ ·
∑

r ′ Or ′,c
#Games is the expected frequency of cell

(r , c).
Then

#Rows∑
r=1

#Columns∑
c=1

(Or ,c − Er ,c)
2

Er ,c

is a χ2 distribution with (#Rows − 1)(#Columns − 1)
degrees of freedom.
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Appendix II: Best Fit Weibulls and Structural Zeros (cont)

For independence of runs scored and allowed, use bins

[0, 1) ∪ [1, 2) ∪ [2, 3) ∪ · · · ∪ [8, 9) ∪ [9, 10) ∪ [10, 11) ∪ [11,∞).

Have an r × c contingency table (with r = c = 12); however, there are structural zeros (runs scored and allowed
per game can never be equal).
(Essentially) Or,r = 0 for all r . We use the iterative fitting procedure to obtain maximum likelihood estimators for the
Er,c , the expected frequency of cell (r, c) under the assumption that, given that the runs scored and allowed are
distinct, the runs scored and allowed are independent.

For 1 ≤ r, c ≤ 12, let E(0)
r,c = 1 if r ̸= c and 0 if r = c. Set

Xr,+ =
12∑

c=1

Or,c , X+,c =
12∑

r=1

Or,c .

Then

E(ℓ)
r,c =


E(ℓ−1)

r,c Xr,+ /
∑12

c=1 E(ℓ−1)
r,c if ℓ is odd

E(ℓ−1)
r,c X+,c /

∑12
r=1 E(ℓ−1)

r,c if ℓ is even,

and
Er,c = lim

ℓ→∞
E(ℓ)

r,c ;

the iterations converge very quickly. (If we had a complete two-dimensional contingency table, then the iteration
reduces to the standard values, namely Er,c =

∑
c′ Or,c′ ·

∑
r′ Or′,c / #Games.). Note

12∑
r=1

12∑
c=1
c ̸=r

(Or,c − Er,c )
2

Er,c

is approximately a χ2 distribution with (12 − 1)2 − 12 = 109 degrees of freedom. The corresponding critical
thresholds are 134.4 (at the 95% level) and 146.3 (at the 99% level).
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Appendix III: The Log-5 Method

Assume team A wins p percent of their games, and team
B wins q percent of their games. Which formula do you
think does a good job of predicting the probability that
team A beats team B? Why?

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq
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Estimating Winning Percentages

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq
,

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq

How can we test these candidates?

Can you think of answers for special choices of p and q?
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Estimating Winning Percentages

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq
,

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq

Homework: explore the following:
⋄ p = 1, q < 1 (do not want the battle of the undefeated).

⋄ p = 0, q > 0 (do not want the Toilet Bowl).

⋄ p = q.

⋄ p > q (can do q < 1/2 and q > 1/2).

⋄ Anything else where you ‘know’ the answer?
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Estimating Winning Percentages

p + pq
p + q + 2pq

,
p + pq

p + q − 2pq
,

p − pq
p + q + 2pq

,
p − pq

p + q − 2pq
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Estimating Winning Percentages

p − pq
p + q − 2pq

=
p(1 − q)

p(1 − q) + (1 − p)q

Homework: explore the following:
⋄ p = 1, q < 1 (do not want the battle of the undefeated).

⋄ p = 0, q > 0 (do not want the Toilet Bowl).

⋄ p = q.

⋄ p > q (can do q < 1/2 and q > 1/2).

⋄ Anything else where you ‘know’ the answer?
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Estimating Winning Percentages: ‘Proof’

Figure: First see how A does, then B.64
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Estimating Winning Percentages: ‘Proof’

Figure: Two possibilities: A has a good day, or A doesn’t.
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Estimating Winning Percentages: ‘Proof’

Figure: B has a good day, or doesn’t.
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Estimating Winning Percentages: ‘Proof’

Figure: Two paths terminate, two start again.
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Estimating Winning Percentages: ‘Proof’

Figure: Probability A beats B.68
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Appendix IV: Best Fit Weibulls from Method of Maximum
Likelihood

The likelihood function depends on: αRS, αRA, β = −.5, γ.
Let A(α,−.5, γ, k) denote the area in Bin(k) of the Weibull with
parameters α,−.5, γ. The sample likelihood function
L(αRS, αRA,−.5, γ) is(

#Games
RSobs(1), . . . ,RSobs(#Bins)

)#Bins∏
k=1

A(αRS,−.5, γ, k)RSobs(k)

·
(

#Games
RAobs(1), . . . ,RAobs(#Bins)

)#Bins∏
k=1

A(αRA,−.5, γ, k)RAobs(k).

For each team we find the values of the parameters αRS, αRA and γ
that maximize the likelihood. Computationally, it is equivalent to
maximize the logarithm of the likelihood, and we may ignore the
multinomial coefficients are they are independent of the parameters.
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