Stability of Matrix Recurrence Relations: k-nacci Counting and Asymptotics

Matrix Recurrence Relations Group and Predator-Prey Population Modeling Group (SMALL 2024 REU) Speakers: Glenn Bruda, Pico Gilman, Beni Prapashtica, Daniel Son, Saad Waheed, and Janine Wang

July 12th, 2024

Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

$$
F_{n}=F_{n-1}+F_{n-2}, \text { with } F_{0}=0, F_{1}=1
$$

Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

$$
F_{n}=F_{n-1}+F_{n-2}, \text { with } F_{0}=0, F_{1}=1
$$

...with different initial conditions:

Definition (Lucas Numbers)

$$
L_{n}=L_{n-1}+L_{n-2}, \text { with } L_{0}=2, L_{1}=1 .
$$

Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

$$
F_{n}=F_{n-1}+F_{n-2}, \text { with } F_{0}=0, F_{1}=1
$$

...with different initial conditions:

Definition (Lucas Numbers)

$$
L_{n}=L_{n-1}+L_{n-2}, \text { with } L_{0}=2, L_{1}=1 .
$$

...and different recurrence depth:

Definition (j-nacci Numbers)

$$
F_{n}^{(j)}=\sum_{i=0}^{j-1} F_{n-i-1}^{(j)}, \text { with } F_{0}^{(j)}, F_{1}^{(j)}, \ldots, F_{j-2}^{(j)}=0, \quad F_{j-1}^{(j)}=1
$$

Motivating Questions

- Can we apply recurrence relations to matrices?
- How should we do so?
- What applications could this have?

Matrix Recurrences in Population Modeling

Definition (Modeling Migrating Populations Using Leslie Matrices)

Let $x_{1}(t)$ and $x_{2}(t)$ represent the population of a species in two regions, R_{1} and R_{2} respectively. The following recurrence relation can be used to model the time evolution of these populations

$$
\begin{aligned}
\vec{x}_{1}(t) & =\left[L-k_{1} \mathbf{I}\right] \cdot \vec{x}_{1}(t-1)+k_{2} \cdot \vec{x}_{2}(t-1), \\
\vec{x}_{2}(t) & =\left[L-k_{2} \mathbf{I}\right] \cdot \vec{x}_{2}(t-1)+k_{1} \cdot \vec{x}_{1}(t-1),
\end{aligned}
$$

where L is a Leslie matrix, defined as:

$$
A=\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
s_{1} & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & s_{n} & 0
\end{array}\right]
$$

Behavior - I

Example (Base Case with $k_{1}=k_{2}=k$)

Behavior - II

Example (Base Case with $k_{1}=k_{2}=k$)

Behavior - III

Example (Base Case with $k_{1}=k_{2}=k$)

Stable Population of a Single-Species Model

Theorem (Bounded Fibonacci)

The recurrence relation

$$
x_{n}=x_{n-1}+x_{n-2}-x_{n-1} x_{n-2} / M
$$

has a following closed form solution

$$
x_{n}=M-M\left(1-\frac{x_{1}}{M}\right)^{F_{n-1}}\left(1-\frac{x_{0}}{M}\right)^{F_{n-2}} .
$$

Moreover, x_{n} can be approximated by the following formula

$$
x_{n} \approx x_{0} \frac{\varphi^{n}}{\sqrt{5}}\left(1-\frac{\varphi^{n-3}}{\sqrt{5} M} x_{0}\right)
$$

Plot of the Bounded Fibonacci

Approximation VS Reality

Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A_{0}, A_{1} be square matrices of same order. For $n \geq 2$,

$$
A_{n}=A_{n-1} A_{n-2} .
$$

Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A_{0}, A_{1} be square matrices of same order. For $n \geq 2$,

$$
A_{n}=A_{n-1} A_{n-2} .
$$

Example:
$A_{0}=\mathbf{I}, A_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=: Q$, known as the Fibonacci matrix.

Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A_{0}, A_{1} be square matrices of same order. For $n \geq 2$,

$$
A_{n}=A_{n-1} A_{n-2}
$$

Example:
$A_{0}=\mathbf{I}, A_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=: Q$, known as the Fibonacci matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
8 & 5 \\
5 & 3
\end{array}\right],\left[\begin{array}{cc}
34 & 21 \\
21 & 13
\end{array}\right], \ldots
$$

Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A_{0}, A_{1} be square matrices of same order. For $n \geq 2$,

$$
A_{n}=A_{n-1} A_{n-2}
$$

Example:
$A_{0}=\mathbf{I}, A_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=: Q$, known as the Fibonacci matrix.

$$
A_{n}=\left[\begin{array}{cc}
F_{F_{n}+1} & F_{F_{n}} \\
F_{F_{n}} & F_{F_{n}-1}
\end{array}\right]
$$

Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A_{0}, A_{1} be square matrices of same order. For $n \geq 2$,

$$
A_{n}=A_{n-1} A_{n-2} .
$$

Example:
$A_{0}=\mathbf{I}, A_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=: Q$, known as the Fibonacci matrix.

$$
\begin{gathered}
A_{n}=\left[\begin{array}{cc}
F_{F_{n}+1} & F_{F_{n}} \\
F_{F_{n}} & F_{F_{n}-1}
\end{array}\right] \\
Q^{m}=\left[\begin{array}{cc}
F_{m+1} & F_{m} \\
F_{m} & F_{m-1}
\end{array}\right] \Longrightarrow A_{n}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{F_{n}}=A_{1}^{F_{n}}
\end{gathered}
$$

Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A_{0}, A_{1} be square matrices of same order. For $n \geq 2$,

$$
A_{n}=A_{n-1} A_{n-2} .
$$

Example:
$A_{0}=\mathbf{I}, A_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=: Q$, known as the Fibonacci matrix.

More generally, for $A_{0}=\mathbf{I}$ and arbitrary A_{1}, we have that

$$
A_{n}=A_{1}^{F_{n}} .
$$

Matrix Recurrence: Generalization

Definition (j-nacci Matrix Sequence)

Let $A_{0}, A_{1}, \ldots, A_{j-1}$ be square matrices of the same order. For $n \geq j$,

$$
A_{n}=\prod_{i=1}^{j} A_{n-i}
$$

Matrix Recurrence: Generalization

Definition (j-nacci Matrix Sequence)

Let $A_{0}, A_{1}, \ldots, A_{j-1}$ be square matrices of the same order. For $n \geq j$,

$$
A_{n}=\prod_{i=1}^{j} A_{n-i} .
$$

- Can we get a better grasp of the A_{n} 's beyond the initial conditions?

Multiplicity of Initial Matrices Theorem

Theorem (Multiplicity)

Let $j>1$ be an integer and $A_{0}, A_{1}, \ldots, A_{j-1}$ be square matrices of the same order. Consider the j-nacci matrix sequence defined by these initial conditions and the recurrence relation

$$
A_{n}=\prod_{i=1}^{j} A_{n-i}
$$

Then for all $n \geq j, A_{n}$ is a product of $A_{0}, A_{1}, \ldots, A_{j-1}$'s where each A_{k}, with $0 \leq k \leq j-1$, has multiplicity

$$
\# A_{k, n}:=\sum_{i=0}^{k} F_{n-i-1}^{(j)}
$$

Proof of the Multiplicity Theorem

Proof:

Analogous to the 2×2 Fibonacci matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, we can construct the following $j \times j j$-nacci matrix:

$$
Q^{(j)}=\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] .
$$

Proof of the Multiplicity Theorem

Proof:

Analogous to the 2×2 Fibonacci matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, we can construct the following $j \times j$-nacci matrix:

$$
Q^{(j)}=\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] .
$$

This matrix encodes the recurrence relation for the j-nacci sequence such that

$$
\left[\begin{array}{c}
F_{n+1}^{(j)} \\
F_{n}^{(j)} \\
\vdots \\
F_{n-j+2}^{(j)}
\end{array}\right]=Q^{(j)}\left[\begin{array}{c}
F_{n}^{(j)} \\
F_{n-1}^{(j)} \\
\vdots \\
F_{n-j+1}^{(j)}
\end{array}\right] .
$$

Proof of the Multiplicity Theorem - cont.

$\# A_{k, n}$ denotes the multiplicity of A_{k} in $A_{n}($ where $0 \leq k \leq j-1)$.

$$
\begin{aligned}
A_{n} & =\prod_{i=1}^{j} A_{n-i} \\
\Longrightarrow \# A_{k, n} & =\sum_{i=1}^{j} \# A_{k, n-i}
\end{aligned}
$$

Proof of the Multiplicity Theorem - cont.

$\# A_{k, n}$ denotes the multiplicity of A_{k} in $A_{n}($ where $0 \leq k \leq j-1)$.

$$
\begin{aligned}
A_{n} & =\prod_{i=1}^{j} A_{n-i} \\
\Longrightarrow \# A_{k, n} & =\sum_{i=1}^{j} \# A_{k, n-i}
\end{aligned}
$$

This is just the j-nacci recurrence relation which means we can write

$$
\left[\begin{array}{c}
\# A_{k, n+1} \\
\# A_{k, n} \\
\vdots \\
\# A_{k, n-j+2}
\end{array}\right]=Q^{(j)}\left[\begin{array}{c}
\# A_{k, n} \\
\# A_{k, n-1} \\
\vdots \\
\# A_{k, n-j+1}
\end{array}\right] .
$$

Proof of the Multiplicity Theorem - cont.

Starting from initial conditions, we can apply the $Q^{(j)}$ matrix n times to recover the nth vector iteration. Specifically,

$$
\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left(Q^{(j)}\right)^{n}\left[\begin{array}{c}
\# A_{k, j-1} \\
\# A_{k, j-2} \\
\vdots \\
\# A_{k, 0}
\end{array}\right] .
$$

Proof of the Multiplicity Theorem - cont.

Starting from initial conditions, we can apply the $Q^{(j)}$ matrix n times to recover the nth vector iteration. Specifically,

$$
\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left(Q^{(j)}\right)^{n}\left[\begin{array}{c}
\# A_{k, j-1} \\
\# A_{k, j-2} \\
\vdots \\
\# A_{k, 0}
\end{array}\right] .
$$

Different A_{k} 's have different initial conditions since $\# A_{k, l}=\left\{\begin{array}{cc}1 & \text { if } k=l \\ 0 & \text { otherwise } .\end{array}\right.$

$$
A_{j-1}:\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad A_{1}:\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
0
\end{array}\right] \quad A_{0}:\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \quad \Longrightarrow \quad A_{k}:\left[\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right]
$$

Proof of the Multiplicity Theorem - cont.

Starting from initial conditions, we can apply the $Q^{(j)}$ matrix n times to recover the nth vector iteration. Specifically,

$$
\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left[\begin{array}{ccccc}
q_{j-1, j-1} & \cdots & q_{j-1, k} & \cdots & q_{j-1,0} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
q_{0, j-1} & \cdots & q_{0, k} & \cdots & q_{0,0}
\end{array}\right]\left[\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right]
$$

Different A_{k} 's have different initial conditions since $\# A_{k, l}=\left\{\begin{array}{cc}1 & \text { if } k=l \\ 0 & \text { otherwise }\end{array}\right.$

$$
A_{j-1}:\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad A_{1}:\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
0
\end{array}\right] \quad A_{0}:\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \quad A_{k}:\left[\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right]
$$

Proof of the Multiplicity Theorem - cont.

Theorem (nth Power of the $Q^{(j)}$ Matrix, [1, page 159])

$$
\left(Q^{(j)}\right)^{n}=\left[\begin{array}{ccccc}
F_{n+j-1}^{(j)} & \sum_{i=0}^{j-2} F_{n+j-2-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n+j-2-i}^{(j)} & F_{n+j-2}^{(j)} \\
F_{n+j-2}^{(j)} & \sum_{i=0}^{j-2} F_{n+j-3-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n+j-3-i}^{(j)} & F_{n+j-3}^{(j)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
F_{n+1}^{(j)} & \sum_{i=0}^{j-2} F_{n-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n-i}^{(j)} & F_{n}^{(j)} \\
F_{n}^{(j)} & \sum_{i=0}^{j-2} F_{n-1-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n-1-i}^{(j)} & F_{n-1}^{(j)}
\end{array}\right]
$$

Proof of the Multiplicity Theorem - cont.

$$
\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left(Q^{(j)}\right)^{n}\left[\begin{array}{c}
\# A_{k, j-1} \\
\# A_{k, j-2} \\
\vdots \\
\# A_{k, 0}
\end{array}\right]
$$

Proof of the Multiplicity Theorem - cont.

$$
\begin{gathered}
\left.\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left(Q^{(j)}\right)^{n}\left[\begin{array}{c}
\# A_{k, j-1} \\
\# A_{k, j-2} \\
\vdots \\
\# A_{k, 0}
\end{array}\right] .\right]
\end{gathered}
$$

$$
\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left[\begin{array}{ccccc}
q_{j-1, j-1} & \cdots & q_{j-1, k} & \cdots & q_{j-1,0} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
F_{n}^{(j)} & \cdots & \sum_{i=0}^{k} F_{n-i-1}^{(j)} & \cdots & F_{n-1}^{(j)}
\end{array}\right]\left[\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right]
$$

Proof of the Multiplicity Theorem - cont.

$$
\begin{aligned}
& {\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left(Q^{(j)}\right)^{n}\left[\begin{array}{c}
\# A_{k, j-1} \\
\# A_{k, j-2} \\
\vdots \\
\# A_{k, 0}
\end{array}\right]} \\
& \downarrow \\
& {\left[\begin{array}{c}
\# A_{k, n+j-1} \\
\# A_{k, n+j-2} \\
\vdots \\
\# A_{k, n}
\end{array}\right]=\left[\begin{array}{ccccc}
q_{j-1, j-1} & \cdots & q_{j-1, k} & \cdots & q_{j-1,0} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
F_{n}^{(j)} & \cdots & \sum_{i=0}^{k} F_{n-i-1}^{(j)} & \cdots & F_{n-1}^{(j)}
\end{array}\right]\left[\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right]} \\
& \# A_{k, n}=\sum_{i=0}^{k} F_{n-i-1}^{(j)} .
\end{aligned}
$$

Stability Prerequisites

Definition (j-nacci Constant)

The j-nacci constant, denoted φ_{j}, is defined as the unique positive real number satisfying

$$
x^{j}-\sum_{i=0}^{j-1} x^{i}=0
$$

Stability Prerequisites

Definition (j-nacci Constant)

The j-nacci constant, denoted φ_{j}, is defined as the unique positive real number satisfying

$$
x^{j}-\sum_{i=0}^{j-1} x^{i}=0
$$

Proposition (Asymptotic Form of the j-nacci Sequence)

Let $j>1$ be an integer. Then

$$
F_{n}^{(j)} \sim c_{j} \varphi_{j}^{n}
$$

where c_{j} is a positive constant.

- This result follows from one proved by E.P. Miles, Jr. in [2], namely that all roots in $\mathbb{C} \backslash \mathbb{R}_{\geq 0}$ of the j-nacci polynomial lie inside the unit circle.

The Stability Theorem

Theorem (Stability)

Let $j>1$ be an integer and $A_{0}, A_{1}, \ldots, A_{j-1}$ be square matrices of the same order. Define the j-nacci matrix sequence $\left\{A_{n}\right\}$ using these initial conditions and the following recurrence relation (where the product can be taken in any order)

$$
A_{n}=\prod_{0 \leq i \leq j-1} A_{n-j+i}
$$

Suppose that

$$
\prod_{k=0}^{j-1}\left\|A_{k}\right\|^{1-\varphi_{j}^{-k-1}}<1
$$

where $\|\cdot\|$ is any submultiplicative matrix norm. Then $\left\{A_{n}\right\}$ converges to the zero matrix.

Proof of the Stability Theorem

Proof:
For any $n \geq j$,

$$
\left\|A_{n}\right\| \leq \prod_{k=0}^{j-1}\left\|A_{k}\right\|^{\sum_{i=0}^{k} F_{n-i-1}^{(j)}}
$$

Proof of the Stability Theorem

Proof:
For any $n \geq j$,

$$
\begin{aligned}
& \left\|A_{n}\right\| \leq \prod_{k=0}^{j-1}\left\|A_{k}\right\|^{\sum_{i=0}^{k} F_{n-i-1}^{(j)}} \\
& =\Theta\left(\prod_{k=0}^{j-1}\left\|A_{k}\right\|^{\sum_{i=0}^{k} c_{j} \varphi_{j}^{n-i-1}}\right)
\end{aligned}
$$

Proof of the Stability Theorem

Proof:
For any $n \geq j$,

$$
\begin{aligned}
& \left\|A_{n}\right\| \leq \prod_{k=0}^{j-1}\left\|A_{k}\right\|^{\sum_{i=0}^{k} F_{n-i-1}^{(j)}} \\
& =\Theta\left(\prod_{k=0}^{j-1}\left\|A_{k}\right\|^{\sum_{i=0}^{k} c_{j} \varphi_{j}^{n-i-1}}\right) \\
& =\Theta\left(\left(\prod_{k=0}^{j-1}\left\|A_{k}\right\|^{1-\varphi_{j}^{-k-1}}\right)^{\frac{c_{j} \varphi_{j}^{n}}{\varphi_{j}-1}}\right)
\end{aligned}
$$

Extending the Stability Theorem to Sums of Products

Corollary (Stability for Sums of Products)

Let K be a finite set of integers each greater than 1. Let $A_{0}, A_{1}, \ldots, A_{\max (K)-1}$ be square matrices of the same order. Define the sequence of matrices $\left\{A_{n}\right\}$ using these initial conditions and the following recurrence relation (where each product can be taken in any order)

$$
A_{n}=\sum_{j \in K} a_{j} \prod_{0 \leq i \leq j-1} A_{n-\max (K)+i}
$$

Suppose that for all $j \in K$,

$$
\prod_{k=0}^{j-1}\left\|A_{k}\right\|^{1-\varphi_{j}^{-k-1}}<1
$$

where $\|\cdot\|$ is any submultiplicative matrix norm. Then $\left\{A_{n}\right\}$ converges to the zero matrix.

Example of the Stability Theorem

Example:

$$
\begin{gathered}
\text { Let } M_{0}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], M_{1}=\left[\begin{array}{cc}
(2 \sqrt{2})^{-1} & (2 \sqrt{2})^{-1} \\
0 & 0
\end{array}\right] \text { and for } n \geq 2 \text {, define } \\
M_{n}=M_{n-1} M_{n-2} .
\end{gathered}
$$

Example of the Stability Theorem

Example:

$$
\begin{gathered}
\text { Let } M_{0}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], M_{1}=\left[\begin{array}{cc}
(2 \sqrt{2})^{-1} & (2 \sqrt{2})^{-1} \\
0 & 0
\end{array}\right] \text { and for } n \geq 2 \text {, define } \\
M_{n}=M_{n-1} M_{n-2} .
\end{gathered}
$$

We have that $\left\|M_{0}\right\|_{\text {op }}=3$ and $\left\|M_{1}\right\|_{\text {op }}=1 / 2$. Thus

$$
\left\|M_{0}\right\|_{\mathrm{op}}^{1-\varphi^{-1}}\left\|M_{1}\right\|_{\mathrm{op}}^{1-\varphi^{-2}} \approx 0.9913<1
$$

Example of the Stability Theorem

Example:
Let $M_{0}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], M_{1}=\left[\begin{array}{cc}(2 \sqrt{2})^{-1} & (2 \sqrt{2})^{-1} \\ 0 & 0\end{array}\right]$ and for $n \geq 2$, define

$$
M_{n}=M_{n-1} M_{n-2} .
$$

We have that $\left\|M_{0}\right\|_{\mathrm{op}}=3$ and $\left\|M_{1}\right\|_{\mathrm{op}}=1 / 2$. Thus

$$
\left\|M_{0}\right\|_{\mathrm{op}}^{1-\varphi^{-1}}\left\|M_{1}\right\|_{\mathrm{op}}^{1-\varphi^{-2}} \approx 0.9913<1
$$

Using the Stability Theorem, we know that M_{n} converges to the zero matrix.

Example of the Stability Theorem

Example:
Let $M_{0}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], M_{1}=\left[\begin{array}{cc}(2 \sqrt{2})^{-1} & (2 \sqrt{2})^{-1} \\ 0 & 0\end{array}\right]$ and for $n \geq 2$, define

$$
M_{n}=M_{n-1} M_{n-2}
$$

We have that $\left\|M_{0}\right\|_{\text {op }}=3$ and $\left\|M_{1}\right\|_{\text {op }}=1 / 2$.

Conjecture

For any $n \geq 1$,

$$
\left\|M_{n}\right\|_{\mathrm{op}}=\sqrt{2} \frac{3^{F_{n-1}}}{(2 \sqrt{2})^{F_{n}}}
$$

- Considering how this formula contains the values of the norms and entries of M_{0} and M_{1}, we naturally ask if this is generalizable.

The Stability Theorem: Further Generalization

Definition (The (S, j)-nacci Matrix Sequences)

Let $A_{0}, A_{1}, \ldots, A_{j-1}$ be square matrices of the same order. Let $S \subseteq\{0,1, \ldots, j-1\}$. For $n \geq j$,

$$
A_{n+j}=\prod_{k \in S} A_{n+k}
$$

Definition (S-nacci constant)

For a finite subset $S \subseteq \mathbb{N}$, the S-nacci constant, denoted φ_{S}, is defined as the positive real satisfying

$$
\sum_{\ell \in S} \frac{1}{\varphi_{S}^{\ell+1}}=1
$$

Note that for $S=\{0,1,2, \ldots, j-1\}$, this definition coincides with φ_{j}.

Stability Conjecture for the (S, j)-nacci matrix sequences

Conjecture (Stability for the (S, j)-nacci sequences)

Let $A_{0}, A_{1}, \ldots, A_{j-1}$ be square matrices of the same order. For the matrix sequence $\left\{A_{n}\right\}$ defined by these initial conditions and the following recurrence relation (where the product can be taken in any order)

$$
A_{n+j}=\prod_{k \in S} A_{n+k}
$$

with $S \subseteq\{0,1, \ldots, j-1\}$ such that $S+1 \nsubseteq m \mathbb{Z}$ for any integer $m>1$. Suppose

$$
\prod_{k=0}^{j-1}\left\|A_{k}\right\|^{\sum_{i \in S}^{k} \varphi_{S}^{-i-1}}<1
$$

Then $\left\{A_{n}\right\}$ converges to the zero matrix.

Further Directions for Investigation

- Investigate further types of matrix products (e.g. Kronecker product, Hadamard product)
- Consider p-adic versions
- Investigate recurrences defined by combining matrix multiplication and addition, for example of the form

$$
M_{n}=\left(M_{n-1}+M_{n-2}\right)^{d}
$$

References and Thanks

We would like to thank the National Science Foundation for their grant numbered DMS-2241623 and Williams College, both of whom made this research possible. Moreover, we thank Professor Steven J. Miller for his guidance.
[1] G. Y. Lee et al. "The Binet Formula and Representations of k-Generalized Fibonacci Numbers". In: Fibonacci Quarterly 39.2 (2001), pp. 158-164.
[2] E.P. Miles Jr. "Generalized Fibonacci numbers and associated matrices". In: American Mathematical Monthly 67 (1960), pp. 745-752.

