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Introduction
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Goals of the Talk

Generalize Zeckendorf decompositions

Analyze gaps (in the bulk and longest)

Patterns and new recurrences

Some open problems (if time permits)
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 = 1597 + 377 + 34 + 5 + 1 = F16 + F13 + F8 + F4 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Old Results

Central Limit Type Theorem

As n → ∞, the distribution of number of summands in
Zeckendorf decomposition for m ∈ [Fn,Fn+1) is Gaussian.
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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Benford’s law

Definition of Benford’s Law
A dataset is said to follow Benford’s Law (base B) if the
probability of observing a first digit of d is

logB

(

1 +
1
d

)

.

More generally probability a significant at most s is logB(s),
where x = SB(x)10k with SB(x) ∈ [1,B) and k ∈ Z.

Find base 10 about 30.1% of the time start with a 1, only
4.5% start with a 9.
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Gaps
Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet,

Rachel Insoft, Shiyu Li, Philip Tosteson
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length g.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?

Individual: Similar questions about gaps for a fixed
m ∈ [Fn,Fn+1): distribution of gaps, longest gap.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n
∑

j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)
∑

j=2

δ
(

x − (ij − ij−1)
)

.

Theorem (Zeckendorf Gap Distribution)

Gap measures νm;n converge to average gap measure where
P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F2010,F2011); F2010 ≈ 10420.
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around log n/ log 2.

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)·logφ

• µn =
log

(

φ2

φ2+1)
n
)

logφ
+ γ

logφ
− 1

2 + Small Error.

• If f (n) grows slower (resp. faster) than log n/ logφ, then
Prob(Ln(m) ≤ f (n)) goes to 0 (resp. 1).
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Main Results

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn+1−L be a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then

P(g) =















1 − ( a1
CLek

)(2λ−1
1 + a−1

1 − 3) : g = 0

λ−1
1 ( 1

CLek
)(λ1(1 − 2a1) + a1) : g = 1

(λ1 − 1)2
(

a1
CLek

)

λ
−g
1 : g ≥ 2.
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Main Results

Theorem (Longest Gap (SMALL 2012))

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)·logφ
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Kentucky Sequence and Quilts
with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

18



Intro Gaps Kentucky and Quilts Benfordness in Interval Random + Zeck Decomposition References Generalizations

Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

a2n = 2n and a2n+1 = 1
3(2

2+n − (−1)n):
an+1 = an−1 + 2an−3,a1 = 1,a2 = 2,a3 = 3,a4 = 4.
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

a2n = 2n and a2n+1 = 1
3(2

2+n − (−1)n):
an+1 = an−1 + 2an−3,a1 = 1,a2 = 2,a3 = 3,a4 = 4.

an+1 = an−1 + 2an−3: New as leading term 0.
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Gaussian Behavior

Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m ∈ [1, a4000) = [1, 22000) (so m has on the
order of 602 digits).

Proved Gaussian behavior.
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Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m ∈ [1, a400) = [1, 2200) (so m has on the order of 60 digits).
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Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m ∈ [1, a400) = [1, 2200) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even
and odd gaps.
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The Fibonacci (or Log Cabin) Quilt: Work in Progress

an+1 = an−1 + an−2, non-uniqueness (average number of
decompositions grows exponentially).

In process of investigating Gaussianity, Gaps,
Kmin,Kave,Kmax,Kgreedy.

25



Intro Gaps Kentucky and Quilts Benfordness in Interval Random + Zeck Decomposition References Generalizations

Average Number of Representations

dn: the number of FQ-legal decompositions using only elements of
{a1, a2, . . . , an}.
cn requires an to be used, bn requires an and an−2 to be used.

n dn cn bn an

1 2 1 0 1
2 3 1 0 2
3 4 1 0 3
4 6 2 1 4
5 8 2 1 5
6 11 3 1 7
7 15 4 1 9
8 21 6 2 12
9 30 9 3 16

Table: First few terms. Find dn = dn−1 + dn−2 − dn−3 + dn−5 − dn−9,
implying dFQ;ave(n) ≈ C · 1.05459n.
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Greedy Algorithm

hn: number of integers from 1 to an+1 − 1 where the greedy
algorithm successfully terminates in a legal decomposition.

n an hn ρn

1 1 1 100.0000
2 2 2 100.0000
3 3 3 100.0000
4 4 4 100.0000
5 5 5 83.3333
6 7 7 87.5000

10 21 25 92.5926
11 28 33 91.6667
17 151 184 92.4623

Table: First few terms, yields hn = hn−1 + hn−5 + 1 and percentage
converges to about 0.92627.
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Benfordness in Interval
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian

McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein
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Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf
decompositions, averaged over the entire interval [Fn,Fn+1),
follows Benford’s Law.
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Benfordness in Interval

Theorem (SMALL 2014): Benfordness in Interval

The distribution of the summands in the Zeckendorf
decompositions, averaged over the entire interval [Fn,Fn+1),
follows Benford’s Law.

Example

Looking at the interval [F5,F6) = [8,13)

8 = 8 = F5

9 = 8 + 1 = F5 + F1

10 = 8 + 2 = F5 + F2

11 = 8 + 3 = F5 + F3

12 = 8 + 3 + 1 = F5 + F3 + F1
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Preliminaries for Proof

Density of S

For a subset Sof the Fibonacci numbers, define the density
q(S,n) of S over the interval [1,Fn] by

q(S,n) =
#{Fj ∈ S | 1 ≤ j ≤ n}

n
.

Asymptotic Density

If limn→∞ q(S,n) exists, define the asymptotic density q(S) by

q(S) = lim
n→∞

q(S,n).
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Needed Input

Let Sd be the subset of the Fibonacci numbers which share a
fixed digit d where 1 ≤ d < B.

Theorem: Fibonacci Numbers Are Benford

q(Sd) = lim
n→∞

q(Sd ,n) = logB

(

1 +
1
d

)

.

Proof: Binet’s formula, Kronecker’s theorem on equidistribution
of nα mod 1 for α 6∈ Q.
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Random Variables

Random Variable from Decompositions

Let X (In) be a random variable whose values are the the
Fibonacci numbers in [F1,Fn) and probabilities are how often
they occur in decompositions of m ∈ In:

P{X (In) = Fk} :=























Fk−1Fn−k−2
µnFn−1

, if 1 ≤ k ≤ n − 2

1
µn
, if k = n

0, otherwise,

where µn is the average number of summands in Zeckendorf
decompositions of integers in the interval [Fn,Fn+1).
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Approximations

Estimate for P{X (In) = Fk}

P{X (In) = Fk} =
1

µnφ
√

5
+ O

(

φ−2k + φ−2n+2k
)

.

Constant Fringes Negligible

For any r (which may depend on n):

∑

r<k<n−r

P{X (In) = Fk} = 1 − r · O
(

1
n

)

.
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Estimating P{X (In) ∈ S}

Set r :=
⌊

log n
logφ

⌋

.

Density of S over Zeckendorf Summands

We have

P{X (In) ∈ S} =
nq(S)

µnφ
√

5
+ o(1) → q(s).
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Remark

Stronger result than Benfordness of Zeckendorf
summands.

Global property of the Fibonacci numbers can be carried
over locally into the Zeckendorf summands.

If we have a subset of the Fibonacci numbers S with
asymptotic density q(S), then the density of the set S over
the Zeckendorf summands will converge to this asymptotic
density.
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Benfordness of Random and Zeckendorf Decompositions
Joint with Andrew Best, Patrick Dynes, Xixi Edelsbunner, Brian

McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh and
Madeleine Weinstein
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Random Decompositions

Theorem 2 (SMALL 2014): Random Decomposition

If we choose each Fibonacci number with probability q,
disallowing the choice of two consecutive Fibonacci numbers,
the resulting sequence follows Benford’s law.

Example: n = 10

F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10

= 2 + 8 + 21 + 89

= 120
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Choosing a Random Decomposition

Select a random subset A of the Fibonaccis as follows:

Fix q ∈ (0,1).

Let A0 := ∅.

For n ≥ 1, if Fn−1 ∈ An−1, let An := An−1, else

An =

{

An−1 ∪ {Fn} with probability q

An−1 with probability 1 − q.

Let A :=
⋃

n An.
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Main Result

Theorem
With probability 1, A (chosen as before) is Benford.

Stronger claim: For any subset S of the Fibonaccis with
density d in the Fibonaccis, S ∩ A has density d in A with
probability 1.
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Preliminaries

Lemma
The probability that Fk ∈ A is

pk =
q

1 + q
+ O(qk ).

Using elementary techniques, we get

Lemma
Define Xn := #An. Then

E [Xn] =
nq

1 + q
+ O(1)

Var(Xn) = O(n).
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Expected Value of Yn

Define Yn,S := #An ∩ S. Using standard techniques, we get

Lemma

E[Yn] =
nqd

1 + q
+ o(n).

Var(Yn,S) = o(n2).
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Expected Value of Yn

Define Yn,S := #An ∩ S. Using standard techniques, we get

Lemma

E[Yn] =
nqd

1 + q
+ o(n).

Var(Yn,S) = o(n2).

Immediately implies with probability 1 + o(1)

Yn,S =
nqd

1 + q
+ o(n), lim

n→∞

Yn,S

Xn
= d .

Hence A ∩ S has density d in A, completing the proof.
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Zeckendorf Decompositions and Benford’s Law

Theorem (SMALL 2014): Benfordness of Decomposition

If we pick a random integer in [0,Fn+1), then with probability 1
as n → ∞ its Zeckendorf decomposition converges to Benford’s
Law.
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Proof of Theorem

Choose integers randomly in [0,Fn+1) by random
decomposition model from before.

Choose m = Fa1 + Fa2 + · · · + Faℓ
∈ [0,Fn+1) with

probability

pm =

{

qℓ(1 − q)n−2ℓ if aℓ ≤ n

qℓ(1 − q)n−2ℓ+1 if aℓ = n.

Key idea: Choosing q = 1/ϕ2, the previous formula
simplifies to

pm =

{

ϕ−n if m ∈ [0,Fn)

ϕ−n−1 if m ∈ [Fn,Fn+1),

use earlier results.
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References
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Generalizations
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences : linear recurrences with non-negative
coefficients:

Hn+1 = c1Hn−(j1=0) + c2Hn−j2 + · · · + cLHn−jL.

Theorem (Zeckendorf’s Theorem for PLRS recurrences)

Any b ∈ N has a unique legal decomposition into sums of Hn,
b = a1Hi1 + · · ·+ aik Hik .

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · · + (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+ · · · + x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.
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Messier Combinatorics

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

1
1 − x

(

c1 − 1 + c2x t2 + · · ·+ cLx tL
)

×

×
∑

k≥0

[

(

(c1 − 1)x t1 + · · · + (cL − 1)x tL
)

(

xs+1 − x f

1 − x

)

+

+x t1

(

xs+t2−t1+1 − x f

1 − x

)

+ · · · + x tL−1

(

xs+tL−tL−1 + 1 − x f

1 − x

)]k

.

A geometric series!
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Generalized Generating Function

Let f > jL. The number of x ∈ [Hn,Hn+1), with longest gap < f
is given by the coefficient of sn in the generating function

F (s) =
1 − sjL

M(s) + sfR(s)
,

where
M(s) = 1 − c1s − c2sj2+1 − · · · − cLsjL+1,

and
R(s) = cj1+1sj1 + cj2+1sj2 + · · · + (cjL+1 − 1)sjL .

and ci and ji are defined as above .
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What are the extra obstructions?

The coefficients in the partial fraction expansion might blow
up from multiple roots.
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What are the extra obstructions?

The coefficients in the partial fraction expansion might blow
up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn,Hn+1), the mean longest gap µn and
the variance of the longest gap σ2

n are given by

µn =

log
(

R( 1
λ1

)

G( 1
λ1

)
n
)

logλ1
+

γ

logλ1
− 1

2
+ Small Error + ǫ1(n),

and

σ2
n =

π2

6 logλ1
− 1

12
+ Small Error + ǫ2(n),

where ǫi(n) tends to zero in the limit, and Small Error comes
from the Euler-Maclaurin Formula.
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