

### Pythagoras at the Bat: An Introduction to Stats and Modeling

#### Cameron, Kayla and Steven Miller (sjm1@williams.edu, Williams College)

http://web.williams.edu/Mathematics/sjmiller/public\_html/



|       | 00000000000 | 00000000 |  |  |  |
|-------|-------------|----------|--|--|--|
| Ackno | wledgment   | S        |  |  |  |

Sal Baxamusa, Phil Birnbaum, Chris Chiang, Ray Ciccolella, Steve Johnston, Michelle Manes, Russ Mann, students of Math 162 and Math 197 at Brown, Math 150 and 399 at Williams.

Dedicated to my great uncle Newt Bromberg (a lifetime Red Sox fan who promised me that I would live to see a World Series Championship in Boston).



Chris Long and the San Diego Padres.

| Prob & Modeling | Analysis of '04 | Summary<br>0000 | Appendices |
|-----------------|-----------------|-----------------|------------|
|                 |                 |                 |            |

#### Acknowledgments



| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory |  | Appendices |
|------------------|-----------------|------------------------|-----------------|------------|--|------------|
|                  |                 |                        |                 |            |  |            |

#### Introduction to the Pythagorean Won–Loss Theorem



| Intro<br>●○○○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04<br>০০০০০০০ | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|----------------------------|------------|-----------------|-----------|-----------------------------|
| Goals            | of the Talk     |                        |                            |            |                 |           |                             |

- Give derivation Pythagorean Won–Loss formula.
- Observe ideas / techniques of modeling.
- See how advanced theory enters in simple problems.
- Opportunities from inefficiencies.
- Xtra: further avenues for research for students.



| Intro<br>●○○○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04<br>০০০০০০০ | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|----------------------------|------------|-----------------|-----------|-----------------------------|
| Goals            | of the Talk     |                        |                            |            |                 |           |                             |

- Give derivation Pythagorean Won–Loss formula.
- Observe ideas / techniques of modeling.
- See how advanced theory enters in simple problems.
- Opportunities from inefficiencies.
- Xtra: further avenues for research for students.

### GO SOX!

| Intro<br>○●○○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|-----------------|------------|-----------------|-----------|-----------------------------|
| Statist          | ics             |                        |                 |            |                 |           |                             |

#### Goal is to find good statistics to describe real world.

| Intro<br>○●○○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04<br>০০০০০০০ | Adv Theory | Summary<br>0000 | Appendices<br>000000000000 |
|------------------|-----------------|------------------------|----------------------------|------------|-----------------|----------------------------|
|                  |                 |                        |                            |            |                 |                            |

#### Statistics

Goal is to find good statistics to describe real world.



Figure: Harvard Bridge, about 620.1 meters.

| Intro<br>○●○○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>000000000000 |
|------------------|-----------------|------------------------|-----------------|------------|-----------------|-----------|----------------------------|
| Statist          | ics             |                        |                 |            |                 |           |                            |

#### Goal is to find good statistics to describe real world.



Figure: Harvard Bridge, 364.1 Smoots ( $\pm$  one ear).

| Intro<br>○○●○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>000000000000 |
|------------------|-----------------|------------------------|-----------------|------------|-----------------|-----------|----------------------------|
| Baseba           | all Review      |                        |                 |            |                 |           |                            |

## Goal is to go from



| Intro<br>○○●○○○○ | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>000000000000 |
|------------------|-----------------|------------------------|-----------------|------------|-----------------|-----------|----------------------------|
| Baseb            | all Review      |                        |                 |            |                 |           |                            |

#### to



| Intro<br>○○●○○○○ | Prob & Modeling | Pythag Thm<br>oooooooo | Analysis of '04<br>೦೦೦೦೦೦೦ | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|----------------------------|------------|-----------------|-----------|-----------------------------|
| Baseb            | all Review      |                        |                            |            |                 |           |                             |

#### to



| Intro  | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|--------|-----------------|------------|-----------------|------------|---------|------|------------|
| 000000 |                 |            |                 |            |         |      |            |
|        |                 |            |                 |            |         |      |            |

#### **Baseball Review**



| Intro  | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|--------|-----------------|------------|-----------------|------------|---------|------|------------|
| 000000 |                 |            |                 |            |         |      |            |
|        |                 |            |                 |            |         |      |            |

#### **Baseball Review**



#### Numerical Observation: Pythagorean Won–Loss Formula

#### **Parameters**

- RS<sub>obs</sub>: average number of runs scored per game;
- RA<sub>obs</sub>: average number of runs allowed per game;
- $\gamma$ : some parameter, constant for a sport.

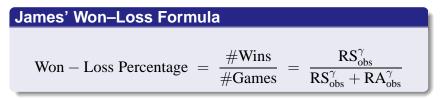


Intro<br/>0000000Prob & Modeling<br/>000000000Pythag Thm<br/>00000000Analysis of '04<br/>0000000Adv Theory<br/>000Summary<br/>000Refs<br/>0Appendices<br/>000000000000

#### Numerical Observation: Pythagorean Won–Loss Formula

#### **Parameters**

- RS<sub>obs</sub>: average number of runs scored per game;
- RA<sub>obs</sub>: average number of runs allowed per game;
- $\gamma$ : some parameter, constant for a sport.

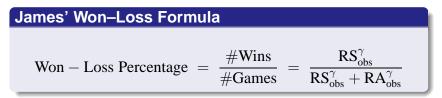

# James' Won–Loss Formula (NUMERICAL Observation)

Won - Loss Percentage = 
$$\frac{\#\text{Wins}}{\#\text{Games}} = \frac{\text{RS}_{\text{obs}}^{\gamma}}{\text{RS}_{\text{obs}}^{\gamma} + \text{RA}_{\text{obs}}^{\gamma}}$$

 $\gamma$  originally taken as 2, numerical studies show best  $\gamma$  for baseball is about 1.82.



#### Pythagorean Won–Loss Formula: Example




Example ( $\gamma = 1.82$ ): In 2009 the Red Sox were 95–67. They scored 872 runs and allowed 736, for a Pythagorean prediction record of 93.4 wins and 68.6 losses; the Yankees were 103–59 but predicted to be 95.2–66.8 (they scored 915 runs and allowed 753).





#### Pythagorean Won–Loss Formula: Example



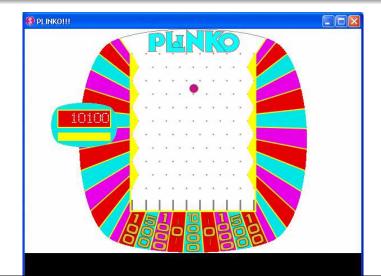
Example ( $\gamma = 1.82$ ): In 2009 the Red Sox were 95–67. They scored 872 runs and allowed 736, for a Pythagorean prediction record of 93.4 wins and 68.6 losses; the Yankees were 103–59 but predicted to be 95.2–66.8 (they scored 915 runs and allowed 753).

2011: Red Sox 'should' be 95-67, Tampa 'should' be 92-70....

#### Applications of the Pythagorean Won–Loss Formula

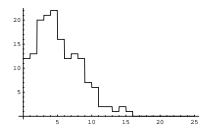
- Extrapolation: use half-way through season to predict a team's performance for rest of season.
- Evaluation: see if consistently over-perform or under-perform.
- Advantage: Other statistics / formulas (run-differential per game); this is easy to use, depends only on two simple numbers for a team.

 Intro
 Prob & Modeling
 Pythag Thm
 Analysis of '04
 Adv Theory
 Summary
 Refs
 Appendices

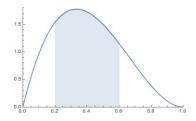

 0000000
 0000000000
 00000000
 00000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</t

Applications of the Pythagorean Won–Loss Formula

- Extrapolation: use half-way through season to predict a team's performance for rest of season.
- Evaluation: see if consistently over-perform or under-perform.
- Advantage: Other statistics / formulas (run-differential per game); this is easy to use, depends only on two simple numbers for a team.

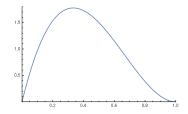

Red Sox: 2004 Predictions: May 1: 99 wins; June 1: 93 wins; July 1: 90 wins; August 1: 92 wins. Finished season with 98 wins.

| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>ooooooooo | Analysis of '04 | Adv Theory<br>000 | Summary<br>0000 | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|-------------------------|-----------------|-------------------|-----------------|-----------|-----------------------------|
|                  |                 | Proba                   | ability and     | Modelin           | g               |           |                             |





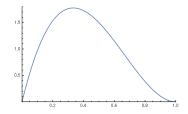

# Goal is to model observed scoring distributions; for example, consider




| Prob & Modeling | Analysis of '04 | Summary<br>0000 | Appendices |
|-----------------|-----------------|-----------------|------------|
|                 |                 |                 |            |



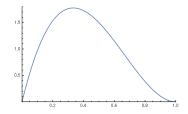
• Let X be random variable with density p(x):  $\diamond p(x) \ge 0$ ;  $\diamond \int_{-\infty}^{\infty} p(x) dx = 1$ ;  $\diamond \operatorname{Prob} (a \le X \le b) = \int_{a}^{b} p(x) dx$ .


| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       | 0000000000      |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |



• Let X be random variable with density p(x):

◇ 
$$p(x) \ge 0;$$
◇  $\int_{-\infty}^{\infty} p(x) dx = 1;$ 
◇ Prob ( $a \le X \le b$ ) =  $\int_{a}^{b} p(x) dx.$ 
● Mean  $\mu = \int_{-\infty}^{\infty} x p(x) dx.$ 


| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       | 0000000000      |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |



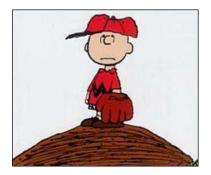
• Let X be random variable with density p(x):

$$\circ p(x) \ge 0; \diamond \int_{-\infty}^{\infty} p(x) dx = 1; \diamond \operatorname{Prob} (a \le X \le b) = \int_{a}^{b} p(x) dx. \bullet \operatorname{Mean} \mu = \int_{-\infty}^{\infty} x p(x) dx. \bullet \operatorname{Variance} \sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} p(x) dx.$$

| Intro   | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|-----------------|------------|-----------------|------------|---------|------|---------------|
| 0000000 | 0000000000      | 00000000   | 000000          | 000        | 0000    |      | 0000000000000 |
|         |                 |            |                 |            |         |      |               |



• Let X be random variable with density p(x):


$$\circ p(x) \ge 0; \diamond \int_{-\infty}^{\infty} p(x) dx = 1; \diamond \operatorname{Prob} (a \le X \le b) = \int_{a}^{b} p(x) dx. \bullet \operatorname{Mean} \mu = \int_{-\infty}^{\infty} x p(x) dx. \bullet \operatorname{Variance} \sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} p(x) dx.$$

• Independence: knowledge of one random variable gives no knowledge of the other.

| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory<br>000 | Summary<br>0000 | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|-----------------|-------------------|-----------------|-----------|-----------------------------|
| Model            | ing the Rea     | World                  |                 |                   |                 |           |                             |

#### **Guidelines for Modeling:**

- Model should capture key features of the system;
- Model should be mathematically tractable (solvable).





#### Modeling the Real World (cont)

#### **Possible Model:**

- Runs Scored and Runs Allowed independent random variables;
- *f*<sub>RS</sub>(*x*), *g*<sub>RA</sub>(*y*): probability density functions for runs scored (allowed).



#### Modeling the Real World (cont)

#### **Possible Model:**

- Runs Scored and Runs Allowed independent random variables;
- *f*<sub>RS</sub>(*x*), *g*<sub>RA</sub>(*y*): probability density functions for runs scored (allowed).

#### Won-Loss formula follows from computing

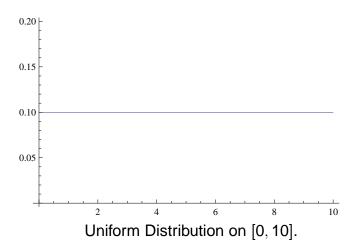
$$\int_{x=0}^{\infty} \left[ \int_{y \le x} f_{\rm RS}(x) g_{\rm RA}(y) dy \right] dx \quad \text{or} \quad \sum_{i=0}^{\infty} \left[ \sum_{j < i} f_{\rm RS}(i) g_{\rm RA}(j) \right]$$

| Intro   | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|-----------------|------------|-----------------|------------|---------|------|---------------|
| 0000000 |                 | 00000000   | ০০০০০০০         | 000        | 0000    | o    | 0000000000000 |
| Proble  | ms with the     | e Model    |                 |            |         |      |               |

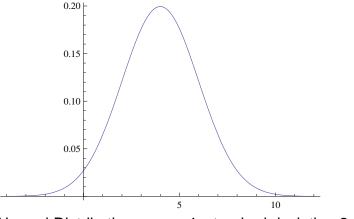
### Reduced to calculating

$$\int_{x=0}^{\infty} \left[ \int_{y \le x} f_{\rm RS}(x) g_{\rm RA}(y) dy \right] dx \quad \text{or} \quad \sum_{i=0}^{\infty} \left[ \sum_{j < i} f_{\rm RS}(i) g_{\rm RA}(j) \right]$$



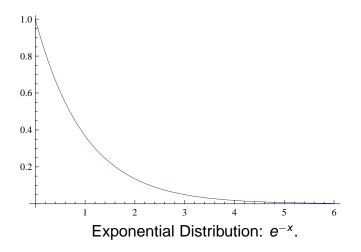

# Reduced to calculating

$$\int_{x=0}^{\infty} \left[ \int_{y \le x} f_{\rm RS}(x) g_{\rm RA}(y) dy \right] dx \quad \text{or} \quad \sum_{i=0}^{\infty} \left[ \sum_{j < i} f_{\rm RS}(i) g_{\rm RA}(j) \right]$$


#### Problems with the model:

- What are explicit formulas for  $f_{RS}$  and  $g_{RA}$ ?
- Are the runs scored and allowed independent random variables?
- Can the integral (or sum) be computed in closed form?

| Intro   | Prob & Modeling           | Pythag Thm      | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|---------------------------|-----------------|-----------------|------------|---------|------|---------------|
| 0000000 | ○○○○○●○○○○○               | 00000000        | ০০০০০০০         | 000        | 0000    | o    | 0000000000000 |
| Choice  | es for f <sub>RS</sub> ar | nd $g_{\rm RA}$ |                 |            |         |      |               |



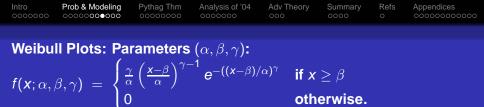

| Intro   | Prob & Modeling | Pythag Thm           | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|-----------------|----------------------|-----------------|------------|---------|------|---------------|
| 0000000 |                 | 00000000             | 0000000         | 000        | 0000    | o    | 0000000000000 |
| Choice  | es for fes ar   | nd $\sigma_{\rm PA}$ |                 |            |         |      |               |



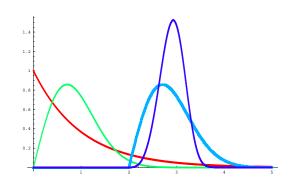
Normal Distribution: mean 4, standard deviation 2.

| Intro   | Prob & Modeling                  | Pythag Thm      | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|----------------------------------|-----------------|-----------------|------------|---------|------|---------------|
| 0000000 | ○○○○●○○○○○                       | oooooooo        | ০০০০০০০         | 000        | 0000    | o    | 0000000000000 |
| Choice  | es for <i>f<sub>RS</sub> a</i> r | nd $q_{\rm RA}$ |                 |            |         |      |               |






#### Weibull distribution:


$$f(\boldsymbol{x}; \alpha, \beta, \gamma) = \begin{cases} \frac{\gamma}{\alpha} \left(\frac{\boldsymbol{x}-\beta}{\alpha}\right)^{\gamma-1} \boldsymbol{e}^{-((\boldsymbol{x}-\beta)/\alpha)^{\gamma}} & \text{if } \boldsymbol{x} \geq \beta \\ \boldsymbol{0} & \text{otherwise.} \end{cases}$$

- $\alpha$ : scale (variance: meters versus centimeters);
- $\beta$ : origin (mean: translation, zero point);
- $\gamma$ : shape (behavior near  $\beta$  and at infinity).

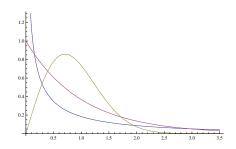
Various values give different shapes, but can we find  $\alpha, \beta, \gamma$  such that it fits observed data? Is the Weibull justifiable by some reasonable hypotheses?



otherwise.



Red:(1, 0, 1) (exponential); Green:(1, 0, 2); Cyan:(1, 2, 2); Blue:(1, 2, 4)


IntroProb & ModelingPythag ThmAnalysis of '04Adv TheorySummaryRefsAppendices000000000000000000000000000000000000000000000

#### **Three Parameter Weibull: Applications**

$$f(\boldsymbol{x}; \alpha, \beta, \gamma) = \begin{cases} \frac{\gamma}{\alpha} \left(\frac{\boldsymbol{x}-\beta}{\alpha}\right)^{\gamma-1} \boldsymbol{e}^{-((\boldsymbol{x}-\beta)/\alpha)^{\gamma}} & \text{if } \boldsymbol{x} \geq \beta \\ \boldsymbol{0} & \text{otherwise.} \end{cases}$$

Arises in many places, such as survival analysis.

- $\gamma < 1$ : high infant mortality;
- $\gamma = 1$ : constant failure rate;
- $\gamma > 1$ : aging process.



 Intro
 Prob & Modeling
 Pythag Thm
 Analysis of '04
 Adv Theory
 Summary
 Refs
 Appendices

 0000000
 00000000
 0000000
 000
 000
 0000
 000000000

#### The Gamma Distribution and Weibulls

• For s > 0, define the  $\Gamma$ -function by

$$\Gamma(s) = \int_0^\infty e^{-u} u^{s-1} du = \int_0^\infty e^{-u} u^s \frac{du}{u}.$$

 Generalizes factorial function: Γ(n) = (n − 1)! for n ≥ 1 an integer.

A Weibull distribution with parameters  $\alpha$ ,  $\beta$ ,  $\gamma$  has:

- Mean:  $\alpha \Gamma (1 + 1/\gamma) + \beta$ .
- Variance:  $\alpha^{2}\Gamma(1+2/\gamma) \alpha^{2}\Gamma(1+1/\gamma)^{2}$ .

| Intro<br>0000000 | Prob & Modeling | Analysis of '04 | Adv Theory | Summary<br>0000 | Appendices |
|------------------|-----------------|-----------------|------------|-----------------|------------|
|                  |                 |                 |            |                 |            |

#### **Weibull Integrations**

30

$$\mu_{\alpha,\beta,\gamma} = \int_{\beta}^{\infty} \mathbf{x} \cdot \frac{\gamma}{\alpha} \left(\frac{\mathbf{x}-\beta}{\alpha}\right)^{\gamma-1} \mathbf{e}^{-((\mathbf{x}-\beta)/\alpha)^{\gamma}} d\mathbf{x}$$
$$= \int_{\beta}^{\infty} \alpha \frac{\mathbf{x}-\beta}{\alpha} \cdot \frac{\gamma}{\alpha} \left(\frac{\mathbf{x}-\beta}{\alpha}\right)^{\gamma-1} \mathbf{e}^{-((\mathbf{x}-\beta)/\alpha)^{\gamma}} d\mathbf{x} + \beta.$$

Change variables:  $u = \left(\frac{x-\beta}{\alpha}\right)^{\gamma}$ , so  $du = \frac{\gamma}{\alpha} \left(\frac{x-\beta}{\alpha}\right)^{\gamma-1} dx$  and

$$\mu_{\alpha,\beta,\gamma} = \int_0^\infty \alpha u^{1/\gamma} \cdot \mathbf{e}^{-u} \mathrm{d}u + \beta$$
$$= \alpha \int_0^\infty \mathbf{e}^{-u} u^{1+1/\gamma} \frac{\mathrm{d}u}{u} + \beta$$
$$= \alpha \Gamma(1+1/\gamma) + \beta.$$

A similar calculation determines the variance.

|   |                 |    |    | _    |      | _   |      |         |            | _     |       |                      |                   |
|---|-----------------|----|----|------|------|-----|------|---------|------------|-------|-------|----------------------|-------------------|
|   |                 |    |    | 1    | he   | P   | /tha | ago     | orea       | an I  | he    | orem                 |                   |
| - |                 | _  |    |      |      |     |      |         |            | m 🔳   |       |                      |                   |
| 1 | American League | ą  |    |      |      |     | ] 3  | SIGCUIA | vorite tea |       | Oldi  | noings as or   Jun 🖭 | 5 12008 1 60      |
|   | East            | w  | L  | PCT  | GB   | L10 | STRK | INT     | HOME       | ROAD  | X W-L | LAST GAME            | NEXT GAME         |
| E | Boston          | 37 | 25 | .597 |      | 6-4 | W2   | 3-0     | 23-5       | 14-20 | 36-26 | 6/4 v TB, W 5-1      | 6/5 v TB, 6:05P   |
| 1 | Tampa Bay       | 35 | 24 | .593 | 0.5  | 6-4 | L2   | 1-2     | 24-10      | 11-14 | 32-27 | 6/4 @ BOS, L 1-5     | 6/5 @ BOS, 6:05P  |
| 1 | Toronto         | 32 | 29 | .525 | 4.5  | 6-4 | L1   | 2-1     | 15-11      | 17-18 | 34-27 | 6/4 @ NYY, L 1-5     | 6/5 @ NYY, 1:05P  |
|   | New York        | 29 | 30 | .492 | 6.5  | 5-5 | W1   | 0-2     | 15-13      | 14-17 | 28-31 | 6/4 v TOR, W 5-1     | 6/5 v TOR, 1:05P  |
| E | Baltimore       | 28 | 30 | .483 | 7.0  | 4-6 | L1   | 2-1     | 17-11      | 11-19 | 27-31 | 6/4 @ MIN, L 5-7     | 6/5 @ MIN, 1:10P  |
| 0 | Central         | W  | L  | PCT  | GB   | L10 | STRK | INT     | HOME       | ROAD  | X W-L | LAST GAME            | NEXT GAME         |
| ( | Chicago         | 32 | 26 | .552 |      | 6-4 | W2   | 3-0     | 15-9       | 17-17 | 34-24 | 6/4 v KC, W 6-4      | 6/5 v KC, 8:11P   |
| 1 | Minnesota       | 31 | 28 | .525 | 1.5  | 7-3 | W1   | 1-2     | 19-15      | 12-13 | 29-30 | 6/4 v BAL, W 7-5     | 6/5 v BAL, 1:10P  |
| ( | Cleveland       | 27 | 32 | .458 | 5.5  | 4-6 | W1   | 0-3     | 16-16      | 11-16 | 31-28 | 6/4 @ TEX, W 15-9    | 6/5 @ TEX, 8:05P  |
| E | Detroit         | 24 | 35 | .407 | 8.5  | 3-7 | L3   | 1-2     | 12-14      | 12-21 | 27-32 | 6/4 @ OAK, L 2-10    | 6/6 v CLE, 7:05P  |
|   | Kansas City     | 23 | 36 | .390 | 9.5  | 2-8 | L2   | 2-1     | 12-16      | 11-20 | 23-36 | 6/4 @ CWS, L 4-6     | 6/5 @ CWS, 8:11P  |
|   | Nest            | W  | L  | PCT  | GB   | L10 | STRK | INT     | HOME       | ROAD  | X W-L | LAST GAME            | NEXT GAME         |
| 1 | os Angeles      | 37 | 24 | .607 |      | 7-3 | W5   | 2-1     | 18-13      | 19-11 | 31-30 | 6/4 @ SEA, W 5-4     | 6/6 @ OAK, 10:05P |
| ( | Dakland         | 33 | 27 | .550 | 3.5  | 6-4 | W4   | 1-2     | 20-13      | 13-14 | 35-25 | 6/4 v DET, W 10-2    | 6/6 v LAA, 10:05P |
| 1 | Texas           | 30 | 31 | .492 | 7.0  | 5-5 | L1   | 2-1     | 15-14      | 15-17 | 29-32 | 6/4 v CLE, L 9-15    | 6/5 v CLE, 8:05P  |
|   | Seattle         | 21 | 39 | .350 | 15.5 | 3-7 | 14   | 2-1     | 14-19      | 7-20  | 24-36 | 6/4 v LAA, L 4-5     | 6/6 @ BOS, 7:05P  |

| East         | W  | L  | PCT  | GB   | L10 | STRK                                        | INT | HOME  | ROAD  | X W-L | LAST GAME        | NEXT GAME        |
|--------------|----|----|------|------|-----|---------------------------------------------|-----|-------|-------|-------|------------------|------------------|
| Philadelphia | 35 | 26 | .574 | . e. | 8-2 | L1                                          | 1-2 | 20-13 | 15-13 | 36-25 | 6/4 v CIN, L 0-2 | 6/5 v CIN, 1:05P |
| Florida      | 32 | 26 | .552 | 1.5  | 4-6 | W1                                          | 1-2 | 18-12 | 14-14 | 29-29 | 6/4 @ ATL, W 6-4 | 6/5 @ ATL, 7:00P |
| New York     | 30 | 28 | .517 | 3.5  | 7-3 | W2                                          | 2-0 | 17-11 | 13-17 | 30-28 | 6/4 @ SF, W 5-3  | 6/5 @ SD, 10:05P |
| Atlanta      | 31 | 29 | .517 | 3.5  | 4-6 | L1                                          | 2-1 | 24-8  | 7-21  | 35-25 | 6/4 v FLA, L 4-6 | 6/5 v FLA, 7:00P |
| Washington   | 24 | 35 | .407 | 10.0 | 3-7 | L3                                          | 1-2 | 13-16 | 11-19 | 23-36 | 6/4 v STL, PPD   | 6/5 v STL, 7:10P |
| Central      | W  | L  | PCT  | GB   | L10 | STRK                                        | INT | HOME  | ROAD  | X W-L | LAST GAME        | NEXT GAME        |
|              |    |    |      |      |     | - 1. C. |     |       |       |       |                  |                  |

#### Building Intuition: The log –5 Method

Assume team *A* wins *p* percent of their games, and team *B* wins *q* percent of their games. Which formula do you think does a good job of predicting the probability that team *A* beats team *B*? Why?

$$egin{aligned} & p+pq \ \hline p+q+2pq', & rac{p+pq}{p+q-2pq} \ \hline p+q+2pq', & rac{p-pq}{p+q-2pq} \end{aligned}$$

| Intro F | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|---------|-----------------|------------|-----------------|------------|---------|------|------------|
|         |                 | 0000000    |                 |            |         |      |            |

$$rac{
ho+
ho q}{
ho+q+2
ho q}, \quad rac{
ho+
ho q}{
ho+q-2
ho q}, \quad rac{
ho-
ho q}{
ho+q+2
ho q}, \quad rac{
ho-
ho q}{
ho+q-2
ho q}$$

How can we test these candidates?

Can you think of answers for special choices of p and q?

| Prob & Modeling | Analysis of '04 | Adv Theory<br>000 |  | Appendices<br>000000000000 |
|-----------------|-----------------|-------------------|--|----------------------------|
|                 |                 |                   |  |                            |

$$rac{p+pq}{p+q+2pq}, \hspace{0.2cm} rac{p+pq}{p+q-2pq}, \hspace{0.2cm} rac{p-pq}{p+q+2pq}, \hspace{0.2cm} rac{p-pq}{p+q-2pq}$$

#### Homework: explore the following:

 $\diamond p = 1$ , q < 1 (do not want the battle of the undefeated).

 $\diamond p = 0, q > 0$  (do not want the Toilet Bowl).

 $\diamond p = q.$ 

 $\diamond p > q$  (can do q < 1/2 and q > 1/2).

Anything else where you 'know' the answer?

| Prob & Modeling | Analysis of '04 | Adv Theory |  | Appendices |
|-----------------|-----------------|------------|--|------------|
|                 |                 |            |  |            |

$$rac{p+pq}{p+q+2pq}, \quad rac{p+pq}{p+q-2pq}, \quad rac{p-pq}{p+q+2pq}, \quad rac{p-pq}{p+q-2pq}$$

#### Homework: explore the following:

 $\diamond p = 1$ , q < 1 (do not want the battle of the undefeated).

 $\diamond p = 0, q > 0$  (do not want the Toilet Bowl).

 $\diamond p = q.$ 

$$\diamond$$
  $p > q$  (can do  $q < 1/2$  and  $q > 1/2$ ).

Anything else where you 'know' the answer?

|         | Prob & Modeling |         | Analysis of '04 | Adv Theory | Summary |              |
|---------|-----------------|---------|-----------------|------------|---------|--------------|
| 0000000 | 00000000000     | 0000000 | 0000000         | 000        | 0000    | 000000000000 |
|         |                 |         |                 |            |         |              |
|         |                 |         |                 |            |         |              |

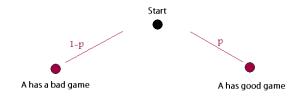
$$rac{p-pq}{p+q-2pq} \;=\; rac{p(1-q)}{p(1-q)+(1-p)q}$$

Homework: explore the following:  $\diamond p = 1, q < 1$  (do not want the battle of the undefeated).

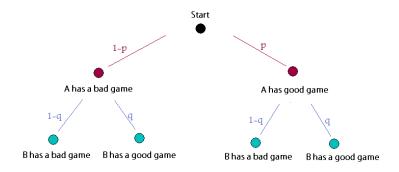
 $\diamond p = 0, q > 0$  (do not want the Toilet Bowl).

 $\diamond p = q.$ 

$$\Rightarrow$$
  $p > q$  (can do  $q < 1/2$  and  $q > 1/2$ ).


Anything else where you 'know' the answer?

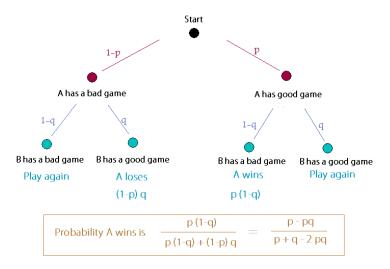
| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>○○○●○○○○ | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|------------------|-----------------|------------------------|-----------------|------------|---------|------|------------|
|                  |                 |                        |                 |            |         |      |            |
| Eatima           | ting Winni      | na Doroo               | ntogoo, (D      | reef?      |         |      |            |
| Estima           | ating Winni     | ng Perce               | mages: P        | 1001       |         |      |            |
|                  |                 |                        |                 |            |         |      |            |
|                  |                 |                        | Start           |            |         |      |            |
|                  |                 |                        | •               |            |         |      |            |
|                  |                 |                        | •               |            |         |      |            |
|                  |                 |                        |                 |            |         |      |            |


#### A has a good game with probability p

B has a good game with probability q

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 | 0000000    |                 |            |         |      |            |




| Intro Prob & | Modeling Pythag Thm                     | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|--------------|-----------------------------------------|-----------------|------------|---------|------|------------|
|              | 0000000 0000000000000000000000000000000 |                 |            |         |      |            |



| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 | 0000000    |                 |            |         |      |            |



| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 | 00000000   |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |



Duck ability Abacta D

Intro Prob & Modeling Pythag Thm Analysis of '04 Adv Theory Summary

Pythagorean Won–Loss Formula:  $\frac{RS_{obs}^{\gamma}}{RS^{\gamma} + RA}$ 

## Theorem: Pythagorean Won–Loss Formula (Miller '06)

Refs

Appendices

Let the runs scored and allowed per game be two independent random variables drawn from Weibull distributions ( $\alpha_{RS}, \beta, \gamma$ ) and ( $\alpha_{RA}, \beta, \gamma$ );  $\alpha_{RS}$  and  $\alpha_{RA}$  are chosen so that the Weibull means are the observed sample values RS and RA. If  $\gamma > 0$  then the Won–Loss Percentage is  $\frac{(RS-\beta)^{\gamma}}{(RS-\beta)^{\gamma}+(RA-\beta)^{\gamma}}$ .

Pythagorean Won–Loss Formula:  $\frac{RS_{obs}^{\gamma}}{RS_{obs}^{\gamma}+RA_{obs}^{\gamma}}$ 

Pythag Thm

Prob & Modeling

Adv Theory

Summary

Refs

Appendices

#### Theorem: Pythagorean Won–Loss Formula (Miller '06)

Analysis of '04

Let the runs scored and allowed per game be two independent random variables drawn from Weibull distributions ( $\alpha_{RS}, \beta, \gamma$ ) and ( $\alpha_{RA}, \beta, \gamma$ );  $\alpha_{RS}$  and  $\alpha_{RA}$  are chosen so that the Weibull means are the observed sample values RS and RA. If  $\gamma > 0$  then the Won–Loss Percentage is  $\frac{(RS-\beta)^{\gamma}}{(RS-\beta)^{\gamma}+(RA-\beta)^{\gamma}}$ .

Take  $\beta = -1/2$  (since runs must be integers).  $RS - \beta$  estimates average runs scored,  $RA - \beta$  estimates average runs allowed. Weibull with parameters  $(\alpha, \beta, \gamma)$  has mean  $\alpha \Gamma (\mathbf{1} + \mathbf{1}/\gamma) + \beta.$ 

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 | 00000000   |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |

#### Proof of the Pythagorean Won–Loss Formula

Let X and Y be independent random variables with Weibull distributions ( $\alpha_{RS}, \beta, \gamma$ ) and ( $\alpha_{RA}, \beta, \gamma$ ) respectively. To have means of RS –  $\beta$  and RA –  $\beta$  our calculations for the means imply

$$\alpha_{\rm RS} = \frac{{\rm RS} - \beta}{\Gamma(1 + 1/\gamma)}, \quad \alpha_{\rm RA} = \frac{{\rm RA} - \beta}{\Gamma(1 + 1/\gamma)}.$$

We need only calculate the probability that X exceeds Y. We use the integral of a probability density is 1.

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 | 000000000  |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |

#### Proof of the Pythagorean Won–Loss Formula (cont)

$$\begin{aligned} \mathsf{Prob}(X > Y) &= \int_{x=\beta}^{\infty} \int_{y=\beta}^{x} f(x; \alpha_{\mathrm{RS}}, \beta, \gamma) f(y; \alpha_{\mathrm{RA}}, \beta, \gamma) dy \, dx \\ &= \int_{\beta}^{\infty} \int_{\beta}^{x} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x-\beta}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-\left(\frac{x-\beta}{\alpha_{\mathrm{RS}}}\right)^{\gamma}} \frac{\gamma}{\alpha_{\mathrm{RA}}} \left(\frac{y-\beta}{\alpha_{\mathrm{RA}}}\right)^{\gamma-1} e^{-\left(\frac{y-\beta}{\alpha_{\mathrm{RA}}}\right)^{\gamma}} dy dx \\ &= \int_{x=0}^{\infty} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-\left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma}} \left[\int_{y=0}^{x} \frac{\gamma}{\alpha_{\mathrm{RA}}} \left(\frac{y}{\alpha_{\mathrm{RA}}}\right)^{\gamma-1} e^{-\left(\frac{y}{\alpha_{\mathrm{RA}}}\right)^{\gamma}} dy \right] dx \\ &= \int_{x=0}^{\infty} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-(x/\alpha_{\mathrm{RS}})^{\gamma}} \left[1 - e^{-(x/\alpha_{\mathrm{RA}})^{\gamma}}\right] dx \\ &= 1 - \int_{x=0}^{\infty} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-(x/\alpha)^{\gamma}} dx, \end{aligned}$$

where we have set

$$\frac{1}{\alpha^{\gamma}} = \frac{1}{\alpha_{\rm RS}^{\gamma}} + \frac{1}{\alpha_{\rm RA}^{\gamma}} = \frac{\alpha_{\rm RS}^{\gamma} + \alpha_{\rm RA}^{\gamma}}{\alpha_{\rm RS}^{\gamma} \alpha_{\rm RA}^{\gamma}}.$$

54

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 | 0000000    |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |

#### Proof of the Pythagorean Won-Loss Formula (cont)

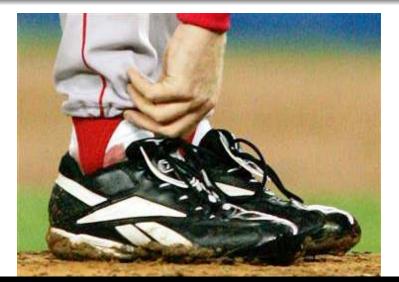
$$\begin{aligned} \mathsf{Prob}(X > Y) &= 1 - \frac{\alpha^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma}} \int_{0}^{\infty} \frac{\gamma}{\alpha} \left(\frac{x}{\alpha}\right)^{\gamma-1} e^{(x/\alpha)^{\gamma}} \mathrm{d}x \\ &= 1 - \frac{\alpha^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma}} \\ &= 1 - \frac{1}{\alpha_{\mathrm{RS}}^{\gamma}} \frac{\alpha_{\mathrm{RS}}^{\gamma} \alpha_{\mathrm{RA}}^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma} + \alpha_{\mathrm{RA}}^{\gamma}} \\ &= \frac{\alpha_{\mathrm{RS}}^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma} + \alpha_{\mathrm{RA}}^{\gamma}}. \end{aligned}$$

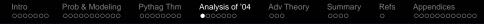
|  | Prob & Modeling | Pythag Thm<br>○○○○○○● |  |  | Appendices |
|--|-----------------|-----------------------|--|--|------------|
|  |                 |                       |  |  |            |

#### Proof of the Pythagorean Won–Loss Formula (cont)

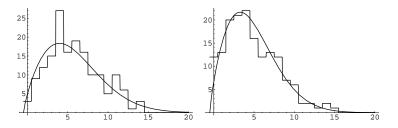
$$\begin{aligned} \mathsf{Prob}(X > Y) &= 1 - \frac{\alpha^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma}} \int_{0}^{\infty} \frac{\gamma}{\alpha} \left(\frac{x}{\alpha}\right)^{\gamma-1} e^{(x/\alpha)^{\gamma}} \mathrm{d}x \\ &= 1 - \frac{\alpha^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma}} \\ &= 1 - \frac{1}{\alpha_{\mathrm{RS}}^{\gamma}} \frac{\alpha_{\mathrm{RS}}^{\gamma} \alpha_{\mathrm{RA}}^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma} + \alpha_{\mathrm{RA}}^{\gamma}} \\ &= \frac{\alpha_{\mathrm{RS}}^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma} + \alpha_{\mathrm{RA}}^{\gamma}}. \end{aligned}$$

We substitute the relations for  $\alpha_{RS}$  and  $\alpha_{RA}$  and find that


$$\mathsf{Prob}(X > Y) = \frac{(\mathsf{RS} - \beta)^{\gamma}}{(\mathsf{RS} - \beta)^{\gamma} + (\mathsf{RA} - \beta)^{\gamma}}.$$


Note RS  $-\beta$  estimates RS<sub>obs</sub>, RA  $-\beta$  estimates RA<sub>obs</sub>.

56


| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |

### Analysis of 2004





Plots of RS (predicted vs observed) and RA (predicted vs observed) for the Boston Red Sox



# Best Fit Weibulls to Data: Method of Least Squares

Analysis of '04

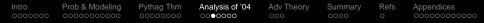
Adv Theory

Summary

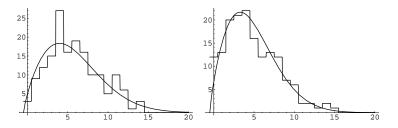
Refs

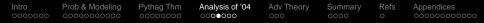
Appendices

Bin(k) is the k<sup>th</sup> bin;

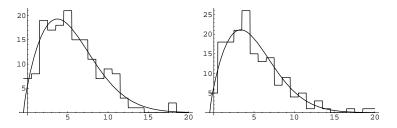

Pythag Thm

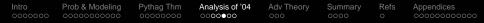
Prob & Modeling


- RS<sub>obs</sub>(k) (resp. RA<sub>obs</sub>(k)) the observed number of games with the number of runs scored (allowed) in Bin(k);
- A(α, γ, k) the area under the Weibull with parameters (α, -1/2, γ) in Bin(k).

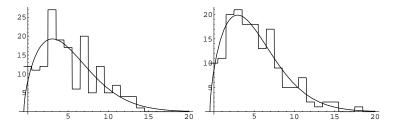

Find the values of  $(\alpha_{\rm RS}, \alpha_{\rm RA}, \gamma)$  that minimize

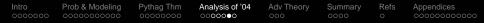
$$\sum_{k=1}^{\#\text{Bins}} (\text{RS}_{\text{obs}}(k) - \#\text{Games} \cdot A(\alpha_{\text{RS}}, \gamma, k))^2 \\ + \sum_{k=1}^{\#\text{Bins}} (\text{RA}_{\text{obs}}(k) - \#\text{Games} \cdot A(\alpha_{\text{RA}}, \gamma, k))^2.$$



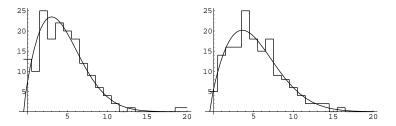


Plots of RS (predicted vs observed) and RA (predicted vs observed) for the Boston Red Sox

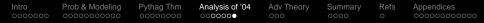




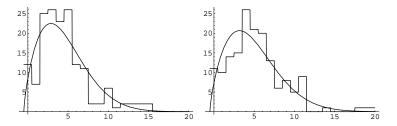


Plots of RS (predicted vs observed) and RA (predicted vs observed) for the New York Yankees







Plots of RS (predicted vs observed) and RA (predicted vs observed) for the Baltimore Orioles






Plots of RS (predicted vs observed) and RA (predicted vs observed) for the Tampa Bay Devil Rays





Plots of RS (predicted vs observed) and RA (predicted vs observed) for the Toronto Blue Jays



|  | Prob & Modeling | Pythag Thm | Adv Theory |  | Appendices<br>000000000000 |
|--|-----------------|------------|------------|--|----------------------------|
|  |                 |            |            |  |                            |

#### **Advanced Theory**

| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory<br>●○○ | Summary<br>0000 | Refs<br>o | Appendices<br>000000000000 |
|------------------|-----------------|------------------------|-----------------|-------------------|-----------------|-----------|----------------------------|
| Bonfei           | rroni Adjus     | tments                 |                 |                   |                 |           |                            |

Fair coin: 1,000,000 flips, expect 500,000 heads.



Fair coin: 1,000,000 flips, expect 500,000 heads. About 95% have 499,000  $\leq$  #Heads  $\leq$  501,000.



Fair coin: 1,000,000 flips, expect 500,000 heads. About 95% have 499,000  $\leq \#$ Heads  $\leq$  501,000.

Consider *N* independent experiments of flipping a fair coin 1,000,000 times. *What is the probability that at least one of set doesn't have* 499,000  $\leq$ #Heads  $\leq$  501,000?

| Ν  | Probability |
|----|-------------|
| 5  | 22.62       |
| 14 | 51.23       |
| 50 | 92.31       |

See unlikely events happen as N increases!

#### Data Analysis: $\chi^2$ Tests (20 and 109 degrees of freedom)

| Team                 | RS+RA χ2: 20 d.f. | Indep <i>χ</i> 2: 109 d.f |
|----------------------|-------------------|---------------------------|
| Boston Red Sox       | 15.63             | 83.19                     |
| New York Yankees     | 12.60             | 129.13                    |
| Baltimore Orioles    | 29.11             | 116.88                    |
| Tampa Bay Devil Rays | 13.67             | 111.08                    |
| Toronto Blue Jays    | 41.18             | 100.11                    |
| Minnesota Twins      | 17.46             | 97.93                     |
| Chicago White Sox    | 22.51             | 153.07                    |
| Cleveland Indians    | 17.88             | 107.14                    |
| Detroit Tigers       | 12.50             | 131.27                    |
| Kansas City Royals   | 28.18             | 111.45                    |
| Los Angeles Angels   | 23.19             | 125.13                    |
| Oakland Athletics    | 30.22             | 133.72                    |
| Texas Rangers        | 16.57             | 111.96                    |
| Seattle Mariners     | 21.57             | 141.00                    |

20 d.f.: 31.41 (at the 95% level) and 37.57 (at the 99% level). 109 d.f.: 134.4 (at the 95% level) and 146.3 (at the 99% level). Bonferroni Adjustment: 20 d f = 41.14 (at the 95% level) and 46.28 (at the 90% level).

20 d.f.: 41.14 (at the 95% level) and 46.38 (at the 99% level). 109 d.f.: 152.9 (at the 95% level) and 162.2 (at the 99% level).



- For independence of runs scored and allowed, use bins  $[0,1) \cup [1,2) \cup [2,3) \cup \cdots \cup [8,9) \cup [9,10) \cup [10,11) \cup [11,\infty).$
- Have an r × c contingency table with structural zeros (runs scored and allowed per game are never equal).
- (Essentially)  $O_{r,r} = 0$  for all r, use an iterative fitting procedure to obtain maximum likelihood estimators for  $E_{r,c}$  (expected frequency of cell (r, c) assuming that, given runs scored and allowed are distinct, the runs scored and allowed are independent).

| - II | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|------|-----------------|------------|-----------------|------------|---------|------|------------|
|      |                 |            |                 |            |         |      |            |
|      |                 |            |                 |            |         |      |            |

#### Summary

 Intro
 Prob & Modeling
 Pythag Thm
 Analysis of '04
 Adv Theory
 Summary
 Refs
 Appendices

 0000000
 000000000
 00000000
 000
 000
 000
 0000000000

#### Testing the Model: Data from Method of Maximum Likelihood

| Team                 | Obs Wins | Pred Wins | ObsPerc | PredPerc | GamesDiff | γ    |
|----------------------|----------|-----------|---------|----------|-----------|------|
| Boston Red Sox       | 98       | 93.0      | 0.605   | 0.574    | 5.03      | 1.82 |
| New York Yankees     | 101      | 87.5      | 0.623   | 0.540    | 13.49     | 1.78 |
| Baltimore Orioles    | 78       | 83.1      | 0.481   | 0.513    | -5.08     | 1.66 |
| Tampa Bay Devil Rays | 70       | 69.6      | 0.435   | 0.432    | 0.38      | 1.83 |
| Toronto Blue Jays    | 67       | 74.6      | 0.416   | 0.464    | -7.65     | 1.97 |
| Minnesota Twins      | 92       | 84.7      | 0.568   | 0.523    | 7.31      | 1.79 |
| Chicago White Sox    | 83       | 85.3      | 0.512   | 0.527    | -2.33     | 1.73 |
| Cleveland Indians    | 80       | 80.0      | 0.494   | 0.494    | 0.        | 1.79 |
| Detroit Tigers       | 72       | 80.0      | 0.444   | 0.494    | -8.02     | 1.78 |
| Kansas City Royals   | 58       | 68.7      | 0.358   | 0.424    | -10.65    | 1.76 |
| Los Angeles Angels   | 92       | 87.5      | 0.568   | 0.540    | 4.53      | 1.71 |
| Oakland Athletics    | 91       | 84.0      | 0.562   | 0.519    | 6.99      | 1.76 |
| Texas Rangers        | 89       | 87.3      | 0.549   | 0.539    | 1.71      | 1.90 |
| Seattle Mariners     | 63       | 70.7      | 0.389   | 0.436    | -7.66     | 1.78 |

 $\gamma$ : mean = 1.74, standard deviation = .06, median = 1.76; close to numerically observed value of 1.82.

| Intro   | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|-----------------|------------|-----------------|------------|---------|------|---------------|
| 0000000 |                 | 00000000   | ০০০০০০০         | 000        | ○●○○    | o    | 0000000000000 |
| Conclu  | usions          |            |                 |            |         |      |               |

- Find parameters such that Weibulls are good fits;
- Runs scored and allowed per game are statistically independent;
- Pythagorean Won–Loss Formula is a consequence of our model;
- Best γ (both close to observed best 1.82):
   ◊ Method of Least Squares: 1.79;
   ◊ Method of Maximum Likelihood: 1.74.

| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04<br>০০০০০০০ | Adv Theory | Summary<br>○○●○ | Refs<br>o | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|----------------------------|------------|-----------------|-----------|-----------------------------|
| Future           | Work            |                        |                            |            |                 |           |                             |

- Micro-analysis: runs scored and allowed aren't independent (big lead, close game), run production smaller for inter-league games in NL parks, ....
- Other sports: Does the same model work? Basketball has γ between 14 and 16.5.
- Closed forms: Are there other probability distributions that give integrals which can be determined in closed form?
- Valuing Runs: Pythagorean formula used to value players (10 runs equals 1 win); better model leads to better team.

| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory | Summary<br>○○○● | Refs<br>o | Appendices<br>000000000000 |
|------------------|-----------------|------------------------|-----------------|------------|-----------------|-----------|----------------------------|
| Smoot            | S               |                        |                 |            |                 |           |                            |

# Sieze opportunities: Never know where they will lead.

| Intro   | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|-----------------|------------|-----------------|------------|---------|------|---------------|
| 0000000 |                 | 00000000   | ০০০০০০০         | 000        | ○○○●    | o    | 0000000000000 |
| Smoot   | S               |            |                 |            |         |      |               |

Sieze opportunities: Never know where they will lead.



| Intro   | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|---------|-----------------|------------|-----------------|------------|---------|------|---------------|
| 0000000 |                 | 00000000   | ০০০০০০০         | 000        | ○○○●    | o    | 0000000000000 |
| Smoot   | S               |            |                 |            |         |      |               |

Sieze opportunities: Never know where they will lead.



Oliver Smoot: Chairman of the American National Standards Institute (ANSI) from 2001 to 2002, President of the International Organization for Standardization (ISO) from 2003 to 2004.



| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
| 000   |                 |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |

## References

| Intro<br>0000000 | Prob & Modeling | Pythag Thm<br>00000000 | Analysis of '04 | Adv Theory | Summary<br>0000 | Refs<br>● | Appendices<br>0000000000000 |
|------------------|-----------------|------------------------|-----------------|------------|-----------------|-----------|-----------------------------|
| Refere           | nces            |                        |                 |            |                 |           |                             |

#### Baxamusa, Sal:

♦ Weibull worksheet: http://www.beyondtheboxscore.com/story/2006/4/30/114737/251

Run distribution plots for various teams:

http://www.beyondtheboxscore.com/story/2006/2/23/164417/484

#### Miller, Steven J.:

◇ A Derivation of James' Pythagorean projection, By The Numbers – The Newsletter of the SABR Statistical Analysis Committee, vol. 16 (February 2006), no. 1, 17–22. http://www.philbirnbaum.com/btn2006-02.pdf

◊ A derivation of the Pythagorean Won-Loss Formula in baseball, Chance Magazine 20 (2007), no. 1, 40–48. http://web.williams.edu/Mathematics/sjmiller/public\_html/math/papers/PythagWonLoss\_Pape

◇ Pythagoras at the Bat (with Taylor Corcoran, Jennifer Gossels, Victor Luo, Jaclyn Porfilio). Book chapter in Social Networks and the Economics of Sports (organized by Victor Zamaraev), to be published by Springer-Verlag. http://arxiv.org/pdf/1406.0758.

◊ Relieving and Readjusting Pythagoras (senior thesis of Victor Luo, 2014). http://arxiv.org/pdf/1406.3402.

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices |
|-------|-----------------|------------|-----------------|------------|---------|------|------------|
|       |                 |            |                 |            |         |      |            |
|       |                 |            |                 |            |         |      |            |

# Appendices



#### Appendix I: Proof of the Pythagorean Won–Loss Formula

Let X and Y be independent random variables with Weibull distributions ( $\alpha_{RS}, \beta, \gamma$ ) and ( $\alpha_{RA}, \beta, \gamma$ ) respectively. To have means of RS –  $\beta$  and RA –  $\beta$  our calculations for the means imply

$$\alpha_{\rm RS} = \frac{{\rm RS} - \beta}{\Gamma(1 + 1/\gamma)}, \quad \alpha_{\rm RA} = \frac{{\rm RA} - \beta}{\Gamma(1 + 1/\gamma)}.$$

We need only calculate the probability that X exceeds Y. We use the integral of a probability density is 1.

IntroProb & ModelingPythag ThmAnalysis of '04Adv TheorySummaryRefsAppendices00000000000000000000000000000000000000

## Appendix I: Proof of the Pythagorean Won-Loss Formula (cont)

$$\begin{aligned} \mathsf{Prob}(X > Y) &= \int_{x=\beta}^{\infty} \int_{y=\beta}^{x} f(x; \alpha_{\mathrm{RS}}, \beta, \gamma) f(y; \alpha_{\mathrm{RA}}, \beta, \gamma) dy \, dx \\ &= \int_{\beta}^{\infty} \int_{\beta}^{x} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x-\beta}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-\left(\frac{x-\beta}{\alpha_{\mathrm{RS}}}\right)^{\gamma}} \frac{\gamma}{\alpha_{\mathrm{RA}}} \left(\frac{y-\beta}{\alpha_{\mathrm{RA}}}\right)^{\gamma-1} e^{-\left(\frac{y-\beta}{\alpha_{\mathrm{RA}}}\right)^{\gamma}} dy dx \\ &= \int_{x=0}^{\infty} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-\left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma}} \left[\int_{y=0}^{x} \frac{\gamma}{\alpha_{\mathrm{RA}}} \left(\frac{y}{\alpha_{\mathrm{RA}}}\right)^{\gamma-1} e^{-\left(\frac{y}{\alpha_{\mathrm{RA}}}\right)^{\gamma}} dy \right] dx \\ &= \int_{x=0}^{\infty} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-(x/\alpha_{\mathrm{RS}})^{\gamma}} \left[1 - e^{-(x/\alpha_{\mathrm{RA}})^{\gamma}}\right] dx \\ &= 1 - \int_{x=0}^{\infty} \frac{\gamma}{\alpha_{\mathrm{RS}}} \left(\frac{x}{\alpha_{\mathrm{RS}}}\right)^{\gamma-1} e^{-(x/\alpha)^{\gamma}} dx, \end{aligned}$$

where we have set

$$\frac{1}{\alpha^{\gamma}} = \frac{1}{\alpha_{\rm RS}^{\gamma}} + \frac{1}{\alpha_{\rm RA}^{\gamma}} = \frac{\alpha_{\rm RS}^{\gamma} + \alpha_{\rm RA}^{\gamma}}{\alpha_{\rm RS}^{\gamma} \alpha_{\rm RA}^{\gamma}}.$$

82

 Intro
 Prob & Modeling
 Pythag Thm
 Analysis of '04
 Adv Theory
 Summary
 Refs
 Appendices

 0000000
 00000000
 0000000
 000
 000
 000
 000
 000000000

## Appendix I: Proof of the Pythagorean Won–Loss Formula (cont)

$$\begin{aligned} \mathsf{Prob}(X > Y) &= 1 - \frac{\alpha^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma}} \int_{0}^{\infty} \frac{\gamma}{\alpha} \left(\frac{x}{\alpha}\right)^{\gamma-1} e^{(x/\alpha)^{\gamma}} \mathrm{d}x \\ &= 1 - \frac{\alpha^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma}} \\ &= 1 - \frac{1}{\alpha_{\mathrm{RS}}^{\gamma}} \frac{\alpha_{\mathrm{RS}}^{\gamma} \alpha_{\mathrm{RA}}^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma} + \alpha_{\mathrm{RA}}^{\gamma}} \\ &= \frac{\alpha_{\mathrm{RS}}^{\gamma}}{\alpha_{\mathrm{RS}}^{\gamma} + \alpha_{\mathrm{RA}}^{\gamma}}. \end{aligned}$$

We substitute the relations for  $\alpha_{RS}$  and  $\alpha_{RA}$  and find that

$$\mathsf{Prob}(X > Y) = \frac{(\mathsf{RS} - \beta)^{\gamma}}{(\mathsf{RS} - \beta)^{\gamma} + (\mathsf{RA} - \beta)^{\gamma}}.$$

Note RS  $-\beta$  estimates RS<sub>obs</sub>, RA  $-\beta$  estimates RA<sub>obs</sub>.

83

## Appendix II: Best Fit Weibulls and Structural Zeros

The fits *look* good, but are they? Do  $\chi^2$ -tests:

Analysis of '04

Adv Theory

Summary

Refs

Appendices

• Let Bin(k) denote the  $k^{th}$  bin.

Pythag Thm

O<sub>r,c</sub>: the observed number of games where the team's runs scored is in Bin(r) and the runs allowed are in Bin(c).

•  $E_{r,c} = \frac{\sum_{c'} O_{r,c'} \cdot \sum_{r'} O_{r',c}}{\#Games}$  is the expected frequency of cell (r, c).

Then

Prob & Modeling

$$\sum_{r=1}^{\text{\#Rows}} \sum_{c=1}^{\text{\#Columns}} \frac{(O_{r,c} - E_{r,c})^2}{E_{r,c}}$$

is a  $\chi^2$  distribution with (#Rows - 1)(#Columns - 1) degrees of freedom.

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices                              |
|-------|-----------------|------------|-----------------|------------|---------|------|-----------------------------------------|
|       |                 |            |                 |            |         |      | 000000000000000000000000000000000000000 |

#### Appendix II: Best Fit Weibulls and Structural Zeros (cont)

For independence of runs scored and allowed, use bins

 $[0,1) \cup [1,2) \cup [2,3) \cup \cdots \cup [8,9) \cup [9,10) \cup [10,11) \cup [11,\infty).$ 

Have an  $r \times c$  contingency table (with r = c = 12); however, there are *structural zeros* (runs scored and allowed per game can never be equal).

(Essentially)  $O_{r,r} = 0$  for all r. We use the iterative fitting procedure to obtain maximum likelihood estimators for the  $E_{r,c}$ , the expected frequency of cell (r, c) under the assumption that, given that the runs scored and allowed are distinct, the runs scored and allowed are independent.

For  $1 \leq r, c \leq 12$ , let  $E_{r,c}^{(0)} = 1$  if  $r \neq c$  and 0 if r = c. Set

$$X_{r,+} = \sum_{c=1}^{12} O_{r,c}, \quad X_{+,c} = \sum_{r=1}^{12} O_{r,c}.$$

Then

$$E_{r,c}^{(\ell)} = \begin{cases} E_{r,c}^{(\ell-1)} X_{r,+} / \sum_{c=1}^{12} E_{r,c}^{(\ell-1)} & \text{if } \ell \text{ is odd} \\ \\ E_{r,c}^{(\ell-1)} X_{+,c} / \sum_{r=1}^{12} E_{r,c}^{(\ell-1)} & \text{if } \ell \text{ is even} \end{cases}$$

and

$$E_{r,c} = \lim_{\ell \to \infty} E_{r,c}^{(\ell)};$$

the iterations converge very quickly. (If we had a complete two-dimensional contingency table, then the iteration reduces to the standard values, namely  $E_{r,c} = \sum_{c'} O_{r,c'} \cdot \sum_{r'} O_{r',c} / \#$ Games.). Note

$$\sum_{r=1}^{12} \sum_{\substack{c=1 \\ c \neq r}}^{12} \frac{(O_{r,c} - E_{r,c})^2}{E_{r,c}}$$

| Intro<br>000000 | Prob & Modeling | Analysis of '04 | Adv Theory | Summary<br>0000 | Refs<br>o | Appendices |
|-----------------|-----------------|-----------------|------------|-----------------|-----------|------------|
|                 |                 |                 |            |                 |           |            |

## **Appendix III: Central Limit Theorem**

Convolution of f and g:

$$h(y) = (f * g)(y) = \int_{\mathbb{R}} f(x)g(y-x)dx = \int_{\mathbb{R}} f(x-y)g(x)dx.$$

 $X_1$  and  $X_2$  independent random variables with probability density p.

$$\operatorname{Prob}(X_j \in [x, x + \Delta x]) = \int_x^{x + \Delta x} p(t) dt \approx p(x) \Delta x$$

$$\operatorname{Prob}(X_1 + X_2) \in [x, x + \Delta x] = \int_{x_1 = -\infty}^{\infty} \int_{x_2 = x - x_1}^{x + \Delta x - x_1} \rho(x_1) \rho(x_2) dx_2 dx_1.$$

As  $\Delta x \rightarrow 0$  we obtain the convolution of *p* with itself:

$$Prob(X_1 + X_2 \in [a, b]) = \int_a^b (p * p)(z) dz$$

Exercise to show non-negative and integrates to 1.

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices   |
|-------|-----------------|------------|-----------------|------------|---------|------|--------------|
|       |                 |            |                 |            |         |      | 000000000000 |
|       |                 |            |                 |            |         |      |              |

#### Appendix III: Statement of Central Limit Theorem

For simplicity, assume p has mean zero, variance one, finite third moment and is of sufficiently rapid decay so that all convolution integrals that arise converge: p an infinitely differentiable function satisfying

$$\int_{-\infty}^{\infty} x p(x) \mathrm{d}x = 0, \quad \int_{-\infty}^{\infty} x^2 p(x) \mathrm{d}x = 1, \quad \int_{-\infty}^{\infty} |x|^3 p(x) \mathrm{d}x < \infty.$$

Assume X<sub>1</sub>, X<sub>2</sub>, ... are independent identically distributed random variables drawn from p.

• Define 
$$S_N = \sum_{i=1}^N X_i$$
.

Standard Gaussian (mean zero, variance one) is  $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ .

**Central Limit Theorem** Let  $X_i$ ,  $S_N$  be as above and assume the third moment of each  $X_i$  is finite. Then  $S_N/\sqrt{N}$  converges in probability to the standard Gaussian:

$$\lim_{N \to \infty} \operatorname{Prob} \left( \frac{S_N}{\sqrt{N}} \in [a, b] \right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} \mathrm{d}x.$$

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices    |
|-------|-----------------|------------|-----------------|------------|---------|------|---------------|
|       |                 |            |                 |            |         |      | 0000000000000 |
|       |                 |            |                 |            |         |      |               |

#### Appendix III: Proof of the Central Limit Theorem

The Fourier transform of p is

$$\widehat{p}(y) = \int_{-\infty}^{\infty} p(x) e^{-2\pi i x y} dx.$$

$$\widehat{g}'(y) = \int_{-\infty}^{\infty} 2\pi i x \cdot g(x) e^{-2\pi i x y} dx.$$

If g is a probability density,  $\widehat{g}'(0) = 2\pi i \mathbb{E}[x]$  and  $\widehat{g}''(0) = -4\pi^2 \mathbb{E}[x^2]$ .

- Natural to use the Fourier transform to analyze probability distributions. The mean and variance are simple multiples of the derivatives of p̂ at zero: p̂'(0) = 0, p̂''(0) = -4π<sup>2</sup>.
- We Taylor expand p
   (need technical conditions on p):

$$\widehat{p}(y) = 1 + \frac{p''(0)}{2}y^2 + \cdots = 1 - 2\pi^2 y^2 + O(y^3).$$

Near the origin, the above shows  $\hat{p}$  looks like a concave down parabola.

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices                              |
|-------|-----------------|------------|-----------------|------------|---------|------|-----------------------------------------|
|       |                 |            |                 |            |         |      | 000000000000000000000000000000000000000 |

## Appendix III: Proof of the Central Limit Theorem (cont)

Prob
$$(X_1 + \cdots + X_N \in [a, b]) = \int_a^b (p * \cdots * p)(z) dz.$$

The Fourier transform converts convolution to multiplication. If FT[f](y) denotes the Fourier transform of f evaluated at y:

$$\mathsf{FT}[p*\cdots*p](y) = \widehat{p}(y)\cdots\widehat{p}(y).$$

• Do not want the distribution of  $X_1 + \cdots + X_N = x$ , but rather  $S_N = \frac{X_1 + \cdots + X_N}{\sqrt{N}} = x$ .

If 
$$B(x) = A(cx)$$
 for some fixed  $c \neq 0$ , then  $\widehat{B}(y) = \frac{1}{c}\widehat{A}\left(\frac{y}{c}\right)$ .

Prob 
$$\left(\frac{X_1 + \dots + X_N}{\sqrt{N}} = x\right) = (\sqrt{N}p * \dots * \sqrt{N}p)(x\sqrt{N}).$$

• FT 
$$\left[ (\sqrt{N}p * \cdots * \sqrt{N}p)(x\sqrt{N}) \right] (y) = \left[ \widehat{p} \left( \frac{y}{\sqrt{N}} \right) \right]^N$$
.



## Appendix III: Proof of the Central Limit Theorem (cont)

• Can find the Fourier transform of the distribution of  $S_N$ :

$$\left[\widehat{p}\left(\frac{y}{\sqrt{N}}\right)\right]^{N}.$$

Take the limit as  $N \to \infty$  for **fixed** y.

• Know  $\hat{p}(y) = 1 - 2\pi^2 y^2 + O(y^3)$ . Thus study

$$\left[1-\frac{2\pi^2 y^2}{N}+O\left(\frac{y^3}{N^{3/2}}\right)\right]^N.$$

For any fixed y,

$$\lim_{N \to \infty} \left[ 1 - \frac{2\pi^2 y^2}{N} + O\left(\frac{y^3}{N^{3/2}}\right) \right]^N = e^{-2\pi y^2}.$$

• Fourier transform of  $e^{-2\pi y^2}$  at x is  $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ .

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices        |
|-------|-----------------|------------|-----------------|------------|---------|------|-------------------|
|       |                 |            |                 |            |         |      | 00000000000000000 |

#### Appendix III: Proof of the Central Limit Theorem (cont)

We have shown:

- the Fourier transform of the distribution of  $S_N$  converges to  $e^{-2\pi y^2}$ ;
- the Fourier transform of  $e^{-2\pi y^2}$  is  $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ .

Therefore the distribution of  $S_N$  equalling x converges to  $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ . We need complex analysis to justify this conclusion. Must be careful: Consider

$$g(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

All the Taylor coefficients about x = 0 are zero, but the function is not identically zero in a neighborhood of x = 0.

| Intro | Prob & Modeling | Pythag Thm | Analysis of '04 | Adv Theory | Summary | Refs | Appendices  |
|-------|-----------------|------------|-----------------|------------|---------|------|-------------|
|       |                 |            |                 |            |         |      | 00000000000 |

## Appendix IV: Best Fit Weibulls from Method of Maximum Likelihood

The likelihood function depends on:  $\alpha_{RS}$ ,  $\alpha_{RA}$ ,  $\beta = -.5$ ,  $\gamma$ . Let  $A(\alpha, -.5, \gamma, k)$  denote the area in Bin(k) of the Weibull with parameters  $\alpha$ , -.5,  $\gamma$ . The sample likelihood function  $L(\alpha_{RS}, \alpha_{RA}, -.5, \gamma)$  is

$$\begin{pmatrix} \# \text{Games} \\ \text{RS}_{\text{obs}}(1), \dots, \text{RS}_{\text{obs}}(\#\text{Bins}) \end{pmatrix} \prod_{k=1}^{\#\text{Bins}} \mathcal{A}(\alpha_{\text{RS}}, -.5, \gamma, k)^{\text{RS}_{\text{obs}}(k)} \\ \cdot \begin{pmatrix} \# \text{Games} \\ \text{RA}_{\text{obs}}(1), \dots, \text{RA}_{\text{obs}}(\#\text{Bins}) \end{pmatrix} \prod_{k=1}^{\#\text{Bins}} \mathcal{A}(\alpha_{\text{RA}}, -.5, \gamma, k)^{\text{RA}_{\text{obs}}(k)}.$$

For each team we find the values of the parameters  $\alpha_{RS}$ ,  $\alpha_{RA}$  and  $\gamma$  that maximize the likelihood. Computationally, it is equivalent to maximize the logarithm of the likelihood, and we may ignore the multinomial coefficients are they are independent of the parameters.