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Introduction J




Intro

Goals of the Talk

@ Generalize Zeckendorf decompositions
@ Analyze gaps (in the bulk and longest)
@ Patterns and new recurrences

@ Some open problems (if time permits)




Collaborators and Thanks

Collaborators:

Gaps (Bulk, Individual, Longest):  Olivia Beckwith, Amanda
Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.
Kentucky Sequence, Fibonacci Quilt:  Joint with Minerva
Catral, Pari Ford, Pamela Harris & Dawn Nelson.
Benfordness: Andrew Best, Patrick Dynes, Xixi Edelsbunner,
Brian McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh &
Madeleine Weinstein.

Supported by:
NSF Grants DMS1265673, DMS0970067, DMS1347804 and
DMS0850577, AIM and Williams College.

A




Previous Results

Fibonacci Numbers: Fniq = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 =1597 +377+34+5+1=F16 + F13 +Fg + Fa + F1.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fry1) tends to # A .276n,

where ¢ = 1+2—\/§ is the golden mean.




Old Results

Central Limit Type Theorem

As n — oo, the distribution of number of summands in
Zeckendorf decomposition for m € [F,, F11) is Gaussian.
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 1020,
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Benford’s law

Definition of Benford’s Law
A dataset is said to follow Benford’s Law (base B) if the
probability of observing a first digit of d is

1
logg (1 + a) .

@ More generally probability a significant at most s is logg(s),
where x = Sg(x)10% with Sg(x) € [1,B) and k € Z.

@ Find base 10 about 30.1% of the time start with a 1, only
4.5% start with a 9.
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Gaps
Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet,
Rachel Insoft, Shiyu Li, Philip Tosteson




Gaps
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in_1,in—1 —lh—2,... 02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.
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Gaps
[ ]

Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in_1,in—1 —lh—2,... 02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length g.

Bulk: What is P(g) = limp_,c Pn(9)?

Individual: Similar questions about gaps for a fixed
m € [Fn, Fhi1): distribution of gaps, longest gap.




Gaps
L]

New Results: Bulk Gaps:

Theorem (Zeckendorf Gap Distribution)

Gap measures v,y COnverge to average gap measure where
P(k) =1/¢X fork > 2.

Figure: Distribution of gaps in [Foo10, F2011); Fo010 = 10%%°.




Gaps
L]

New Results: Longest Gap

Fair coin: largest gap tightly concentrated around logn/ log 2.

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, F,1) has longest gap
less than or equal to f(n) converges to

Prob (Ln(m) < f(n)) =~ g—elosn—r(n-ogs

¢2
_ 'Og(«>2+1>”)

®ln="ogs = T Togs — % + Small Error.

e If f(n) grows slower (resp. faster) than logn/log ¢, then
Prob(Ln(m) < f(n)) goes to O (resp. 1).

1 s



Main Results

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let Hy, 1 = ciHn + C2Hp—1 + -+ - + ¢ Hp 1 be a positive linear
recurrence of length L where c; > 1 forall1 <i < L. Then

(CLek)(Z)\l_lJral‘l—B) :g=0
Pg) = M (es)(a(l—2a1) +a1) 1g=1
w*l)z(cik)” 922




Main Results

Theorem (Longest Gap (SMALL 2012))

As n — oo, the probability that m € [F,, F,1) has longest gap
less than or equal to f(n) converges to

__alogn—f(n)-log ¢
e e

Prob (Ln(m) < f(n)) ~




Kentucky and Quilts

Kentucky Sequence and Quilts
with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson




Kentucky and Quilts
°

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.
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[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].
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Kentucky and Quilts
°

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

@ ay, = 2" and agnyq = 3(22H" — (—1)"):
ant1 =ap1t+2a 3,8 =1la=2,a3=3,a3=4.
@ a,.1 = ap_1 + 2ap_3: New as leading term O.

D1




Kentucky and Quilts
°

Gaussian Behavior
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Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m € [1, ao00) = [1,22°%%) (so m has on the
order of 602 digits).
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Kentucky and Quilts
°
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Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,22%9) (so m has on the order of 60 digits).




Kentucky and Quilts
°

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,2%%9) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even
and odd gaps.




Kentucky and Quilts
°

The Fibonacci (or Log Cabin) Quilt: Work in Progress

12 10
4 3
16 5 1 14 5
3 9 | 28 2 8 | 25
2 1
7 6
21 19
1,2,3,4,5,7,9 12, 16, 21, 28, ... 1,2,3,5,6,8,10, 14,19, 25, 33, ...

@ a,.1 = ap_1 + an_2, Non-uniqueness (average number of
decompositions grows exponentially).

@ In process of investigating Gaussianity, Gaps,
Kmina Kave, Kmax, Kgreedy-

OGS



Kentucky and Quilts
°

Average Number of Representations

@ dn: the number of FQ-legal decompositions using only elements of
{3.1, az, ..., an}.
@ c, requires a, to be used, b, requires a, and a,_, to be used.

N[ dnfcn[bn[ an
2
3
4
6
8
11
15
21
30

CO~NOOUAWNR
CODMNWNNRRLPR

NRPRRPRRPRROOO
ONO~NODMWNR

B

Table: First few terms. Findd, =d,_1 +dn_2 —dn_3 + dn_5 — dp_o,
implying deg,ave(n) =~ C - 1.05459".

DA




Kentucky and Quilts
°

Greedy Algorithm

hn: number of integers from 1 to a1 — 1 where the greedy
algorithm successfully terminates in a legal decomposition.

L nll an[ b o]
1] 1] 1] 100.0000
2| 2| 2| 100.0000
3|| 3| 3] 100.0000
4| 4| 41000000
5| 5| 5| 833333
6| 7| 7| 87.5000
10| 21| 25| 925926
11| 28| 33| 91.6667
17 | 151 | 184 | 92.4623

Table: First few terms, yields h, = h,_1 + h,_5 + 1 and percentage
converges to about 0.92627.

TS



Benfordness in Interval

Benfordness in Interval
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian
McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein
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Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf
decompositions, averaged over the entire interval [Fn, Fn11),
follows Benford’s Law.




Benfordness in Interval
°

Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf
decompositions, averaged over the entire interval [Fn, Fn11),
foIIows Benford’s Law.

Looking at the interval [Fs, Fg) = [8,13)

8=8 —Fs

9=8 + 1 =Fs+Fy
10=8 + 2 =Fs+F,
11=8 + 3 =Fs+Fs3
12=8+3+1=Fs+Fs+F




Benfordness in Interval
°

Preliminaries for Proof

For a subset Sof the Fibonacci numbers, define the density
q(S,n) of S over the interval [1, Fy] by

q(S.n) = #{F €S !nléjﬁn}'

Asymptotic Density
If limn_, o (S, n) exists, define the asymptotic density q(S) by

a(s) = lim q(S.n).




Benfordness in Interval
°

Needed Input

Let Sq4 be the subset of the Fibonacci numbers which share a
fixed digit d where 1 < d < B.

Theorem: Fibonacci Numbers Are Benford

. 1
aSa) = fim a(Se.n) ~logs (1+3 ).

Proof: Binet's formula, Kronecker’s theorem on equidistribution
of na mod 1 for o & Q.




Benfordness in Interval
°

Random Variables

Random Variable from Decompositions

Let X(I,) be a random variable whose values are the the
Fibonacci numbers in [F1, Fy) and probabilities are how often
they occur in decompositions of m € Iy:

Bothkz - jf1 <k<n-—2
MnFn—1

P{X(In) = Fx} = MA ifk=n

otherwise,

)

where u,, is the average number of summands in Zeckendorf
decompositions of integers in the interval [Fn, Fr.1).




Benfordness in Interval
°

Approximations

Estimate for P{X(I,) = Fx}

1
Mn¢VA§

P{X(ln) = Fx} = 10 <¢—2k 4 ¢72n+2k> .

Constant Fringes Negligible

For any r (which may depend on n):

S P{X(ln) = R} = 1«0(%),

r<k<n—r




Benfordness in Interval

Estimating P{X(l,) € S}

. |logn
Setr .= LWJ

Density of S over Zeckendorf Summands

We have

nq(s)
/Jn¢\/§

P{X(lh) € S} = +0(1) — q(s).




Benfordness in Interval
.

@ Stronger result than Benfordness of Zeckendorf
summands.

@ Global property of the Fibonacci numbers can be carried
over locally into the Zeckendorf summands.

@ If we have a subset of the Fibonacci numbers S with
asymptotic density q(S), then the density of the set S over
the Zeckendorf summands will converge to this asymptotic
density.




Random + Zeck Decomposition

Benfordness of Random and Zeckendorf Decompositions
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian
McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein




Random + Zeck Decomposition
°

Random Decompositions

Theorem 2 (SMALL 2014): Random Decomposition

If we choose each Fibonacci number with probability q,
disallowing the choice of two consecutive Fibonacci numbers,
the resulting sequence follows Benford’s law.

Example: n =10

+ F2 + Fs + F7 + F1o
=2+ 8+ 21 + 89
= 120




Random + Zeck Decomposition
°

Choosing a Random Decomposition

Select a random subset A of the Fibonaccis as follows:
@ Fixq e (0,1).
@ Let Ao = @
@ Forn>1,ifF,_1 € Ap_q, let A, (= A _, else

A — An_1U{F,} with probability q
" AL with probability 1 — q.

o LetA = U, An.




Random + Zeck Decomposition
°

Main Result

With probability 1, A (chosen as before) is Benford.

Stronger claim:  For any subset S of the Fibonaccis with
density d in the Fibonaccis, S N A has density d in A with
probability 1.

A




Random + Zeck Decomposition
°

Preliminaries

The probability that Fy € Ais

q

—— +0(q").
i+g  °@)

Pk =

Using elementary techniques, we get

Define X, := #A,. Then

EX)] = 1Tq+ou)

Var(X,) = O(n).

A1




Random + Zeck Decomposition
°

Expected Value of Y,

Define Y, s := #An N S. Using standard techniques, we get

A7




Random + Zeck Decomposition
°

Expected Value of Y,

A

Define Y, s := #An N S. Using standard techniques, we get

Va(Yos) = o(n?).

Immediately implies with probability 1 + o(1)

nqd . Yns
Y = o(n lim =2 = d.
s = 1ag oM I

Hence AN S has density d in A, completing the proof.




Random + Zeck Decomposition
°

Zeckendorf Decompositions and Benford's Law

Theorem (SMALL 2014): Benfordness of Decomposition

If we pick a random integer in [0, Fn. 1), then with probability 1
as n — oo its Zeckendorf decompaosition converges to Benford’s

Law.

A




Random + Zeck Decomposition
.

Proof of Theorem

@ Choose integers randomly in [0, F.1) by random
decomposition model from before.

® Choose m = Fy, +Fa, + -+ Fa, € [0,Fq41) with
probability

~ffa =g ifay<n
Pm = qé(l _ q)n72£+1 if a, = n.

@ Key idea: Choosing q = 1/¢?, the previous formula
simplifies to

{(pn if m e [0,Fy)
Pm =

SOinil |f m 6 [Fn, Fn+1),

use earlier results.

AT
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Generalizations
°

Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences : linear recurrences with non-negative
coefficients:

Hni1 = CiHn_(,=0) + C2Hn—j, +--- + CLHnj .

Theorem (Zeckendorf's Theorem for  PLRS recurrences)

Any b € N has a unique legal decomposition into sums of Hp,
b :alHil+---+aikH

i

Here legal reduces to non-adjacency of summands in the
Fibonacci case.

AQ




Generalizations
°

Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:
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Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:

(C]_ — 1+C2Xt2 + - +C|_Xt") X

1-—x
Xs+l—xf
—)xt (o — 1)xY) ([ ——
xkz;)[ e x4 (o= ) (g ) +
+xt1 _X57+t2_tl+l—xf +-..+Xt|__1 XS—HL_tL*lﬁLl*Xf k
1-x 1-x '




Generalizations
°

Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:

(C]_ — 1+C2Xt2 + - +C|_Xt") X

1-—x
Xs+l—xf
—)xt (o — 1)xY) ([ ——
xkz;)[ e x4 (o= ) (g ) +
+xt1 _X57+t2_tl+l—xf +-..+Xt|__1 XS—HL_tL*lﬁLl*Xf k
1-x 1-x '

A geometric series!




Generalizations
°

Generalized Generating Function

Letf > j.. The number of x € [Hp, Hn11), with longest gap < f
is given by the coefficient of s" in the generating function

1—sh
F(s) = M(s) = STR(S)"
where
M(s) =1 —cy8 —cpstt — . g gt
and

R(S) = Cjy 118" + Cjp 1182 + -+ + (G421 — 1)sh.

and c; and j; are defined as above .




Generalizations
.

What are the extra obstructions?

The coefficients in the partial fraction expansion might blow
up from multiple roots.




Generalizations
.

What are the extra obstructions?

The coefficients in the partial fraction expansion might blow
up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn, Hy 1), the mean longest gap un and
the variance of the longest gap o2 are given by

R(E
Iog TN
(L) YL smallEror + e(n)
_ - €
Hn log A1 log A\; 2 o

and
2

2 T 1
= ——— — — + Small Error n
" " Blogh 12 * +e2(n),
where ¢ (n) tends to zero in the limit, and Small Error comes

from the Euler-Maclaurin Formula. )
=4~
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