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Goals of the Talk

Derive James’ Pythagorean Won-Loss formula from a
reasonable model.

3



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Goals of the Talk

Derive James’ Pythagorean Won-Loss formula from a
reasonable model.

Introduce some of the techniques of modeling.

4



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Goals of the Talk

Derive James’ Pythagorean Won-Loss formula from a
reasonable model.

Introduce some of the techniques of modeling.

Discuss the mathematics behind the models and
model testing.

5



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Goals of the Talk

Derive James’ Pythagorean Won-Loss formula from a
reasonable model.

Introduce some of the techniques of modeling.

Discuss the mathematics behind the models and
model testing.

Show how advanced theory enters in simple
problems.

6



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Goals of the Talk

Derive James’ Pythagorean Won-Loss formula from a
reasonable model.

Introduce some of the techniques of modeling.

Discuss the mathematics behind the models and
model testing.

Show how advanced theory enters in simple
problems.

Further avenues for research for students.

7



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Numerical Observation: Pythagorean Won-Loss Formula

Parameters
RSobs: average number of runs scored per game;
RAobs: average number of runs allowed per game;
γ: some parameter, constant for a sport.
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Numerical Observation: Pythagorean Won-Loss Formula

Parameters
RSobs: average number of runs scored per game;
RAobs: average number of runs allowed per game;
γ: some parameter, constant for a sport.

James’ Won-Loss Formula (NUMERICAL Observation)

Won − Loss Percentage =
RSobs

γ

RSobs
γ + RAobs

γ

γ originally taken as 2, numerical studies show best γ is
about 1.82.
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Applications of the Pythagorean Won-Loss Formula

Extrapolation: use half-way through season to predict
a team’s performance.

Evaluation: see if consistently over-perform or
under-perform.

Advantage: Other statistics / formulas (run-differential
per game); this is easy to use, depends only on two
simple numbers for a team.
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Probability Review

Probability density:
� p(x) ≥ 0;
�
∫∞

−∞
p(x)dx = 1;

� X random variable with density p(x):
Prob (X ∈ [a, b]) =

∫ b
a p(x)dx .
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� p(x) ≥ 0;
�
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−∞
p(x)dx = 1;

� X random variable with density p(x):
Prob (X ∈ [a, b]) =

∫ b
a p(x)dx .

Mean µ =
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−∞
xp(x)dx .
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∫∞
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(x − µ)2p(x)dx .
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Probability Review

Probability density:
� p(x) ≥ 0;
�
∫∞

−∞
p(x)dx = 1;

� X random variable with density p(x):
Prob (X ∈ [a, b]) =

∫ b
a p(x)dx .

Mean µ =
∫∞

−∞
xp(x)dx .

Variance σ2 =
∫∞

−∞
(x − µ)2p(x)dx .

Independence: two random variables are
independent if knowledge of one does not give
knowledge of the other.

14



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Modeling the Real World

Guidelines for Modeling:
Model should capture key features of the system;
Model should be mathematically tractable (solvable).
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Modeling the Real World

Guidelines for Modeling:
Model should capture key features of the system;
Model should be mathematically tractable (solvable).

In general these are conflicting goals.

How should we try and model baseball games?
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Modeling the Real World (cont)

Possible Model:
Runs Scored and Runs Allowed independent random
variables;
fRS(x), gRA(y): probability density functions for runs
scored (allowed).
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Modeling the Real World (cont)

Possible Model:
Runs Scored and Runs Allowed independent random
variables;
fRS(x), gRA(y): probability density functions for runs
scored (allowed).

Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .
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Problems with the Model

Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .
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Problems with the Model

Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .

Problems with the model:
Can the integral (or sum) be completed in closed
form?
Are the runs scored and allowed independent random
variables?
What are fRS and gRA?
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Choices for fRS and gRA

2 4 6 8 10

0.05

0.10

0.15

0.20

Uniform Distribution on [0, 10].
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Choices for fRS and gRA

5 10

0.05

0.10

0.15

0.20

Normal Distribution: mean 4, standard deviation 2.
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Choices for fRS and gRA

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Exponential Distribution: e−x .
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Three Parameter Weibull

Weibull distribution:

f (x ; α, β, γ) =

{
γ
α

(x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

α: scale (variance: meters versus centimeters);
β: origin (mean: translation, zero point);
γ: shape (behavior near β and at infinity).

Various values give different shapes, but can we find
α, β, γ such that it fits observed data? Is the Weibull
theoretically tractable?
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Weibull Plots: Parameters (α, β, γ)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

Red:(1, 0, 1) (exponential); Green:(1, 0, 2); Cyan:(1, 2, 2);
Blue:(1, 2, 4)
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Gamma Distribution

For s ∈ C with the real part of s greater than 0, define
the Γ-function:

Γ(s) =

∫ ∞

0
e−uus−1du =

∫ ∞

0
e−uus du

u
.

Generalizes factorial function: Γ(n) = (n − 1)! for
n ≥ 1 an integer.
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x ·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x ·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx

=

∫ ∞

β

α
x − β

α
·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx + β.
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x ·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx

=

∫ ∞

β

α
x − β

α
·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx + β.

Change variables: u =
( x−β

α

)γ
.

Then du = γ
α

(x−β
α

)γ−1
dx
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x ·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx

=

∫ ∞

β

α
x − β

α
·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx + β.

Change variables: u =
( x−β

α

)γ
.

Then du = γ
α

(x−β
α

)γ−1
dx and

µα,β,γ =

∫ ∞

0
αuγ−1

· e−udu + β
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x ·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx

=

∫ ∞

β

α
x − β

α
·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx + β.

Change variables: u =
( x−β

α

)γ
.

Then du = γ
α

(x−β
α

)γ−1
dx and

µα,β,γ =

∫ ∞

0
αuγ−1

· e−udu + β

= α

∫ ∞

0
e−u u1+γ−1 du

u
+ β
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Weibull Integrations

µα,β,γ =

∫ ∞

β

x ·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx

=

∫ ∞

β

α
x − β

α
·
γ

α

(
x − β

α

)γ−1

e−((x−β)/α)γ

dx + β.

Change variables: u =
( x−β

α

)γ
.

Then du = γ
α

(x−β
α

)γ−1
dx and

µα,β,γ =

∫ ∞

0
αuγ−1

· e−udu + β

= α

∫ ∞

0
e−u u1+γ−1 du

u
+ β

= αΓ(1 + γ−1) + β.

A similar calculation determines the variance.
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Pythagorean Won-Loss Formula

Theorem (Pythagorean Won-Loss Formula)
Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (αRS, β, γ) and (αRA, β, γ); αRS and αRA are
chosen so that the means are RS and RA. If γ > 0 then

Won-Loss Percentage(RS, RA, β, γ) =
(RS − β)γ

(RS − β)γ + (RA − β)γ
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Pythagorean Won-Loss Formula

Theorem (Pythagorean Won-Loss Formula)
Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (αRS, β, γ) and (αRA, β, γ); αRS and αRA are
chosen so that the means are RS and RA. If γ > 0 then

Won-Loss Percentage(RS, RA, β, γ) =
(RS − β)γ

(RS − β)γ + (RA − β)γ

In baseball take β = −1/2 (from runs must be integers).
RS − β estimates average runs scored, RA − β estimates
average runs allowed.
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Best Fit Weibulls to Data: Method of Least Squares

Bin(k) is the k th bin;
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Best Fit Weibulls to Data: Method of Least Squares

Bin(k) is the k th bin;
RSobs(k) (resp. RAobs(k)) the observed number of
games with the number of runs scored (allowed) in
Bin(k);
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Best Fit Weibulls to Data: Method of Least Squares

Bin(k) is the k th bin;
RSobs(k) (resp. RAobs(k)) the observed number of
games with the number of runs scored (allowed) in
Bin(k);
A(α, β, γ, k) the area under the Weibull with
parameters (α, β, γ) in Bin(k).
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Best Fit Weibulls to Data: Method of Least Squares

Bin(k) is the k th bin;
RSobs(k) (resp. RAobs(k)) the observed number of
games with the number of runs scored (allowed) in
Bin(k);
A(α, β, γ, k) the area under the Weibull with
parameters (α, β, γ) in Bin(k).

Find the values of (αRS, αRA, γ) that minimize

#Bins∑

k=1

(RSobs(k) − #Games · A(αRS,−1/2, γ, k))2

+

#Bins∑

k=1

(RAobs(k) − #Games · A(αRA,−1/2, γ, k))2 .
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Boston Red Sox

5 10 15 20

5
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15

20

25

5 10 15 20

5

10

15

20

Using as bins [−.5, .5] ∪ [.5, 1.5] ∪ · · · ∪ [7.5, 8.5]
∪ [8.5, 9.5] ∪ [9.5, 11.5] ∪ [11.5,∞).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the New York Yankees
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Using as bins [−.5, .5] ∪ [.5, 1.5] ∪ · · · ∪ [7.5, 8.5]
∪ [8.5, 9.5] ∪ [9.5, 11.5] ∪ [11.5,∞).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Baltimore Orioles
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∪ [8.5, 9.5] ∪ [9.5, 11.5] ∪ [11.5,∞).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Tampa Bay Devil Rays
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Toronto Blue Jays
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∪ [8.5, 9.5] ∪ [9.5, 11.5] ∪ [11.5,∞).
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Data Analysis: χ2-Tests

χ2-Tests: Test if theory describes data
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Data Analysis: χ2-Tests

χ2-Tests: Test if theory describes data

� Expected probability in bin i : pi .
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Data Analysis: χ2-Tests

χ2-Tests: Test if theory describes data

� Expected probability in bin i : pi .

� Expect about Npi will be in bin i .
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Data Analysis: χ2-Tests

χ2-Tests: Test if theory describes data

� Expected probability in bin i : pi .

� Expect about Npi will be in bin i .

� Observe Obs(i) in bin i .
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Data Analysis: χ2-Tests

χ2-Tests: Test if theory describes data

� Expected probability in bin i : pi .

� Expect about Npi will be in bin i .

� Observe Obs(i) in bin i .

� χ2 =
∑

i
(Obs(i)−Npi)

2

Npi
.
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Data Analysis: χ2-Tests

χ2-Tests: Test if theory describes data

� Expected probability in bin i : pi .

� Expect about Npi will be in bin i .

� Observe Obs(i) in bin i .

� χ2 =
∑

i
(Obs(i)−Npi)

2

Npi
.

� Smaller χ2, more likely correct model.
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
About 95% have 499, 000 ≤ #Heads ≤ 501, 000.
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
About 95% have 499, 000 ≤ #Heads ≤ 501, 000.

Consider N independent experiments of flipping a fair
coin 1,000,000 times. What is the probability that at least
one of set doesn’t have 499, 000 ≤ #Heads ≤ 501, 000?

N Probability
5 22.62

14 51.23
50 92.31

See unlikely events happen as N increases!
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Data Analysis: χ2 Tests

Team RS+RA Χ2: 20 d.f. Indep Χ2: 109 d.f
Boston Red Sox 15.63 83.19
New York Yankees 12.60 129.13

Baltimore Orioles 29.11 116.88
Tampa Bay Devil Rays 13.67 111.08
Toronto Blue Jays 41.18 100.11

Minnesota Twins 17.46 97.93
Chicago White Sox 22.51 153.07
Cleveland Indians 17.88 107.14
Detroit Tigers 12.50 131.27
Kansas City Royals 28.18 111.45
Los Angeles Angels 23.19 125.13

Oakland Athletics 30.22 133.72
Texas Rangers 16.57 111.96

Seattle Mariners 21.57 141.00

20 d.f.: 31.41 (at the 95% level) and 37.57 (at the 99% level).
109 d.f.: 134.4 (at the 95% level) and 146.3 (at the 99% level).
Bonferroni Adjustment:
20 d.f.: 41.14 (at the 95% level) and 46.38 (at the 99% level).

109 d.f.: 152.9 (at the 95% level) and 162.2 (at the 99% level).
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Data Analysis: Structural Zeros

For independence of runs scored and allowed, use
bins [0, 1) ∪ [1, 2) ∪ [2, 3) ∪ · · · ∪ [8, 9) ∪ [9, 10)
∪ [10, 11) ∪ [11,∞).

Have an r × c contingency table with structural zeros
(runs scored and allowed per game are never equal).

(Essentially) Or ,r = 0 for all r , use an iterative fitting
procedure to obtain maximum likelihood estimators
for Er ,c (expected frequency of cell (r , c) assuming
that, given runs scored and allowed are distinct, the
runs scored and allowed are independent).
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Testing the Model: Data from Method of Maximum Likelihood

Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff Γ
Boston Red Sox 98 93.0 0.605 0.574 5.03 1.82
New York Yankees 101 87.5 0.623 0.540 13.49 1.78

Baltimore Orioles 78 83.1 0.481 0.513 -5.08 1.66
Tampa Bay Devil Rays 70 69.6 0.435 0.432 0.38 1.83
Toronto Blue Jays 67 74.6 0.416 0.464 -7.65 1.97

Minnesota Twins 92 84.7 0.568 0.523 7.31 1.79
Chicago White Sox 83 85.3 0.512 0.527 -2.33 1.73
Cleveland Indians 80 80.0 0.494 0.494 0. 1.79
Detroit Tigers 72 80.0 0.444 0.494 -8.02 1.78
Kansas City Royals 58 68.7 0.358 0.424 -10.65 1.76
Los Angeles Angels 92 87.5 0.568 0.540 4.53 1.71

Oakland Athletics 91 84.0 0.562 0.519 6.99 1.76
Texas Rangers 89 87.3 0.549 0.539 1.71 1.90

Seattle Mariners 63 70.7 0.389 0.436 -7.66 1.78

γ: mean = 1.74, standard deviation = .06, median = 1.76;
close to numerically observed value of 1.82.
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Conclusions

Find parameters such that Weibulls are good fits;
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Conclusions

Find parameters such that Weibulls are good fits;

Runs scored and allowed per game are statistically
independent;
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Conclusions

Find parameters such that Weibulls are good fits;

Runs scored and allowed per game are statistically
independent;

Pythagorean Won-Loss Formula is a consequence of
our model;
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Conclusions

Find parameters such that Weibulls are good fits;

Runs scored and allowed per game are statistically
independent;

Pythagorean Won-Loss Formula is a consequence of
our model;

Best γ (both close to observed best 1.82):
� Method of Least Squares: 1.79;
� Method of Maximum Likelihood: 1.74.
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Future Work

Micro-analysis: runs scored and allowed are not
entirely independent (big lead, close game), run
production smaller for inter-league games in NL
parks, et cetera.

Other sports: Does the same model work? How does
γ depend on the sport?

Closed forms: Are there other probability distributions
that give integrals which can be determined in closed
form?

Valuing Runs: Pythagorean formula used to value
players (10 runs equals 1 win); better model leads to
better team.
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Future Work

Currently guiding student research on:

Improving Pythagorean Model
� Park factors
� More general distributions
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Future Work

Currently guiding student research on:

Improving Pythagorean Model
� Park factors
� More general distributions

Interleague play
� Estimate DH advantage for AL
� Devise strategy for NL
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Future Work

Currently guiding student research on:

Improving Pythagorean Model
� Park factors
� More general distributions

Interleague play
� Estimate DH advantage for AL
� Devise strategy for NL

Pitch data
� Advantage of seeing pitcher
� Pitch location data
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Appendix I: Proof of the Pythagorean Won-Loss Formula

Let X and Y be independent random variables with Weibull
distributions (αRS, β, γ) and (αRA, β, γ) respectively. To have means of
RS − β and RA − β our calculations for the means imply

αRS =
RS − β

Γ(1 + γ−1)
, αRA =

RA − β

Γ(1 + γ−1)
.

We need only calculate the probability that X exceeds Y . We use the
integral of a probability density is 1.
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Appendix I: Proof of the Pythagorean Won-Loss Formula (cont)

Prob(X > Y ) =

∫
∞

x=β

∫ x

y=β

f (x ; αRS, β, γ)f (y ; αRA, β, γ)dy dx

=

∫
∞

β

∫ x

β

γ

αRS

(
x − β

αRS

)γ−1

e−

(
x−β
αRS

)γ γ

αRA

(
y − β

αRA

)γ−1

e−

(
y−β
αRA

)γ

dydx

=

∫
∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−

(
x

αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e−

(
y

αRA

)γ

dy

]
dx

=

∫
∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)
γ
[
1 − e−(x/αRA)γ

]
dx

= 1 −

∫
∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/α)γ

dx ,

where we have set
1
αγ

=
1

α
γ
RS

+
1

α
γ
RA

=
α

γ
RS + α

γ
RA

α
γ
RSα

γ
RA

.
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Appendix I: Proof of the Pythagorean Won-Loss Formula (cont)

Prob(X > Y ) = 1 −
αγ

α
γ
RS

∫
∞

0

γ

α

(x
α

)γ−1
e(x/α)γ

dx

= 1 −
αγ

α
γ
RS

= 1 −
1

α
γ
RS

α
γ
RSα

γ
RA

α
γ
RS + α

γ
RA

=
α

γ
RS

α
γ
RS + α

γ
RA

.

We substitute the relations for αRS and αRA and find that

Prob(X > Y ) =
(RS − β)γ

(RS − β)γ + (RA − β)γ
.

Note RS − β estimates RSobs, RA − β estimates RAobs.
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Appendix II: Best Fit Weibulls and Structural Zeros

The fits look good, but are they? Do χ2-tests:

Let Bin(k) denote the k th bin.
Or ,c: the observed number of games where the
team’s runs scored is in Bin(r) and the runs allowed
are in Bin(c).

Er ,c =
∑

c′ Or ,c′ ·
∑

r ′ Or ′,c
#Games is the expected frequency of cell

(r , c).
Then

#Rows∑

r=1

#Columns∑

c=1

(Or ,c − Er ,c)
2

Er ,c

is a χ2 distribution with (#Rows − 1)(#Columns − 1)
degrees of freedom.
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Appendix II: Best Fit Weibulls and Structural Zeros (cont)

For independence of runs scored and allowed, use bins

[0, 1) ∪ [1, 2) ∪ [2, 3) ∪ · · · ∪ [8, 9) ∪ [9, 10) ∪ [10, 11) ∪ [11,∞).

Have an r × c contingency table (with r = c = 12); however, there are structural zeros (runs scored and allowed
per game can never be equal).
(Essentially) Or,r = 0 for all r . We use the iterative fitting procedure to obtain maximum likelihood estimators for the
Er,c , the expected frequency of cell (r , c) under the assumption that, given that the runs scored and allowed are
distinct, the runs scored and allowed are independent.
For 1 ≤ r , c ≤ 12, let E (0)

r,c = 1 if r 6= c and 0 if r = c. Set

Xr,+ =
12∑

c=1

Or,c , X+,c =
12∑

r=1

Or,c .

Then

E(`)
r,c =





E(`−1)
r,c Xr,+ /

∑12
c=1 E(`−1)

r,c if ` is odd

E(`−1)
r,c X+,c /

∑12
r=1 E(`−1)

r,c if ` is even,

and
Er,c = lim

`→∞
E(`)

r,c ;

the iterations converge very quickly. (If we had a complete two-dimensional contingency table, then the iteration
reduces to the standard values, namely Er,c =

∑
c′ Or,c′ ·

∑
r′ Or′,c / #Games.). Note

12∑

r=1

12∑

c=1
c 6=r

(Or,c − Er,c)2

Er,c

is approximately a χ2 distribution with (12 − 1)2 − 12 = 109 degrees of freedom. The corresponding critical
thresholds are 134.4 (at the 95% level) and 146.3 (at the 99% level).
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Appendix III: Central Limit Theorem

Convolution of f and g:

h(y) = (f ∗ g)(y) =

∫

R

f (x)g(y − x)dx =

∫

R

f (x − y)g(x)dx.

X1 and X2 independent random variables with probability density p.

Prob(Xi ∈ [x, x + ∆x ]) =

∫ x+∆x

x
p(t)dt ≈ p(x)∆x.

Prob(X1 + X2) ∈ [x, x + ∆x ] =

∫ ∞

x1=−∞

∫ x+∆x−x1

x2=x−x1
p(x1)p(x2)dx2dx1.

As ∆x → 0 we obtain the convolution of p with itself:

Prob(X1 + X2 ∈ [a, b]) =

∫ b

a
(p ∗ p)(z)dz.

Exercise to show non-negative and integrates to 1.

70



Intro Prob. & Modeling Pythg. Thm Analysis of ’04 Adv. Theory Summary Refs Appendices

Appendix III: Statement of Central Limit Theorem

For simplicity, assume p has mean zero, variance one, finite third moment and is of sufficiently rapid decay
so that all convolution integrals that arise converge: p an infinitely differentiable function satisfying

∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
|x|3p(x)dx < ∞.

Assume X1, X2, . . . are independent identically distributed random variables drawn from p.

Define SN =
∑N

i=1 Xi .

Standard Gaussian (mean zero, variance one) is 1√
2π

e−x2/2.

Central Limit Theorem Let Xi , SN be as above and assume the third moment of each Xi is finite. Then SN/
√

N
converges in probability to the standard Gaussian:

lim
N→∞

Prob
( SN√

N
∈ [a, b]

)
=

1
√

2π

∫ b

a
e−x2/2dx.
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Appendix III: Proof of the Central Limit Theorem

The Fourier transform of p is

p̂(y) =

∫ ∞

−∞
p(x)e−2πixy dx.

Derivative of ĝ is the Fourier transform of 2πixg(x); differentiation (hard) is converted to multiplication
(easy).

ĝ′
(y) =

∫ ∞

−∞
2πix · g(x)e−2πixy dx.

If g is a probability density, ĝ′(0) = 2πiE[x ] and ĝ′′(0) = −4π2
E[x2].

Natural to use the Fourier transform to analyze probability distributions. The mean and variance are simple
multiples of the derivatives of p̂ at zero: p̂′(0) = 0, p̂′′(0) = −4π2.

We Taylor expand p̂ (need technical conditions on p):

p̂(y) = 1 +
p′′(0)

2
y2

+ · · · = 1 − 2π
2y2

+ O(y3
).

Near the origin, the above shows p̂ looks like a concave down parabola.
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Appendix III: Proof of the Central Limit Theorem (cont)

Prob(X1 + · · · + XN ∈ [a, b]) =
∫ b

a (p ∗ · · · ∗ p)(z)dz.

The Fourier transform converts convolution to multiplication. If FT[f ](y) denotes the Fourier transform of f
evaluated at y :

FT[p ∗ · · · ∗ p](y) = p̂(y) · · · p̂(y).

Do not want the distribution of X1 + · · · + XN = x , but rather

SN =
X1+···+XN√

N
= x .

If B(x) = A(cx) for some fixed c 6= 0, then B̂(y) = 1
c Â
(

y
c

)
.

Prob
( X1+···+XN√

N
= x
)

= (
√

Np ∗ · · · ∗
√

Np)(x
√

N).

FT
[
(
√

Np ∗ · · · ∗
√

Np)(x
√

N)
]

(y) =
[

p̂
(

y√
N

)]N
.
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Appendix III: Proof of the Central Limit Theorem (cont)

Can find the Fourier transform of the distribution of SN :

[
p̂
( y

√
N

)]N
.

Take the limit as N → ∞ for fixed y .

Know p̂(y) = 1 − 2π2y2 + O(y3). Thus study

[
1 −

2π2y2

N
+ O

(
y3

N3/2

)]N

.

For any fixed y ,

lim
N→∞

[
1 −

2π2y2

N
+ O

(
y3

N3/2

)]N

= e−2πy2
.

Fourier transform of e−2πy2
at x is 1√

2π
e−x2/2.
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Appendix III: Proof of the Central Limit Theorem (cont)

We have shown:

the Fourier transform of the distribution of SN converges to e−2πy2
;

the Fourier transform of e−2πy2
is 1√

2π
e−x2/2.

Therefore the distribution of SN equalling x converges to 1√
2π

e−x2/2.

We need complex analysis to justify this conclusion. Must be careful: Consider

g(x) =

{
e−1/x2

if x 6= 0
0 if x = 0.

All the Taylor coefficients about x = 0 are zero, but the function is not identically zero in a neighborhood of x = 0.
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Appendix IV: Best Fit Weibulls from Method of Maximum
Likelihood

The likelihood function depends on: αRS, αRA, β = −.5, γ.
Let A(α,−.5, γ, k) denote the area in Bin(k) of the Weibull with
parameters α,−.5, γ. The sample likelihood function
L(αRS, αRA,−.5, γ) is

(
#Games

RSobs(1), . . . , RSobs(#Bins)

)#Bins∏

k=1

A(αRS,−.5, γ, k)RSobs(k)

·

(
#Games

RAobs(1), . . . , RAobs(#Bins)

)#Bins∏

k=1

A(αRA,−.5, γ, k)RAobs(k).

For each team we find the values of the parameters αRS, αRA and γ

that maximize the likelihood. Computationally, it is equivalent to
maximize the logarithm of the likelihood, and we may ignore the
multinomial coefficients are they are independent of the parameters.
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