# From Fibonacci Quilts to Benford's Law through Zeckendorf Decompositions

Steven J. Miller (sjm1@williams.edu)

http://www.williams.edu/Mathematics/sjmiller/public\_html

AMS Special Session on Difference Equations, San Antonio, January 10, 2015



#### Introduction

#### Goals of the Talk

- Generalize Zeckendorf decompositions
- Analyze gaps (in the bulk and longest)
- Patterns and new recurrences
- Some open problems (if time permits)



#### **Collaborators and Thanks**

#### Collaborators:

**Gaps (Bulk, Individual, Longest):** Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.

Kentucky Sequence, Fibonacci Quilt: Joint with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson.

**Benfordness:** Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh & Madeleine Weinstein.

## Supported by:

NSF Grants DMS1265673, DMS0970067, DMS1347804 and DMS0850577, AIM and Williams College.

#### **Previous Results**

Fibonacci Numbers: 
$$F_{n+1} = F_n + F_{n-1}$$
;  $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$ 

#### **Zeckendorf's Theorem**

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

### Example:

$$2014 = 1597 + 377 + 34 + 5 + 1 = F_{16} + F_{13} + F_{8} + F_{4} + F_{1}$$
.

## Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in  $[F_n,F_{n+1})$  tends to  $\frac{n}{\varphi^2+1}\approx .276n$ , where  $\varphi=\frac{1+\sqrt{5}}{2}$  is the golden mean.

#### **Old Results**

Intro

## **Central Limit Type Theorem**

As  $n \to \infty$ , the distribution of number of summands in Zeckendorf decomposition for  $m \in [F_n, F_{n+1})$  is Gaussian.



**Figure:** Number of summands in  $[F_{2010}, F_{2011})$ ;  $F_{2010} \approx 10^{420}$ .

Intro

#### **Definition of Benford's Law**

A dataset is said to follow Benford's Law (base *B*) if the probability of observing a first digit of *d* is

$$\log_B\left(1+\frac{1}{d}\right)$$
.

- More generally probability a significant at most s is  $log_B(s)$ , where  $x = S_B(x)10^k$  with  $S_B(x) \in [1, B)$  and  $k \in \mathbb{Z}$ .
- Find base 10 about 30.1% of the time start with a 1, only 4.5% start with a 9.

## Gaps

Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson

## **Distribution of Gaps**

For 
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences  $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$ .

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

## **Distribution of Gaps**

For 
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences  $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$ .

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(g)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length g.

## For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$ , the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(g)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length q.

Bulk: What is  $P(g) = \lim_{n \to \infty} P_n(g)$ ?

## **Distribution of Gaps**

For  $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$ , the gaps are the differences  $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$ 

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(g)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length q.

Bulk: What is  $P(g) = \lim_{n \to \infty} P_n(g)$ ?

Individual: Similar questions about gaps for a fixed  $m \in [F_n, F_{n+1})$ : distribution of gaps, longest gap.

## New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = \frac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x - (i_j - i_{j-1})\right).$$

## Theorem (Zeckendorf Gap Distribution)

Gap measures  $\nu_{m;n}$  converge to average gap measure where  $P(k) = 1/\phi^k$  for  $k \ge 2$ .



**Figure:** Distribution of gaps in  $[F_{2010}, F_{2011})$ ;  $F_{2010} \approx 10^{420}$ .

Kentucky and Quilts

Fair coin: largest gap tightly concentrated around  $\log n / \log 2$ .

## Theorem (Longest Gap)

As  $n \to \infty$ , the probability that  $m \in [F_n, F_{n+1})$  has longest gap less than or equal to f(n) converges to

Prob 
$$(L_n(m) \le f(n)) \approx e^{-e^{\log n - f(n) \cdot \log \phi}}$$

• 
$$\mu_n = \frac{\log\left(\frac{\phi^2}{\phi^2+1}\right)n}{\log\phi} + \frac{\gamma}{\log\phi} - \frac{1}{2} + \text{Small Error.}$$

• If f(n) grows **slower** (resp. **faster**) than  $\log n/\log \phi$ , then  $\operatorname{Prob}(L_n(m) \leq f(n))$  goes to **0** (resp. **1**).

Intro

#### **Main Results**

## Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let  $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n+1-L}$  be a positive linear recurrence of length L where  $c_i \ge 1$  for all  $1 \le i \le L$ . Then

$$P(g) \; = \; \begin{cases} 1 - (\frac{a_1}{C_{Lek}})(2\lambda_1^{-1} + a_1^{-1} - 3) & \text{: } g = 0 \\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & \text{: } g = 1 \\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-g} & \text{: } g \geq 2. \end{cases}$$

15

#### **Main Results**

## **Theorem (Longest Gap (SMALL 2012))**

As  $n \to \infty$ , the probability that  $m \in [F_n, F_{n+1})$  has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \; \approx \; \operatorname{e}^{-\operatorname{e}^{\log n - f(n) \cdot \log \phi}}$$

Kentucky Sequence and Quilts with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

•  $a_{2n} = 2^n$  and  $a_{2n+1} = \frac{1}{3}(2^{2+n} - (-1)^n)$ :  $a_{n+1} = a_{n-1} + 2a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4$ 

Kentucky and Quilts

Rule: (s, b)-Sequence: Bins of length b, and:

- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

- $a_{2n} = 2^n$  and  $a_{2n+1} = \frac{1}{3}(2^{2+n} (-1)^n)$ :  $a_{n+1} = a_{n-1} + 2a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4.$
- $\bullet$   $a_{n+1} = a_{n-1} + 2a_{n-3}$ : New as leading term 0.

#### **Gaussian Behavior**



**Figure:** Plot of the distribution of the number of summands for 100,000 randomly chosen  $m \in [1, a_{4000}) = [1, 2^{2000})$  (so m has on the order of 602 digits).

## **Gaps**



**Figure:** Plot of the distribution of gaps for 10,000 randomly chosen  $m \in [1, a_{400}) = [1, 2^{200})$  (so m has on the order of 60 digits).

#### **Gaps**



**Figure:** Plot of the distribution of gaps for 10,000 randomly chosen  $m \in [1, a_{400}) = [1, 2^{200})$  (so m has on the order of 60 digits). Left (resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even and odd gaps.

## The Fibonacci (or Log Cabin) Quilt: Work in Progress



1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ...



Generalizations

1, 2, 3, 5, 6, 8, 10, 14, 19, 25, 33, ...

- $a_{n+1} = a_{n-1} + a_{n-2}$ , non-uniqueness (average number of decompositions grows exponentially).
- In process of investigating Gaussianity, Gaps,
   K<sub>min</sub>, K<sub>ave</sub>, K<sub>max</sub>, K<sub>greedy</sub>.

## **Average Number of Representations**

- $d_n$ : the number of FQ-legal decompositions using only elements of  $\{a_1, a_2, \ldots, a_n\}$ .
- $c_n$  requires  $a_n$  to be used,  $b_n$  requires  $a_n$  and  $a_{n-2}$  to be used.

| n                          | d <sub>n</sub>        | Cn                    | $b_n$ | a <sub>n</sub> |
|----------------------------|-----------------------|-----------------------|-------|----------------|
| 1                          | 2                     | 1                     | 0     | 1              |
| 2                          | 3                     | 1                     | 0     | 2 3            |
| 3                          | 4                     | 1                     | 0     |                |
| 4                          | 2<br>3<br>4<br>6<br>8 | 2                     | 1     | 4              |
| 2<br>3<br>4<br>5<br>6<br>7 | 8                     | 2                     | 1     | 4<br>5<br>7    |
| 6                          | 11                    | 3                     | 1     |                |
| 7                          | 15                    | 4                     | 1     | 9              |
| 8                          | 21                    | 2<br>2<br>3<br>4<br>6 | 2     | 12             |
| 9                          | 30                    | 9                     | 3     | 16             |

**Table:** First few terms. Find  $d_n = d_{n-1} + d_{n-2} - d_{n-3} + d_{n-5} - d_{n-9}$ , implying  $d_{\text{FQ;ave}}(n) \approx C \cdot 1.05459^n$ .

## **Greedy Algorithm**

 $h_n$ : number of integers from 1 to  $a_{n+1} - 1$  where the greedy algorithm successfully terminates in a legal decomposition.

| n  | a <sub>n</sub> | h <sub>n</sub> | $ ho_{n}$ |
|----|----------------|----------------|-----------|
| 1  | 1              | 1              | 100.0000  |
| 2  | 2              | 2              | 100.0000  |
| 3  | 3              | 3              | 100.0000  |
| 4  | 4              | 4              | 100.0000  |
| 5  | 5              | 5              | 83.3333   |
| 6  | 7              | 7              | 87.5000   |
| 10 | 21             | 25             | 92.5926   |
| 11 | 28             | 33             | 91.6667   |
| 17 | 151            | 184            | 92.4623   |

**Table:** First few terms, yields  $h_n = h_{n-1} + h_{n-5} + 1$  and percentage converges to about 0.92627.

#### Benfordness in Interval

Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and Madeleine Weinstein

#### **Benfordness in Interval**

## Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf decompositions, averaged over the entire interval  $[F_n, F_{n+1})$ , follows Benford's Law.

#### Benfordness in Interval

0000 000

## Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf decompositions, averaged over the entire interval  $[F_n, F_{n+1})$ , follows Benford's Law.

## **Example**

Looking at the interval  $[F_5, F_6) = [8, 13)$ 

$$8 = 8$$
  $= F_5$   
 $9 = 8 + 1 = F_5 + F_1$   
 $10 = 8 + 2 = F_5 + F_2$   
 $11 = 8 + 3 = F_5 + F_3$   
 $12 = 8 + 3 + 1 = F_5 + F_3 + F_1$ 

## **Density of S**

For a subset Sof the Fibonacci numbers, define the density q(S, n) of S over the interval  $[1, F_n]$  by

$$q(S,n) = \frac{\#\{F_j \in S \mid 1 \leq j \leq n\}}{n}.$$

## **Asymptotic Density**

If  $\lim_{n\to\infty} q(S,n)$  exists, define the asymptotic density q(S) by

$$q(S) = \lim_{n \to \infty} q(S, n).$$

21

## **Needed Input**

Intro

Let  $S_d$  be the subset of the Fibonacci numbers which share a fixed digit d where  $1 \le d < B$ .

#### Theorem: Fibonacci Numbers Are Benford

$$q(S_d) = \lim_{n \to \infty} q(S_d, n) = \log_B \left(1 + \frac{1}{d}\right).$$

**Proof:** Binet's formula, Kronecker's theorem on equidistribution of  $n\alpha \mod 1$  for  $\alpha \notin \mathbb{Q}$ .

#### **Random Variables**

Intro

## **Random Variable from Decompositions**

Let  $X(I_n)$  be a random variable whose values are the the Fibonacci numbers in  $[F_1, F_n)$  and probabilities are how often they occur in decompositions of  $m \in I_n$ :

$$P\{X(I_n)=F_k\}:= egin{cases} rac{F_{k-1}F_{n-k-2}}{\mu_nF_{n-1}}, & ext{if } 1\leq k\leq n-2 \ rac{1}{\mu_n}, & ext{if } k=n \ 0, & ext{otherwise,} \end{cases}$$

where  $\mu_n$  is the average number of summands in Zeckendorf decompositions of integers in the interval  $[F_n, F_{n+1})$ .

## **Approximations**

Gaps

00000 000

## Estimate for $P\{X(I_n) = F_k\}$

$$P\{X(I_n) = F_k\} = \frac{1}{\mu_n \phi \sqrt{5}} + O\left(\phi^{-2k} + \phi^{-2n+2k}\right).$$

## **Constant Fringes Negligible**

For any *r* (which may depend on *n*):

$$\sum_{r < k < n-r} P\{X(I_n) = F_k\} = 1 - r \cdot O\left(\frac{1}{n}\right).$$

34

## Estimating $P\{X(I_n) \in S\}$

Set 
$$r := \left| \frac{\log n}{\log \phi} \right|$$
.

## **Density of S over Zeckendorf Summands**

We have

$$P\{X(I_n) \in S\} = \frac{nq(S)}{\mu_n\phi\sqrt{5}} + o(1) \rightarrow q(s).$$

35

#### Remark

- Stronger result than Benfordness of Zeckendorf summands.
- Global property of the Fibonacci numbers can be carried over locally into the Zeckendorf summands.
- If we have a subset of the Fibonacci numbers S with asymptotic density q(S), then the density of the set S over the Zeckendorf summands will converge to this asymptotic density.

Benfordness of Random and Zeckendorf Decompositions
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian
McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein

# **Random Decompositions**

## Theorem 2 (SMALL 2014): Random Decomposition

If we choose each Fibonacci number with probability q, disallowing the choice of two consecutive Fibonacci numbers, the resulting sequence follows Benford's law.

### Example: n = 10

$$F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 + F_8 + F_9 + F_{10}$$

$$= 2 + 8 + 21 + 89$$

$$= 120$$

Intro

# Choosing a Random Decomposition

Select a random subset A of the Fibonaccis as follows:

- Fix  $q \in (0, 1)$ .
- Let  $A_0 := \emptyset$ .
- For n > 1, if  $F_{n-1} \in A_{n-1}$ , let  $A_n := A_{n-1}$ , else

$$A_n = \begin{cases} A_{n-1} \cup \{F_n\} & \text{with probability } q \\ A_{n-1} & \text{with probability } 1 - q. \end{cases}$$

• Let  $A := \bigcup_n A_n$ .

#### **Main Result**

### **Theorem**

With probability 1, A (chosen as before) is Benford.

**Stronger claim:** For any subset S of the Fibonaccis with density d in the Fibonaccis,  $S \cap A$  has density d in A with probability 1.

#### **Preliminaries**

### Lemma

The probability that  $F_k \in A$  is

$$p_k = \frac{q}{1+q} + O(q^k).$$

Using elementary techniques, we get

### Lemma

Define  $X_n := \#A_n$ . Then

$$E[X_n] = \frac{nq}{1+q} + O(1)$$

$$Var(X_n) = O(n).$$

41

# Expected Value of $Y_n$

Define  $Y_{n,S} := \#A_n \cap S$ . Using standard techniques, we get

### Lemma

$$\mathbb{E}[Y_n] = \frac{nqd}{1+q} + o(n).$$

$$\operatorname{Var}(Y_{n,S}) = o(n^2).$$

Define  $Y_{n,S} := \#A_n \cap S$ . Using standard techniques, we get

## Lemma

Gaps

0000 000

$$\mathbb{E}[Y_n] = \frac{nqd}{1+q} + o(n).$$

$$Var(Y_{n,S}) = o(n^2).$$

Immediately implies with probability 1 + o(1)

$$Y_{n,S} = \frac{nqd}{1+q} + o(n), \lim_{n\to\infty} \frac{Y_{n,S}}{X_n} = d.$$

Hence  $A \cap S$  has density d in A, completing the proof.

## **Zeckendorf Decompositions and Benford's Law**

# Theorem (SMALL 2014): Benfordness of Decomposition

If we pick a random integer in  $[0, F_{n+1})$ , then with probability 1 as  $n \to \infty$  its Zeckendorf decomposition converges to Benford's Law.

### **Proof of Theorem**

- Choose integers randomly in  $[0, F_{n+1})$  by random decomposition model from before.
- Choose  $m=F_{a_1}+F_{a_2}+\cdots+F_{a_\ell}\in[0,F_{n+1})$  with probability

$$p_m = \begin{cases} q^{\ell}(1-q)^{n-2\ell} & \text{if } a_{\ell} \leq n \\ q^{\ell}(1-q)^{n-2\ell+1} & \text{if } a_{\ell} = n. \end{cases}$$

• Key idea: Choosing  $q = 1/\varphi^2$ , the previous formula simplifies to

$$p_m = \begin{cases} \varphi^{-n} & \text{if } m \in [0, F_n) \\ \varphi^{-n-1} & \text{if } m \in [F_n, F_{n+1}), \end{cases}$$

use earlier results.

### References

#### References

### References

- Bower, Insoft, Li, Miller and Tosteson, The Distribution of Gaps between Summands in Generalized Zeckendorf Decompositions, preprint. http://arxiv.org/pdf/1402.3912.
- Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions: The Fibonacci Quarterly 51 (2013), 13–27. http://arxiv.org/abs/1208.5820
- Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions: Fibonacci Quarterly 49 (2011), no. 2, 116–130. http://arxiv.org/pdf/1008.3204
- Miller and Wang: From Fibonacci numbers to Central Limit Type Theorems: Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398–1413. http://arxiv.org/pdf/1008.3202
- Miller and Wang: Survey: Gaussian Behavior in Generalized Zeckendorf Decompositions: To appear in CANT 2011 Proceedings. http://arxiv.org/pdf/1107.2718

### Generalizations

## **Positive Linear Recurrence Sequences**

This method can be greatly generalized to **Positive Linear Recurrence Sequences**: linear recurrences with non-negative coefficients:

$$H_{n+1} = c_1 H_{n-(j_1=0)} + c_2 H_{n-j_2} + \cdots + c_L H_{n-j_L}.$$

# Theorem (Zeckendorf's Theorem for PLRS recurrences)

Any  $b \in \mathbb{N}$  has a unique **legal** decomposition into sums of  $H_n$ ,  $b = a_1 H_{i_1} + \cdots + a_{i_k} H_{i_k}$ .

Here **legal** reduces to non-adjacency of summands in the Fibonacci case.

Intro

### **Messier Combinatorics**

The **number** of  $b \in [H_n, H_{n+1})$ , with longest gap < f is the coefficient of  $x^{n-s}$  in the generating function:

## **Messier Combinatorics**

The **number** of  $b \in [H_n, H_{n+1})$ , with longest gap < f is the coefficient of  $x^{n-s}$  in the generating function:

$$\begin{split} \frac{1}{1-x} \left( c_1 - 1 + c_2 x^{t_2} + \dots + c_L x^{t_L} \right) \times \\ \times \sum_{k \geq 0} \left[ \left( (c_1 - 1) x^{t_1} + \dots + (c_L - 1) x^{t_L} \right) \left( \frac{x^{s+1} - x^f}{1-x} \right) + \right. \\ \left. + x^{t_1} \left( \frac{x^{s+t_2 - t_1 + 1} - x^f}{1-x} \right) + \dots + x^{t_{L-1}} \left( \frac{x^{s+t_L - t_{L-1}} + 1 - x^f}{1-x} \right) \right]^k. \end{split}$$

## **Messier Combinatorics**

The **number** of  $b \in [H_n, H_{n+1})$ , with longest gap < f is the coefficient of  $x^{n-s}$  in the generating function:

$$\frac{1}{1-x} \left( c_1 - 1 + c_2 x^{t_2} + \dots + c_L x^{t_L} \right) \times \\ \times \sum_{k \geq 0} \left[ \left( (c_1 - 1) x^{t_1} + \dots + (c_L - 1) x^{t_L} \right) \left( \frac{x^{s+1} - x^f}{1-x} \right) + \\ + x^{t_1} \left( \frac{x^{s+t_2-t_1+1} - x^f}{1-x} \right) + \dots + x^{t_{L-1}} \left( \frac{x^{s+t_L-t_{L-1}} + 1 - x^f}{1-x} \right) \right]^k.$$

A geometric series!

## **Generalized Generating Function**

Let  $f > j_L$ . The number of  $x \in [H_n, H_{n+1})$ , with longest gap < fis given by the coefficient of  $s^n$  in the generating function

$$F(s) = \frac{1 - s^{j_L}}{\mathcal{M}(s) + s^f \mathcal{R}(s)},$$

where

$$\mathcal{M}(s) = 1 - c_1 s - c_2 s^{j_2+1} - \cdots - c_L s^{j_L+1},$$

and

$$\mathcal{R}(s) = c_{j_1+1}s^{j_1} + c_{j_2+1}s^{j_2} + \cdots + (c_{j_L+1}-1)s^{j_L}.$$

and  $c_i$  and  $i_i$  are defined as above.

### What are the extra obstructions?

The **coefficients** in the **partial fraction** expansion might blow up from multiple roots.

Kentucky and Quilts

The **coefficients** in the **partial fraction** expansion might blow up from multiple roots.

# Theorem (Mean and Variance for "Most Recurrences")

For x in the interval  $[H_n, H_{n+1}]$ , the mean longest gap  $\mu_n$  and the variance of the longest gap  $\sigma_n^2$  are given by

$$\mu_n = \frac{\log\left(\frac{\mathcal{R}(\frac{1}{\lambda_1})}{\mathcal{G}(\frac{1}{\lambda_1})}n\right)}{\log \lambda_1} + \frac{\gamma}{\log \lambda_1} - \frac{1}{2} + Small\ \textit{Error} + \epsilon_1(n),$$

and

$$\sigma_n^2 = \frac{\pi^2}{6\log\lambda_1} - \frac{1}{12} + \text{Small Error} + \epsilon_2(n),$$

where  $\epsilon_i(n)$  tends to zero in the limit, and Small Error comes from the Euler-Maclaurin Formula.