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Zeckendorf Decompositions and Zeckendorf’s Theorem

The Zeckendorf decomposition of a positive integer n is its expression as a sum of distinct,
non-adjacent Fibonacci numbers.

2024 = 1597 + 377 + 34 + 13 + 3.

Theorem (Zeckendorf)

Any positive integer n admits a unique Zeckendorf decomposition up to the ordering of the
summands.
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The Zeckendorf Game

In 2018, Baird-Smith, Epstein, Flint, and Miller introduced a two-player turn-based game
based on Zeckendorf decompositions.

Choose a positive integer n. The game begins with n ones, and players take turns moving
to and from various decompositions of n into Fibonacci numbers.

Each Fi in a decomposition is a game chip. We call the collection of Fi’s the ith bin, and
the height hi of the ith bin is #Fi.

Players alternate turns, and the last player to move wins (i.e., the first player to run out of
moves loses).
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The Zeckendorf Game

On each turn, a player may perform one of the two following moves:

Combine: If hi > 0 and hi−1 > 0, then the move is

Fi−1 ∧ Fi 7−→ Fi+1.

The move F1 ∧ F1 7−→ F2 is also a combine.

Split: If hi > 1 with i > 2, then the move is

2Fi 7−→ Fi−2 ∧ Fi+1.

The move 2F2 7−→ F3 ∧ F1 is also a split.
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Earlier Results

Two important results:

Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)

The Zeckendorf Game always terminates at a Zeckendorf decomposition in a finite number
of moves.

Theorem (Baird-Smith, Epstein, Flint, and Miller, 2018)

For n ≥ 3, Player 2 wins with optimal play on both sides.

The proof of the second statement is non-constructive and uses a strategy-stealing
argument. Unfortunately, this means we do not explicitly know the winning strategy!
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The Reversed Zeckendorf Game

We wish to create a time-reversed version of the Zeckendorf Game and study its
properties. How do we do this, i.e., how do we determine the rules of a reversed game?

Graph-theoretic approach: We create a directed graph of the forwards game by
associating a vertex to each possible decomposition of n into Fibonacci numbers.

Place a directed edge between two vertices if it is possible to travel from one
decomposition to another in one game turn.

The game starts with n ones and always terminates at a Zeckendorf decomposition, so the
starting and ending nodes are unique.
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The Reversed Zeckendorf Game

We obtain the reversed game by switching the starting and ending nodes and reversing the
arrows in the directed graph.

Explicitly, the Reversed Zeckendorf Game begins at the Zeckendorf decomposition of n.

We use the same terminology for chips, bins, and heights as in the forwards game. The
game terminates at n copies of F1 = 1, and the last player to move wins.
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The Reversed Zeckendorf Game

As before, players may perform one of the two following moves:

Split: If hi+1 > 0, then the move is

Fi+1 7−→ Fi−1 ∧ Fi.

The move F2 7−→ F1 ∧ F1 is also a split.

Combine: If hi−2 > 0 and hi+1 > 0 with i > 2, then the move is

Fi−2 ∧ Fi+1 7−→ 2Fi.

The move F3 ∧ F1 7−→ 2F2 is also a combine.
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Game Tree for n = 7

Figure: Green/red node means the player to move at that state is winning/losing. Player 1 wins with optimal play.

(1, 0, 2, 0)

(0, 2, 1, 0)

(3, 2, 0, 0)

(5, 1, 0, 0)

(2, 1, 1, 0)

(4, 0, 1, 0)

(0, 1, 0, 1)

(2, 0, 0, 1)

(7, 0, 0, 0)

(1, 3, 0, 0)
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Some Results

Unlike the forwards game, Player 1 wins infinitely often in the reversed game.

Theorem (SMALL 2023)

Player 1 has a winning strategy in the Reversed Zeckendorf Game whenever

n = Fi+1 ∧ Fi−2

for any i > 2.

We have found both a constructive and a non-constructive proof.
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Some Results

Outline of the non-constructive proof:

Suppose that Player 2 has a forced win for some n = Fi+1 ∧ Fi−2.

If Player 1’s first move is the combine Fi+1 ∧ Fi−2 7−→ 2Fi, then Player 2 has a forced win
starting at the state 2Fi with their turn to play.

Player 2’s only move leads to the game state Fi ∧ Fi−1 ∧ Fi−2 with Player 1 on move.
Thus, Player 2 has a forced win starting at the game state Fi ∧ Fi−1 ∧ Fi−2 with Player 1
on move.

However, Player 1 can steal Player 2’s winning strategy by instead performing a split on
their first move.

This forces the game state Fi ∧ Fi−1 ∧ Fi−2 with Player 2 on move. Thus, Player 1 wins
by stealing Player 2’s winning strategy from the third statement.
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Some Results

Computational results suggest that the winning structure of the reversed game is very rich.

Source: SMALL 2023.
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Some Results

Conjecture (SMALL 2023)

With optimal play on both sides, Player 2 has a forced win for infinitely many n.

Conjecture (SMALL 2023)

In the limit as n → ∞, the proportion of Player 1 wins is φ−1 ≈ 0.618, where

φ = 1 +
√

5
2

is the golden ratio.
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Varying the Starting Position

We obtain further results when varying the starting position of the reversed game.

Theorem (SMALL 2023)

If the height of all bins at the starting position is even, then Player 2 wins.

The proof uses a strategy-stealing argument.
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Varying the Starting Position

We have also solved this case completely when the starting position consists only of a
ones, b twos, and c threes.

Source: SMALL 2023.

The proofs are constructive and give explicit winning strategies.
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The Build-Up 1-2-3 Game

The table on the previous page motivates another variant of the Reversed Zeckendorf
Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three
until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning
with the player who did not place down the final number.

Theorem (SMALL 2023)

For n = 4 or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when n ̸= 4
is even), Player 2 wins.

The proof gives explicit winning strategies and uses the results of the previous table.

Akash L. Narayanan and Chris Yao The Reversed Zeckendorf Game 17 / 20



The Build-Up 1-2-3 Game

The table on the previous page motivates another variant of the Reversed Zeckendorf
Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three
until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning
with the player who did not place down the final number.

Theorem (SMALL 2023)

For n = 4 or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when n ̸= 4
is even), Player 2 wins.

The proof gives explicit winning strategies and uses the results of the previous table.

Akash L. Narayanan and Chris Yao The Reversed Zeckendorf Game 17 / 20



The Build-Up 1-2-3 Game

The table on the previous page motivates another variant of the Reversed Zeckendorf
Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three
until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning
with the player who did not place down the final number.

Theorem (SMALL 2023)

For n = 4 or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when n ̸= 4
is even), Player 2 wins.

The proof gives explicit winning strategies and uses the results of the previous table.

Akash L. Narayanan and Chris Yao The Reversed Zeckendorf Game 17 / 20



The Build-Up 1-2-3 Game

The table on the previous page motivates another variant of the Reversed Zeckendorf
Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three
until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning
with the player who did not place down the final number.

Theorem (SMALL 2023)

For n = 4 or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when n ̸= 4
is even), Player 2 wins.

The proof gives explicit winning strategies and uses the results of the previous table.

Akash L. Narayanan and Chris Yao The Reversed Zeckendorf Game 17 / 20



The Build-Up 1-2-3 Game

The table on the previous page motivates another variant of the Reversed Zeckendorf
Game that we call the Build-Up 1-2-3 Game.

Choose an integer n. Two players begin by taking turns placing down a one, two, or three
until their sum equals n. This generates an ordered triple (a, b, c).

The players then play the Reversed Zeckendorf Game starting from this triple beginning
with the player who did not place down the final number.

Theorem (SMALL 2023)

For n = 4 or n odd, Player 1 wins the Build-Up 1-2-3 Game. Otherwise (i.e., when n ̸= 4
is even), Player 2 wins.

The proof gives explicit winning strategies and uses the results of the previous table.

Akash L. Narayanan and Chris Yao The Reversed Zeckendorf Game 17 / 20



Future Directions

Find an infinite family of integers n where Player 2 has a forced win.

Determine rigorously the proportion of Player 1 wins in the limit as n → ∞ (if the limit
exists).

Create code that calculates the winning player more efficiently.

Solve the reversed game for other starting positions.
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