The Reversed Zeckendorf Game

Akash L. Narayanan, UC Berkeley (narayanan.akash@berkeley.edu)
Chris Yao, UC Berkeley (chris.yao@berkeley.edu)
(with Zoë X. Batterman, Aditya Jambhale, Kishan Sharma, and Andrew K. Yang)
Advisor: Steven J. Miller
2023 SMALL REU at Williams College

21st International Fibonacci Conference

July 12, 2024

- Zeckendorf decompositions, the Zeckendorf Game, and known results
- The Reversed Zeckendorf Game
- Varying the starting position
- The Build-Up 1-2-3 Game
- Concluding remarks and future directions

The Zeckendorf decomposition of a positive integer n is its expression as a sum of distinct, non-adjacent Fibonacci numbers.

The Zeckendorf decomposition of a positive integer n is its expression as a sum of distinct, non-adjacent Fibonacci numbers.

$$
2024=1597+377+34+13+3
$$

The Zeckendorf decomposition of a positive integer n is its expression as a sum of distinct, non-adjacent Fibonacci numbers.

$$
2024=1597+377+34+13+3
$$

Theorem (Zeckendorf)

Any positive integer n admits a unique Zeckendorf decomposition up to the ordering of the summands.

In 2018, Baird-Smith, Epstein, Flint, and Miller introduced a two-player turn-based game based on Zeckendorf decompositions.

In 2018, Baird-Smith, Epstein, Flint, and Miller introduced a two-player turn-based game based on Zeckendorf decompositions.

Choose a positive integer n. The game begins with n ones, and players take turns moving to and from various decompositions of n into Fibonacci numbers.

In 2018, Baird-Smith, Epstein, Flint, and Miller introduced a two-player turn-based game based on Zeckendorf decompositions.

Choose a positive integer n. The game begins with n ones, and players take turns moving to and from various decompositions of n into Fibonacci numbers.

Each F_{i} in a decomposition is a game chip. We call the collection of F_{i} 's the $i^{\text {th }}$ bin, and the height h_{i} of the $i^{\text {th }}$ bin is $\# F_{i}$.

In 2018, Baird-Smith, Epstein, Flint, and Miller introduced a two-player turn-based game based on Zeckendorf decompositions.

Choose a positive integer n. The game begins with n ones, and players take turns moving to and from various decompositions of n into Fibonacci numbers.

Each F_{i} in a decomposition is a game chip. We call the collection of F_{i} 's the $i^{\text {th }}$ bin, and the height h_{i} of the $i^{\text {th }}$ bin is $\# F_{i}$.

Players alternate turns, and the last player to move wins (i.e., the first player to run out of moves loses).

On each turn, a player may perform one of the two following moves:

On each turn, a player may perform one of the two following moves:
Combine: If $h_{i}>0$ and $h_{i-1}>0$, then the move is

$$
F_{i-1} \wedge F_{i} \longmapsto F_{i+1}
$$

The move $F_{1} \wedge F_{1} \longmapsto F_{2}$ is also a combine.

On each turn, a player may perform one of the two following moves:
Combine: If $h_{i}>0$ and $h_{i-1}>0$, then the move is

$$
F_{i-1} \wedge F_{i} \longmapsto F_{i+1}
$$

The move $F_{1} \wedge F_{1} \longmapsto F_{2}$ is also a combine.
Split: If $h_{i}>1$ with $i>2$, then the move is

$$
2 F_{i} \longmapsto F_{i-2} \wedge F_{i+1} .
$$

The move $2 F_{2} \longmapsto F_{3} \wedge F_{1}$ is also a split.

Earlier Results

Two important results:

Earlier Results

Two important results:
Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)
The Zeckendorf Game always terminates at a Zeckendorf decomposition in a finite number of moves.

Earlier Results

Two important results:
Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)
The Zeckendorf Game always terminates at a Zeckendorf decomposition in a finite number of moves.

Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)
For $n \geq 3$, Player 2 wins with optimal play on both sides.

Earlier Results

Two important results:

Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)

The Zeckendorf Game always terminates at a Zeckendorf decomposition in a finite number of moves.

Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)
For $n \geq 3$, Player 2 wins with optimal play on both sides.

The proof of the second statement is non-constructive and uses a strategy-stealing argument. Unfortunately, this means we do not explicitly know the winning strategy!

We wish to create a time-reversed version of the Zeckendorf Game and study its properties. How do we do this, i.e., how do we determine the rules of a reversed game?

We wish to create a time-reversed version of the Zeckendorf Game and study its properties. How do we do this, i.e., how do we determine the rules of a reversed game?

Graph-theoretic approach: We create a directed graph of the forwards game by associating a vertex to each possible decomposition of n into Fibonacci numbers.

We wish to create a time-reversed version of the Zeckendorf Game and study its properties. How do we do this, i.e., how do we determine the rules of a reversed game?

Graph-theoretic approach: We create a directed graph of the forwards game by associating a vertex to each possible decomposition of n into Fibonacci numbers.

Place a directed edge between two vertices if it is possible to travel from one decomposition to another in one game turn.

We wish to create a time-reversed version of the Zeckendorf Game and study its properties. How do we do this, i.e., how do we determine the rules of a reversed game?

Graph-theoretic approach: We create a directed graph of the forwards game by associating a vertex to each possible decomposition of n into Fibonacci numbers.

Place a directed edge between two vertices if it is possible to travel from one decomposition to another in one game turn.

The game starts with n ones and always terminates at a Zeckendorf decomposition, so the starting and ending nodes are unique.

We obtain the reversed game by switching the starting and ending nodes and reversing the arrows in the directed graph.

We obtain the reversed game by switching the starting and ending nodes and reversing the arrows in the directed graph.

Explicitly, the Reversed Zeckendorf Game begins at the Zeckendorf decomposition of n.

We obtain the reversed game by switching the starting and ending nodes and reversing the arrows in the directed graph.

Explicitly, the Reversed Zeckendorf Game begins at the Zeckendorf decomposition of n.
We use the same terminology for chips, bins, and heights as in the forwards game. The game terminates at n copies of $F_{1}=1$, and the last player to move wins.

As before, players may perform one of the two following moves:

As before, players may perform one of the two following moves:
Split: If $h_{i+1}>0$, then the move is

$$
F_{i+1} \longmapsto F_{i-1} \wedge F_{i}
$$

The move $F_{2} \longmapsto F_{1} \wedge F_{1}$ is also a split.

As before, players may perform one of the two following moves:
Split: If $h_{i+1}>0$, then the move is

$$
F_{i+1} \longmapsto F_{i-1} \wedge F_{i}
$$

The move $F_{2} \longmapsto F_{1} \wedge F_{1}$ is also a split.
Combine: If $h_{i-2}>0$ and $h_{i+1}>0$ with $i>2$, then the move is

$$
F_{i-2} \wedge F_{i+1} \longmapsto 2 F_{i}
$$

The move $F_{3} \wedge F_{1} \longmapsto 2 F_{2}$ is also a combine.

Game Tree for $n=7$

Figure: Green/red node means the player to move at that state is winning/losing. Player 1 wins with optimal play.

Unlike the forwards game, Player 1 wins infinitely often in the reversed game.

Unlike the forwards game, Player 1 wins infinitely often in the reversed game.

Theorem (SMALL 2023)
Player 1 has a winning strategy in the Reversed Zeckendorf Game whenever

$$
n=F_{i+1} \wedge F_{i-2}
$$

for any $i>2$.

Unlike the forwards game, Player 1 wins infinitely often in the reversed game.

Theorem (SMALL 2023)

Player 1 has a winning strategy in the Reversed Zeckendorf Game whenever

$$
n=F_{i+1} \wedge F_{i-2}
$$

for any $i>2$.

We have found both a constructive and a non-constructive proof.

Outline of the non-constructive proof:

Outline of the non-constructive proof:

Suppose that Player 2 has a forced win for some $n=F_{i+1} \wedge F_{i-2}$.

Outline of the non-constructive proof:

Suppose that Player 2 has a forced win for some $n=F_{i+1} \wedge F_{i-2}$.
If Player 1's first move is the combine $F_{i+1} \wedge F_{i-2} \longmapsto 2 F_{i}$, then Player 2 has a forced win starting at the state $2 F_{i}$ with their turn to play.

Outline of the non-constructive proof:

Suppose that Player 2 has a forced win for some $n=F_{i+1} \wedge F_{i-2}$.
If Player 1's first move is the combine $F_{i+1} \wedge F_{i-2} \longmapsto 2 F_{i}$, then Player 2 has a forced win starting at the state $2 F_{i}$ with their turn to play.

Player 2's only move leads to the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 1 on move. Thus, Player 2 has a forced win starting at the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 1 on move.

Outline of the non-constructive proof:

Suppose that Player 2 has a forced win for some $n=F_{i+1} \wedge F_{i-2}$.
If Player 1's first move is the combine $F_{i+1} \wedge F_{i-2} \longmapsto 2 F_{i}$, then Player 2 has a forced win starting at the state $2 F_{i}$ with their turn to play.

Player 2's only move leads to the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 1 on move. Thus, Player 2 has a forced win starting at the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 1 on move.

However, Player 1 can steal Player 2's winning strategy by instead performing a split on their first move.

Outline of the non-constructive proof:

Suppose that Player 2 has a forced win for some $n=F_{i+1} \wedge F_{i-2}$.
If Player 1's first move is the combine $F_{i+1} \wedge F_{i-2} \longmapsto 2 F_{i}$, then Player 2 has a forced win starting at the state $2 F_{i}$ with their turn to play.

Player 2's only move leads to the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 1 on move. Thus, Player 2 has a forced win starting at the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 1 on move.

However, Player 1 can steal Player 2's winning strategy by instead performing a split on their first move.

This forces the game state $F_{i} \wedge F_{i-1} \wedge F_{i-2}$ with Player 2 on move. Thus, Player 1 wins by stealing Player 2's winning strategy from the third statement.

Computational results suggest that the winning structure of the reversed game is very rich.

Computational results suggest that the winning structure of the reversed game is very rich.

Conjecture (SMALL 2023)
With optimal play on both sides, Player 2 has a forced win for infinitely many n.

Conjecture (SMALL 2023)
With optimal play on both sides, Player 2 has a forced win for infinitely many n.

Conjecture (SMALL 2023)
In the limit as $n \rightarrow \infty$, the proportion of Player 1 wins is $\varphi^{-1} \approx 0.618$, where

$$
\varphi=\frac{1+\sqrt{5}}{2}
$$

is the golden ratio.

We obtain further results when varying the starting position of the reversed game.

We obtain further results when varying the starting position of the reversed game.

Theorem (SMALL 2023)

If the height of all bins at the starting position is even, then Player 2 wins.

We obtain further results when varying the starting position of the reversed game.

Theorem (SMALL 2023)

If the height of all bins at the starting position is even, then Player 2 wins.

The proof uses a strategy-stealing argument.

We have also solved this case completely when the starting position consists only of a ones, b twos, and c threes.

We have also solved this case completely when the starting position consists only of a ones, b twos, and c threes.

a	b	c		Player having forced win
Even	Even	Even		Player 2
Odd	Odd	Odd		Player 1
Even	Odd	Even		Player 1
Odd	Even	Odd		Player 1
Odd	Even	Even	$a>c$	Player 2
Odd	Even	Even	$a<c$	Player 1
Even	Even	Odd	$a>c$	Player 1
Even	Even	Odd	$a<c$	Player 2
Even	Odd	Odd		Player 1
Odd	Odd	Even	Player 1	

Source: SMALL 2023.

We have also solved this case completely when the starting position consists only of a ones, b twos, and c threes.

a	b	c		Player having forced win
Even	Even	Even		Player 2
Odd	Odd	Odd		Player 1
Even	Odd	Even		Player 1
Odd	Even	Odd		Player 1
Odd	Even	Even	$a>c$	Player 2
Odd	Even	Even	$a<c$	Player 1
Even	Even	Odd	$a>c$	Player 1
Even	Even	Odd	$a<c$	Player 2
Even	Odd	Odd		Player 1
Odd	Odd	Even	Player 1	

Source: SMALL 2023.

The proofs are constructive and give explicit winning strategies.

The table on the previous page motivates another variant of the Reversed Zeckendorf Game that we call the Build-Up 1-2-3 Game.

The table on the previous page motivates another variant of the Reversed Zeckendorf Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three until their sum equals n. This generates an ordered triple (a, b, c).

The table on the previous page motivates another variant of the Reversed Zeckendorf Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning with the player who did not place down the final number.

The table on the previous page motivates another variant of the Reversed Zeckendorf Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning with the player who did not place down the final number.

Theorem (SMALL 2023)

For $n=4$ or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when $n \neq 4$ is even), Player 2 wins.

The table on the previous page motivates another variant of the Reversed Zeckendorf Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning with the player who did not place down the final number.

Theorem (SMALL 2023)

For $n=4$ or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when $n \neq 4$ is even), Player 2 wins.

The proof gives explicit winning strategies and uses the results of the previous table.

Future Directions

Find an infinite family of integers n where Player 2 has a forced win.

Find an infinite family of integers n where Player 2 has a forced win.
Determine rigorously the proportion of Player 1 wins in the limit as $n \rightarrow \infty$ (if the limit exists).

Find an infinite family of integers n where Player 2 has a forced win.
Determine rigorously the proportion of Player 1 wins in the limit as $n \rightarrow \infty$ (if the limit exists).

Create code that calculates the winning player more efficiently.

Find an infinite family of integers n where Player 2 has a forced win.
Determine rigorously the proportion of Player 1 wins in the limit as $n \rightarrow \infty$ (if the limit exists).

Create code that calculates the winning player more efficiently.
Solve the reversed game for other starting positions.

We would like to thank our mentor, Professor Steven J. Miller, and our coauthors, Zöe X. Batterman, Aditya Jambhale, Kishan Sharma, and Andrew K. Yang.

We wish to give special thanks to the organizing committee and Harvey Mudd College for hosting this conference.

This presentation was supported by NSF Grants DMS2241623 and DMS2241623. We thank the NSF, Williams College, and the University of Michigan for making SMALL 2023 possible.
P. Baird-Smith, A. Epstein, K. Flint and S. J. Miller, The Zeckendorf Game, Combinatorial and Additive Number Theory III, CANT, New York, USA, 2017 and 2018, Springer Proceedings in Mathematics \& Statistics 297 (2020), 25-38.
P. Baird-Smith, A. Epstein, K. Flint and S. J. Miller, The Generalized Zeckendorf Game, Proceedings of the 18th International Conference on Fibonacci Numbers and Their Applications, Fibonacci Quarterly 57 (2019), no. 5, 1-14.
Z. X. Batterman, A. Jambhale, S. J. Miller, A. L. Narayanan, K. Sharma, A. K. Yang, C. Yao. The Reversed Zeckendorf Game, to appear in the Proceedings of the 21st International Conference on Fibonacci Numbers and Their Applications, Fibonacci Quarterly.
A. Cusenza, A. Dunkelberg, K. Huffman, D. Ke, D. Kleber, M. McClatchey, S. J. Miller, C. Mizgerd, V. Tiwari, J. Ye, X. Zheng, Bounds on Zeckendorf Games, Fibonacci Quarterly 60 (2022), no. 1,57-71.

