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Thoughts on Research J
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Research: What questions to ask? How? With whom?

@ Build on what you know and can learn.
e What will be interesting?
e How will you work?

@ Where are the questions? Classes, arXiv,
conferences, ....
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Explore: Look for the right perspective.

@ Ask interesting questions.
@ Look for connections.

@ Be a bit of a jack-of-all trades.

Leads naturally into....

TS s
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Utilize: What are your tools and how can they be used?

Law of the Hammer:

@ Abraham Kaplan: | call it the law of the instrument, and it
may be formulated as follows: Give a small boy a hammer,
and he will find that everything he encounters needs
pounding.

@ Abraham Maslow: | suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a
nail.

@ Bernard Baruch: If all you have is a hammer, everything
looks like a nail.




Research
L

Succeed: Control what you can: reports, talks

@ Write up your work: post on the arXiv, submit.

e Go to conferences: present and mingle (no spam and
P&J).

@ Turn things around fast: show progress, no more than
24 hours on mundane.

@ Service: refereeing, MathSciNet, ....

y
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Introduction to the Pythagorean Won—Loss Theorem J
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Goals of the Talk

e Give derivation Pythagorean Won-Loss formula.

@ Observe ideas / techniques of modeling.

@ See how advanced theory enters in simple problems.
@ Opportunities from inefficiencies.

@ Xitra: further avenues for research for students.
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Goals of the Talk

e Give derivation Pythagorean Won—Loss formula.

e Observe ideas / techniques of modeling.

@ See how advanced theory enters in simple problems.
@ Opportunities from inefficiencies.

e Xtra: further avenues for research for students.

GO SOX!
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Statistics

Goal is to find good statistics to describe real world.
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Statistics

Goal is to find good statistics to describe real world.

Figure: Harvard Bridge, about 620.1 meters.

A
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Statistics

Goal is to find good statistics to describe real world.

Figure: Harvard Bridge, 364.1 Smoots (+ one ear).
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Goal




Numerical Observation: Pythagorean Won—-Loss Formula

Parameters
@ RS,,: average number of runs scored per game;
@ RA.,: average number of runs allowed per game;
@ ~: some parameter, constant for a sport.

Years & Worth the Wait




Numerical Observation: Pythagorean Won—-Loss Formula

Parameters
@ RS,,: average number of runs scored per game;
@ RA,,: average number of runs allowed per game;
@ ~: some parameter, constant for a sport.

James’ Won-Loss Formula (NUMERICAL

Observation)

#Wins RS?

obs
#Games RS, +RA]

obs

Won — Loss Percentage =

~ originally taken as 2, numerical studies show best ~ for
baseball is about 1.82.




Pythagorean Won-Loss Formula: Example

James’ Won-Loss Formula

#Wins RS

#Games  RS), +RAJ,

Won — Loss Percentage =

Example (v = 1.82): In 2009 the Red Sox were 95-67.
They scored 872 runs and allowed 736, for a Pythagorean
prediction record of 93.4 wins and 68.6 losses; the
Yankees were 103-59 but predicted to be 95.2—-66.8 (they
scored 915 runs and allowed 753).




Pythagorean Won-Loss Formula: Example

James’ Won-Loss Formula

#Wins RS

Won — Loss Percentage = =
#Games RS, + RAY,

Example (v = 1.82): In 2009 the Red Sox were 95-67.
They scored 872 runs and allowed 736, for a Pythagorean
prediction record of 93.4 wins and 68.6 losses; the
Yankees were 103-59 but predicted to be 95.2—-66.8 (they
scored 915 runs and allowed 753).

2011: Red Sox ‘should’ be 95-67, Tampa ‘should’ be
92-70....

A




Applications of the Pythagorean Won-Loss Formula

e Extrapolation: use half-way through season to predict
a team’s performance for rest of season.

e Evaluation: see if consistently over-perform or
under-perform.

e Advantage: Other statistics / formulas (run-differential
per game); this is easy to use, depends only on two
simple numbers for a team.




Applications of the Pythagorean Won-Loss Formula

e Extrapolation: use half-way through season to predict
a team’s performance for rest of season.

e Evaluation: see if consistently over-perform or
under-perform.

e Advantage: Other statistics / formulas (run-differential
per game); this is easy to use, depends only on two
simple numbers for a team.

Red Sox: 2004 Predictions: May 1: 99 wins; June 1: 93
wins; July 1: 90 wins; August 1: 92 wins.
Finished season with 98 wins.
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Observed scoring distributions

Goal is to model observed scoring distributions; for
example, consider

20
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Probability Review

@ Let X be random variable with density p(x):
o p(x) = 0;
o [ p(x)dx = 1;
o Prob(a< X < b) = [ p(x)dx.
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Probability Review

@ Let X be random variable with density p(x):
o p(x) = 0;
o [T p(x)dx = 1;
oProb(a< X < b) = fabp(x)dx.

e Mean = [ xp(x)dx.
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Probability Review

@ Let X be random variable with density p(x):
o p(x) = 0;
o [T p(x)dx = 1;
oProb(a< X < b) = fabp(x)dx.

e Mean = [ xp(x)dx.

e Variance 0® = [*_(x — p)?p(x)dx.
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Probability Review

@ Let X be random variable with density p(x):
o p(x) = 0;
o [T p(x)dx = 1;
oProb(a< X < b) = fabp(x)dx.
e Mean = [ xp(x)dx.
e Variance 0® = [*_(x — p)?p(x)dx.
@ Independence: knowledge of one random variable
gives no knowledge of the other.
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Modeling the Real World

Guidelines for Modeling:
@ Model should capture key features of the system;
@ Model should be mathematically tractable (solvable).
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Modeling the Real World (cont)

Possible Model:
@ Runs Scored and Runs Allowed independent random
variables;
@ frs(X), gra(y): probability density functions for runs
scored (allowed).
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Modeling the Real World (cont)

Possible Model:
@ Runs Scored and Runs Allowed independent random
variables;
@ frs(X), gra(y): probability density functions for runs
scored (allowed).

Won-Loss formula follows from computing

[ sgaiay]ax o 3T hs(igrali)]
[ smon]oc o 5 |Smom

=0 i=0 | j<i
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Problems with the Model

Reduced to calculating

[ sgaiay]ax o 3T hs(igeali)]
[ 1] oo o 5 [S o)

=0 i=0 | j<i
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Problems with the Model

Reduced to calculating

/ ) [ /y ) fRS(x>gRA<y)dy] ax o 3 [Z fRs(i>gRA<f>] .

=0 i=0 | j<i

Problems with the model:
@ What are explicit formulas for frs and gra?
@ Are the runs scored and allowed independent random
variables?
e Can the integral (or sum) be computed in closed
form?
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Choices for frs and gra

Uniform Distribution on [0, 10].
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Choices for frs and gra

5 ‘ ‘ ‘ ‘ 10
Normal Distribution: mean 4, standard deviation 2.
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Choices for frs and gra

‘IHHZHHSHH4 5 6
Exponential Distribution: e™*.
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Three Parameter Weibull

Weibull distribution:

2 (ﬂ)H e (=B if x >
otherwise.

O

f(xia,8,7) = {

@ «: scale (variance: meters versus centimeters);
@ (3: origin (mean: translation, zero point);
@ ~: shape (behavior near $ and at infinity).

Various values give different shapes, but can we find
«, 3,7 such that it fits observed data? Is the Weibull
justifiable by some reasonable hypotheses?

‘.
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Weibull Plots: Parameters (o, 3,7):

i) 1(m>””‘1 e (=0 x>
Xia,B,7) = § ¢\ “ y
0 otherwise.

Red:(1, O, 1) (exponential); Green:(1, 0, 2); Cyan:(1, 2, 2);
Blue:(1, 2, 4)
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Three Parameter Weibull: Applications

2 (X=BYT o= (=) /) if x >
f(x;a,8,7) = {“( =) =f

0 otherwise.

Arises in many places, such as survival analysis.
@ v < 1: high infant mortality;
@ ~ = 1: constant failure rate;
@ ~ > 1: aging process.

‘.
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The Gamma Distribution and Weibulls

e For s > 0, define the I'-function by

r(s) = / e us\du = / e vus—.
0 0

u

e Generalizes factorial function: I'(n) = (n—1)! for
n > 1 an integer.

A Weibull distribution with parameters «, 8, ~ has:
@ Mean: al (1 +1/7) + 8.
e Variance: oI (1 +2/7) — o2l (1 4+ 1/7)%.
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Weibull Integrations

00 X — y—1
HaBr = / X - 7 < 6) e ((x=8)/a)" 4%
B « «
B

Q

o0 y—1
— / O{X _ . 1 X 5 ef((X*ﬁ)/O‘)wdx + ﬂ
B 0% 0%
Change variables: u = (*£)7, so du = 2 (*-£)""" dx and

fopy = au'" . e Udu + B
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The Pythagorean Theorem

| Delectravorie leam ¥ Slanangs as o jJun ¥j |9 ¥ [LuUn ] s
East W L PCT GB L0 STRK INT HOME ROAD XWL LASTGAME NEXT GAME
Boston a7 25 587 - 64 W2 30 235 1420 3626 64V TB W51 8/5 v TB, B:0SP
Tampa Bay 35 24 593 05 64 L2 12 2410 1114 3227 64 @BOS,L1-5 8/5 @ BOS, 6:0SP
Toronto 32 29 525 45 64 L1 21 1511 17-18 3427 GA@NYY,L15 8/5 @ NYY, 1:05P
New York 28 30 482 65 55 W1 02 1513 1417 283  64vTOR W51 8/5 v TOR, 1:05P
Batimere 28 30 483 70 48 U 21 4711 118 273 A @MIN,L5T 8/5 @ MIN, 1:10P
Central W L PCT GB Li0 STRK INT HOME ROAD XWL LASTGAME NEXT GAME
Chicago 2 26 552 - 64 W2 30 158 1717 3424 G4V KC, W64 8/5 v KC, B:11P
Minnesota 31 28 525 15 73 Wl 12 1915 1213 2830 64vBALWT-5 8/5 v BAL, 1:10P
Cleveland 27 32 458 55 46 W1 03 1616 11-16 31-28 &4 @TEX, W15 6/5 @ TEX, 8:05P
Detroit 24 35 407 85 3T L3 12 1244 1221 2732 604 @ OAK,L2-10 6/6 v CLE, 7:05P
Kansas City 23 3 320 85 28 L2 21 1216  11-20 2336 64 @OWS, L 46 8/5 @ CWS, 8:11P
Wast W L PCT GB Li0 STRK INT HOME ROAD XWL LASTGAME NEXT GAME

Los Angeles 37 24 BOT - 73 WS 24 1813 1811  31-30 /4 @ SEA W54 8/ @ DAK, 10:05P
Oakland 33 27 550 35 64 We 12 2013 1344 3525 &4y DET, W02 816 v LAA, 10:05P
Texas 30 03 482 70 55 L1 21 1514 1517 2832 &4vCOLE L85 8/5 v CLE, 8:05P
Seattle 21 3% 350 155 37 L4 21 1419 T20 2438 64vLAA L4S 8/6 @ BOS, T:05P
Esat W L PCT GB L0 STRK INT HOME ROAD XWL LASTGAME NEXT GAME
Philadelphia 35 26 574 - g2 L1 12 2013 1513 3825 &MvCIN LO-2 8/5 v CIN, 1:05P
Florida 32 26 552 15 46 W1 12 1812 1414 2838 GM@ATL WE4 8/5 @ ATL, 7:00P
New York 30 28 517 35 73 W2 20 1711 1347 30-28 64 @SF, W53 8/5 @ SD, 10:05P
Atianta 3 29 517 35 46 L1 21 248 721 3525 G4VFLAL46 8/5 v FLA, 7:00P
Washington 24 35 407 100 37 L3 12 1316 1118 2336 64w STL,PPD 8/5 v STL, 7:10P

Cantral W L PCT GB L10 STRK INT HOME ROAD XWL LASTGAME NEXT GAME
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Building Intuition: The log —5 Method

Assume team A wins p percent of their games, and team
B wins g percent of their games. Which formula do you
think does a good job of predicting the probability that
team A beats team B? Why?

p+pq p+pq
p+q+2pq p+q-—2pq
p—pq p—pq

p+qg+2pq° p+q-2pq
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Estimating Winning Percentages

p+pq p+pPq p—pq p—pPq
p+q+2pq° p+q—-2pq° p+q+2pq p-+q-—2pq

How can we test these candidates?

Can you think of answers for special choices of p and q?
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Estimating Winning Percentages

p+pq p+pPq p—pq p—pPq
p+q+2pq° p+q—2pq° p+q+2pq p-+q-—2pq

Homework: explore the following:
o p =1, g <1 (do not want the battle of the undefeated).

o p =0, g > 0 (do not want the Toilet Bowl).
op=q.
op>q(candog<1/2and g > 1/2).

o Anything else where you ‘know’ the answer?
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Estimating Winning Percentages

p+pPq p+pq p—pPq p—pq
p+q+2pq° p+q—-2pq p+q+2pq° p+qg-—2pqg
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Estimating Winning Percentages

p-pPq p(1—q)
p+q-2pq  p(1-q)+(1-p)
Homework: explore the following:
op =1, g <1 (do not want the battle of the undefeated).

o p =0, g > 0 (do not want the Toilet Bowl).
op=q.
op>q(candog<1/2and g > 1/2).

o Anything else where you ‘know’ the answer?

AR
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Estimating Winning Percentages: ‘Proof’

Start

A has a good game with probability p

B has a good game with probability q
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Estimating Winning Percentages: ‘Proof’

Ly \
° °

A has a bad game A has good game

Figure: Two possibilities: A has a good day, or A doesn’t.

A7
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Estimating Winning Percentages: ‘Proof’

Start
®
L \
®
A has a bad game A has good game
1_q/ \ 1q/ \
® @ ® @
Bhasabad game Bhasa good game Bhasabad game  Bhasa good game

Figure: B has a good day, or doesn’t.
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Estimating Winning Percentages: ‘Proof’

Start

®

iy \
@
A has a bad game A has good game
@ © @ @
Bhasabad game B hasa good game Bhasabad game Bhas a good game
Play again A loses A wins Play again

(1-p)q p(1-q)

Figure: Two paths terminate, two start again.
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Estimating Winning Percentages: ‘Proof’

Start
®
. \
®
A has a bad game A has good game
I_q/ \ 1_;/ N
@ ® ® @
Bhasabad game Bhasa good game Bhasabadgame Bhasagood game
Play again A loses A wins Play again
(1plq p(1-q
p(i-q P-Pq

Probability A wins is —
pll-g) 1 (1-p) q p+q-2pq
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RSst _
RS +RA™

obs obs

Pythagorean Won-Loss Formula:

Theorem: Pythagorean Won-Loss Formula (Miller *06)

Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (ags, 5,7) and (ara, 5,7); ars and agra are
chosen so that the Weibull means are the observed
sample values RS and RA. If v > 0 then the Won—Loss

i (RS—B)7
Percentage is s ma—sy-

S EEEEOTSTSTSTSSSSSSSSE -
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RSst .
RS +RA™

obs obs

Pythagorean Won-Loss Formula:

Theorem: Pythagorean Won-Loss Formula (Miller *06)

Let the runs scored and allowed per game be two
independent random variables drawn from Weibull
distributions (ags, 5,7) and (ara, 5,7); ars and agra are
chosen so that the Weibull means are the observed
sample values RS and RA. If v > 0 then the Won—Loss

i (RS—B)”
Percentage is D)y T(RAET

Take p = —1/2 (since runs must be integers).

RS — [ estimates average runs scored, RA — g estimates
average runs allowed.

Weibull with parameters («, 3, ) has mean

al (1+1/7)+ 5.

;
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Proof of the Pythagorean Won-Loss Formula

Let X and Y be independent random variables with Weibull
distributions (ags, 8, ) and (ara, 8, v) respectively. To have means of
RS — 5 and RA — 3 our calculations for the means imply

RS — 8 RA -3

R (RS 7 N (RS 720)

We need only calculate the probability that X exceeds Y. We use the
integral of a probability density is 1.

eSS -
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Proof of the Pythagorean Won-Loss Formula (cont)

[o¢] X
Prob(X > Y) = / / f(x; ars, 8,7)f(y; ara, 8,7v)dy dx
x=B Jy=p
s >“ o (52) 1 (yﬂ)’“ o () ayax
QRS (671 QRA QRA
y—1 y—1
/ e <X> e (am) [/ 0 <y> e (aRA) dy‘| dx
x=0 @RS \ RS y=0 @RA \ ORA
00 —1
— e L ! e*(X/O‘RS)AY [1 — e*(X/OZRA)W} dx
x=0 ORS RS

y—1
1 /OO - <X> e /) g,
x=0 QRS aRs

where we have set
1 1 1 aps + Opa

¥ ¥ Yy v
a” Qrs  Ora QRrsORA

[
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Proof of the Pythagorean Won-Loss Formula (cont)

_ [y XN ey
Prob(X >Y) = 1 ags/o " (a) e dx
a’)’
QRs

Yo
1 ORsARA
Y Bl
Qgg Ogg T Qgp

ﬁ .
Ogg T Opp

SN OOSOSTSTSSSSE




Pythag Thm
[e]e] )

Proof of the Pythagorean Won-Loss Formula (cont)

Y o y—1 Y
Prob(X>Y) = 1-" [ 2 (5) /) dx
aRS 0 o\«
Y
= 1-2
QRrs

- q1_ 1 oRsORa
ORs ORs T ORa
ORs

ORs + ORa

We substitute the relations for agrs and ags and find that

(RS — B)”
(RS — B)7 + (RA = )7

H Note RS — Q estimates RS, RA — g estimates RA .

Prob(X > Y) =
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS (predictedvs observed) and RA (predicted vs observed) for the Boston Red Sox

25
20
15

10

i

20
15

10

5

Using as bins [-.5,.5] U [5,1.5] U ---

5

10

15

20

5 10 15 20

U [7.5,8.5]

U [8.5,9.5] U[9.5,11.5] U [11.5,00).
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Best Fit Weibulls to Data: Method of Least Squares

@ Bin(k) is the k™ bin;

@ RSus(K) (resp. RAus(k)) the observed number of
games with the number of runs scored (allowed) in
Bin(k);

@ A(a,7, k) the area under the Weibull with parameters
(or, —1/2,7) in Bin(k).

Find the values of (ags, ara, ) that minimize

#Bins

> (RSaps(k) — #Games - A(ars, 7, k))?
k=1
#Bins

+ ) (RAm(K) — #Games - A(ara, 7. k).
k=1

[
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS (predictedvs observed) and RA (predicted vs observed) for the Boston Red Sox

25 20
20
15
15 |
10
10
E])Z 5
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U [8.5,9.5] U[9.5,11.5] U[11.5 00).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS (predictedvs observed) and RA (predicted vs observed) for the New York Yankees

20 25
20
15
15
10
| 10
5 7/7
—
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.5]
U [8.5,9.5] U[9.5,11.5] U[11.5 00).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS (predicted vs observed) and RA (predictedvs observed) for the BaltimoreOrioles

25 20
20 15
15
16y
10 f
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.9]
U[8.5,9.5] U[9.5,11.5] U[11.5 c0).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS (predicted vs observed) and RA (predicted vs observed) for the Tampa Bay Devil Rays

25 25
20 20
15 15
10 10
7 ]
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.9]
U[8.5,9.5] U[9.5,11.5] U[11.5 c0).
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS (predicted vs observed) and RA (predictedvs observed) for the Toronto Blue Jays

25 25
20 20
15 15
10 10}
5 10 15 20 5 10 15 20

Using as bins [-.5,.5] U [.5,1.5] U --- U [7.5,8.9]
U[8.5,9.5] U[9.5,11.5] U[11.5 c0).
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Advanced Theory J
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
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Fair coin: 1,000,000 flips, expect 500,000 heads.
About 95% have 499, 000 < #Heads < 501, 000.
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Bonferroni Adjustments

Fair coin: 1,000,000 flips, expect 500,000 heads.
About 95% have 499, 000 < #Heads < 501, 000.

Consider N independent experiments of flipping a fair
coin 1,000,000 times. What is the probability that at least
one of set doesn’t have 499,000 < #Heads < 501,0007

N Probability
5 22.62

14 51.23

50 92.31

See unlikely events happen as N increases!
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Data Analysis: \° Tests (20 and 109 degrees of freedom)

Team RS+RA x2: 20 d.f. Indep x2: 109 d.f
Boston Red Sox 15.63 83.19
New York Yankees 12.60 129.13
Baltimore Orioles 29.11 116.88
Tampa Bay Devil Rays 13.67 111.08
Toronto Blue Jays 41.18 100.11
Minnesota Twins 17.46 97.93
Chicago White Sox 22.51 153.07
Cleveland Indians 17.88 107.14
Detroit Tigers 12.50 131.27
Kansas City Royals 28.18 111.45
Los Angeles Angels 23.19 125.13
Oakland Athletics 30.22 133.72
Texas Rangers 16.57 111.96
Seattle Mariners 21.57 141.00

20 d.f.: 31.41 (at the 95% level) and 37.57 (at the 99% level).
109 d.f.: 134.4 (at the 95% level) and 146.3 (at the 99% level).
Bonferroni Adjustment:

20d.f.. 41.14 (at the 95% level) and 46.38 (at the 99% level).
109 d.f.: 152.9 (at the 95% level) and 162.2 (at the 99% level).

AQ
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Data Analysis: Structural Zeros

e For independence of runs scored and allowed, use
bins [0,1) U [1,2) U[2,3) U--- U[8,9) U[9,10)
U [10,11) U [11,00).

@ Have an r x ¢ contingency table with structural zeros
(runs scored and allowed per game are never equal).

o (Essentially) O, = 0 for all r, use an iterative fitting
procedure to obtain maximum likelihood estimators
for E, . (expected frequency of cell (r, ¢) assuming
that, given runs scored and allowed are distinct, the
runs scored and allowed are independent).

y
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New Application: Head-to-Head

James Log-5 Method estimates the probability A beats B
if A wins p and B wins g percent of the time:

P—pPq  _ p-q
p+q9—-2pq  p(1-q)+(1—-p)q

2 TTTSTSLSSSSSSSSSSSSEEEESEESSSSSSEEEE
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New Application: Head-to-Head

James Log-5 Method estimates the probability A beats B
if A wins p and B wins g percent of the time:

p-pPq p(1—q) '
p+q9—-2pq  p(1-q)+(1—-p)q

How to generalize with Pythagorean formula?

Joint with: Rick Cleary, Jake Jeffries, Cam Miller, James
Murray, Sasha Palma and Nick Skiera.

y
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New Application: Head-to-Head (cont)

Adjust Pythagorean Formula, use both teams:
@ home team RS;,RA,,
@ away team RS,, RA,,
@ league average runs scored per game is R,

@ adjusted home numbers:
RSh..4; = RSh(RA,/R),
RAh,adj = RAh(RSa/R)

Prob(Home Team Wins)
RS} adi B (RS,RA, )"
RSy i+ RAL .y (RSiRA,)" + (RALRS, )
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New Application: Head-to-Head: Data

Looked at playoffs from 2001 — 2019.

Compared observed series won by home team to
predicted (if predict home team wins with probability .72,
count that as .72 of a win for home and .28 of a win for
away).

Log-5: home wins 83.19 and loses 65.81.
Observed: home wins 80.00 and loses 69.00.
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New Application: Head-to-Head: Data

Looked at playoffs from 2001 — 2019.

Compared observed series won by home team to
predicted (if predict home team wins with probability .72,
count that as .72 of a win for home and .28 of a win for
away).

Log-5: home wins 83.19 and loses 65.81.
Observed: home wins 80.00 and loses 69.00.

Predicted: home wins 80.18 and loses 68.82!
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New Application: Head-to-Head: Exponent

New adjusted numbers: What exponent b is best?
@ RSy .4 = RSp(RA,/R)P.
@ RA; . = RAL(RS,/R)P.
@ b = 0 no adjustment; none if league average.

"Home Win % Home Win %
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Head-to-Head: Exponent Il (from paper)

It is important to note that the probabilities summing to 1 would not hold in general
if instead of rescaling by quantities such as RS, /R we instead rescaled by (RS,/R)"
for b # 1; doing so would magnify or diminish the adjustment (as b — 0 it reduces
to the original Pythagorean formula, while b — oo gives tremendous impact to small
changes): in obvious notation we now have

Pob) = (RS,RA)” N (RS,RA})”
fi (RS,RA®)Y + (RALRS?)”  (RS.RA!)” + (RA,RSE)
(7,,(12 17”(157,

orol + apol o0l + .0

b b b b b b
or) (a0, + a0y + oaay (oha + o))

b b b b
(onad + apal)(oq0) + ag0;)
b b b+1 b1 bb b1, b+1
OO0y + 0,7 Q" + Op0,0p 0, + 0,7y
b+1 b+17

b b b b b b
opoaopal + oy okt + opobaga, + obtlay

and if b # 1 the third (after sorting) term in the numerator does not match the corre-
sponding term in the denominator, though all the other terms do match. It is interesting
that the only adjustment which is permissible under symmetry constraints (as the proba-
bility one team wins must equal the probability the other loses) is a simple multiplicative
rescaling.
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Testing the Model: Data from Method of Maximum Likelihood

Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff Y

Boston Red Sox 98 93.0 0.605 0.574 5.03 1.82
New York Yankees 101 87.5 0.623 0.540 13.49 1.78
Baltimore Orioles 78 83.1 0.481 0.513 -5.08 1.66
Tampa Bay Devil Rays 70 69.6 0.435 0.432 0.38 1.83
Toronto Blue Jays 67 74.6 0.416 0.464 -7.65 1.97
Minnesota Twins 92 84.7 0.568 0.523 7.31 1.79
Chicago White Sox 83 85.3 0.512 0.527 -2.33 1.73
Cleveland Indians 80 80.0 0.494 0.494 0 1.79
Detroit Tigers 72 80.0 0.444 0.494 -8.02 1.78
Kansas City Royals 58 68.7 0.358 0.424 -10.65 1.76
Los Angeles Angels 92 87.5 0.568 0.540 4.53 1.71
Oakland Athletics 91 84.0 0.562 0.519 6.99 1.76
Texas Rangers 89 87.3 0.549 0.539 1.71 1.90
Seattle Mariners 63 70.7 0.389 0.436 -7.66 1.78

~: mean = 1.74, standard deviation = .06, median = 1.76;
close to numerically observed value of 1.82.
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Conclusions

e Find parameters such that Weibulls are good fits;

@ Runs scored and allowed per game are statistically
independent;

e Pythagorean Won-Loss Formula is a consequence of
our model;

@ Best v (both close to observed best 1.82):
© Method of Least Squares: 1.79;
© Method of Maximum Likelihood: 1.74.

e Adjusted Pythagorean formula for head-to-head
match-ups.
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Future Work

e Micro-analysis: runs scored and allowed aren't
independent (big lead, close game), run production
smaller for inter-league games in NL parks, ....

@ Other sports: Does the same model work? Basketball
has v between 14 and 16.5.

e Closed forms: Are there other probability distributions
that give integrals which can be determined in closed
form?

e Valuing Runs: Pythagorean formula used to value
players (10 runs equals 1 win); better model leads to
better team.

QT
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Smoots

Sieze opportunities: Never know where they will lead.
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Smoots

Sieze opportunities: Never know where they will lead.
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Smoots

Sieze opportunities: Never know where they will lead.

Oliver Smoot: Chairman of the American National
Standards Institute (ANSI) from 2001 to 2002, President
of the International Organization for Standardization (1ISO)
from 2003 to 2004.
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Appendix I: Proof of the Pythagorean Won—-Loss Formula

Let X and Y be independent random variables with Weibull
distributions (ags, 8, ) and (ara, 8, v) respectively. To have means of
RS — 5 and RA — 3 our calculations for the means imply

RS — 8 RA -3

W SRR T /)

We need only calculate the probability that X exceeds Y. We use the
integral of a probability density is 1.
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Appendix I: Proof of the Pythagorean Won-Loss Formula (cont)

[o¢] X
Prob(X > Y) = / / f(x; ars, 8,7)f(y; ara, 8,7v)dy dx
x=B Jy=p
s >“ o (52) 1 (yﬂ)’“ o () ayax
QRS (671 QRA QRA
y—1 y—1
/ e <X> e (am) [/ 0 <y> e (aRA) dy‘| dx
x=0 @RS \ RS y=0 @RA \ ORA
00 —1
— e L ! e*(X/O‘RS)AY [1 — e*(X/OZRA)W} dx
x=0 ORS RS

y—1
1 /OO - <X> e /) g,
x=0 QRS aRs

where we have set
1 1 1 aps + Opa

¥ ¥ Yy v
a” Qrs  Ora QRrsORA
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Appendix I: Proof of the Pythagorean Won-Loss Formula (cont)

vy o0 y—1
Prob(X > Y) = 1-— O% J (i) eX/2)" dx
aRS 0 o\«
o
RS

1 1 ORsORA
B Ops Ogs + ORa
ags
ags + aga
We substitute the relations for arg and ara and find that

(RS — B)”
(RS — B)7 + (RA — B)7

Prob(X > Y) =

Note RS — 3 estimates RSy, RA — 3 estimates RA ops.
Q)
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Appendix II: Best Fit Weibulls and Structural Zeros

The fits look good, but are they? Do y?-tests:

e Let Bin(k) denote the k™ bin.

e O, .: the observed number of games where the
team’s runs scored is in Bin(r) and the runs allowed
are in Bin(c).

g % is the expected frequency of cell
(r,c).

@ Then

#Rows  #Columns )2

2. 2

is a 2 distribution with (#Rows — 1)(#Columns — 1)
degrees of freedom.
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Appendix II: Best Fit Weibulls and Structural Zeros (cont)

For independence of runs scored and allowed, use bins

[0,1) U [1,2) U [2,3) U--- U [8,9) U [9,10) U [10,11) U [11, c0).

Have an r x c contingency table (with r = ¢ = 12); however, there are structural zeros (runs scored and allowed
per game can never be equal).

(Essentially) Or,» = 0 for all r. We use the iterative fitting procedure to obtain maximum likelihood estimators for the
Er ¢, the expected frequency of cell (r, ¢) under the assumption that, given that the runs scored and allowed are
distinct, the runs scored and allowed are independent.

For1<r,c<121etEC) = 1ifr # cand0ifr = c. Set

12 12
X+ = > Ore, Xio = Y Ore
c=1 r=1

Then
Es,[cinxfﬁr / 2232:1 E,g;” if £ is odd
EY) —
r,c
Eﬁ,[c_”XJr,c / Z;i1 E,(?C_” if £ is even,
and Y
Erc = limoo Er(,c?

the iterations converge very quickly. (If we had a complete two-dimensional contingency table, then the iteration
reduces to the standard values, namely E.c = 3=/ O, o - 35 Op o / #Games.). Note

12 12 (Or,c _ Er.r:)2
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Appendix lll: Central Limit Theorem

Convolution of f and g:
hy) = (o) = [ fogly = xux = [ 1x— y)gtxjax.
Xy and X, independent random variables with probability density p.

X+Ax
Prob(X; € [x, x + Ax]) = / p(t)dt ~ p(x)Ax.

"X+AX—Xq
/ P(x1)P(X2)dXpdxq -

o
Prob(X; + Xp) € [x, X + Ax] = /
X2:X7X1

Xy=—o00

As Ax — 0 we obtain the convolution of p with itself:

b
Prob(X; + X € [a, b]) = /a (0 * p)(2)dz.

Exercise to show non-negative and integrates to 1.
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Appendix lll: Statement of Central Limit Theorem

@ ror simplicity, assume p has mean zero, variance one, finite third moment and is of sufficiently rapid decay
so that all convolution integrals that arise converge: p an infinitely differentiable function satisfying

/ xp(x)dx = 0, / X“p(x)dx = 1, / [x[p(x)dx < oo.
— 00 J —0o0 — 00

@ Assume X1, Xo, . .. are independent identically distributed random variables drawn from p.
@ Define Sy = N, X..

. . . _x2
@ Standard Gaussian (mean zero, variance one) is L g—x°/2,
Ver

Central Limit Theorem Let X;, Sy be as above and assume the third moment of each X; is finite. Then Sy /v/N
converges in probability to the standard Gaussian:

Sy 1 b 2,
lim Prob ( —% € [a,b]) = /ex/dx.
NLm?C o (\/N (& ]> 27 Ja
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Appendix lll: Proof of the Central Limit Theorem

@ The Fourier transform of pis
oo .
0) = [ b2 ax.
— oo

@ Derivative of g is the Fourier transform of 27ixg(x); differentiation (hard) is converted to multiplication
(easy).

i) = /Oo 2mix - g(x)e "2 ux.
— o0

If g is a probability density, g’ (0) = 2 /E[x] and "’ (0) = —4n2E[x?].

@ Natural to use the Fourier transform to analyze probability distributions. The mean and variance are simple
multiples of the derivatives of p at zero: p’(0) = 0, p’(0) = —4n2.

@ we Taylor expand p (need technical conditions on p):

P(O)z

By) = 1+—— = 1-27%% 1 0(®).

Near the origin, the above shows p looks like a concave down parabola.
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Appendix lll: Proof of the Central Limit Theorem (cont)

@ Prob(Xi + -+ Xy € [a,6]) = [P(px - * p)(2)dz.
@ The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f
evaluated at y: R R
FTlp -~ = pl(y) = Bly) - BY).

@ Do not want the distribution of X; + - - - + Xy = x, but rather
= Xt X
Sy = TN = X.

@ 1 B(x) = A(cx) for some fixed ¢ # 0, then B(y) = 14 (%)
@ rob (% :X) = (\/Np**\/ﬁp)()(\/n)
@ FT[(VAp+ -« VARV 1) = [p ()"
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Appendix lll: Proof of the Central Limit Theorem (cont)

@ cCan find the Fourier transform of the distribution of Sn:

/¥y \1V
[” (m)] '
@ Take the limitas N — oo for fixed y.
@ KnowB(y) = 1 — 2722 + O(y®). Thus study

@ Forany fixed y,

1 —x2/2

2
@ Fourier transform of e 2™ atxis —— e
Vaor
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Appendix lll: Proof of the Central Limit Theorem (cont)

We have shown:

2
@ the Fourier transform of the distribution of Sy converges to 2™y’ ;
2 2
[+ ] : —2my< 1 —x</2
the Fourier transform of e is T e
—X2/2_

Therefore the distribution of Sy, equalling x converges to % e
I
We need complex analysis to justify this conclusion. Must be careful: Consider

—1/)(2 p
x) = ¢ ifx #0
9t {O if x =0.

All the Taylor coefficients about x = 0 are zero, but the function is not identically zero in a neighborhood of x = 0.
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Appendix IV: Best Fit Weibulls from Method of Maximum
Likelihood

The likelihood function depends on: ags, ara, 8 = —.5,7.

Let A(«, —.5,7, k) denote the area in Bin(k) of the Weibull with
parameters «, —.5, . The sample likelihood function

L(agrs, ara, —-5,7) is

#Bins

#Games -
Al J\RSobs (K)
(RSobs(1 ), .., RSops (#Bins) H (ors; —-5,7,K)
#Bms
#Games Rl
' <RIA0bs(‘I ) RzAxobb #Blns H A aRAa ,% k) >

For each team we find the values of the parameters agrs, aga and ~
that maximize the likelihood. Computationally, it is equivalent to
maximize the logarithm of the likelihood, and we may ignore the
multinomial coefficients are they are independent of the parameters.
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