Introduction
 Population Modeling
 Multiplicity
 Stability
 Conclusion
 References

 Stability of Matrix Recurrence Relations:
 k-nacci Counting and Asymptotics

Matrix Recurrence Relations Group and Predator-Prey Population Modeling Group (SMALL 2024 REU) Speakers: Glenn Bruda, Pico Gilman, Beni Prapashtica, Daniel Son, Saad Waheed, and Janine Wang

July 12th, 2024

Introduction $\bullet \circ$	Population Modeling	Multiplicity 00000000	Stability 0000000	$_{\circ}^{\rm Conclusion}$	

Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

$$F_n = F_{n-1} + F_{n-2}$$
, with $F_0 = 0, F_1 = 1$.

Introduction $\bullet \circ$	Population Modeling	Multiplicity 00000000	Stability 0000000	Conclusion o	

Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

$$F_n = F_{n-1} + F_{n-2}$$
, with $F_0 = 0, F_1 = 1$.

...with different initial conditions:

Definition (Lucas Numbers)

$$L_n = L_{n-1} + L_{n-2}$$
, with $L_0 = 2, L_1 = 1$.

Introduction $\bullet \circ$	Population Modeling	Multiplicity 00000000	Stability 0000000	Conclusion o	

Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

$$F_n = F_{n-1} + F_{n-2}$$
, with $F_0 = 0, F_1 = 1$.

...with different initial conditions:

Definition (Lucas Numbers)

$$L_n = L_{n-1} + L_{n-2}$$
, with $L_0 = 2, L_1 = 1$.

...and different recurrence depth:

Definition (j-nacci Numbers)

$$F_n^{(j)} = \sum_{i=0}^{j-1} F_{n-i-1}^{(j)}$$
, with $F_0^{(j)}, F_1^{(j)}, \dots, F_{j-2}^{(j)} = 0$, $F_{j-1}^{(j)} = 1$.

SMALL 2024

Introduction $\circ \bullet$	Population Modeling	Multiplicity 00000000	Stability 0000000	$_{ m O}^{ m Conclusion}$	

Motivating Questions

- Can we apply recurrence relations to matrices?
- How should we do so?
- What applications could this have?

Matrix Recurrences in Population Modeling

Definition (Modeling Migrating Populations Using Leslie Matrices)

Let $x_1(t)$ and $x_2(t)$ represent the population of a species in two regions, R_1 and R_2 respectively. The following recurrence relation can be used to model the time evolution of these populations

$$\vec{x}_1(t) = [L - k_1 \mathbf{I}] \cdot \vec{x}_1(t-1) + k_2 \cdot \vec{x}_2(t-1),$$

$$\vec{x}_2(t) = [L - k_2 \mathbf{I}] \cdot \vec{x}_2(t-1) + k_1 \cdot \vec{x}_1(t-1),$$

where L is a Leslie matrix, defined as:

$$A = \begin{bmatrix} f_1 & f_2 & \dots & f_n \\ s_1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & s_n & 0 \end{bmatrix}$$

Introduction 00	Population Modeling 0●00000	Multiplicity 00000000	Stability 0000000	$_{\circ}^{\rm Conclusion}$	

Behavior -I

Example (Base Case with $k_1 = k_2 = k$)

SMALL 2024

Stability of Matrix Recurrences

July 12th, 2024

20

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	Conclusion o	
Behavior -	- III				

Example (Base Case with $k_1 = k_2 = k$)

Stable Population of a Single-Species Model

Theorem (Bounded Fibonacci)

The recurrence relation

$$x_n = x_{n-1} + x_{n-2} - x_{n-1}x_{n-2}/M$$

has a following closed form solution

$$x_n = M - M \left(1 - \frac{x_1}{M}\right)^{F_{n-1}} \left(1 - \frac{x_0}{M}\right)^{F_{n-2}}$$

Moreover, x_n can be approximated by the following formula

$$x_n \approx x_0 \frac{\varphi^n}{\sqrt{5}} \left(1 - \frac{\varphi^{n-3}}{\sqrt{5}M} x_0 \right).$$

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Plot of the Bounded Fibonacci

(+The line plot is the theoretical value computed by the closed-form solution. The dots show the values computed by computing the recurrence via brute-force *)

Introduction 00	Population Modeling 000000●	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Approximation VS Reality

(*The curve shows the approximation and the points show the real value *)

Definition (Fibonacci Matrix Sequence)

Let A_0, A_1 be square matrices of same order. For $n \ge 2$,

$$A_n = A_{n-1}A_{n-2}.$$

Definition (Fibonacci Matrix Sequence)

Let A_0, A_1 be square matrices of same order. For $n \ge 2$,

$$A_n = A_{n-1}A_{n-2}.$$

Example:

$$A_0 = \mathbf{I}, A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} =: Q$$
, known as the Fibonacci matrix.

Definition (Fibonacci Matrix Sequence)

Let A_0, A_1 be square matrices of same order. For $n \ge 2$,

$$A_n = A_{n-1}A_{n-2}.$$

Example:

$$A_0 = \mathbf{I}, A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} =: Q, \text{ known as the Fibonacci matrix.}$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 8 & 5 \\ 5 & 3 \end{bmatrix}, \begin{bmatrix} 34 & 21 \\ 21 & 13 \end{bmatrix}, \dots$$

Definition (Fibonacci Matrix Sequence)

Let A_0, A_1 be square matrices of same order. For $n \ge 2$,

$$A_n = A_{n-1}A_{n-2}.$$

Example:

$$A_0 = \mathbf{I}, A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} =: Q$$
, known as the Fibonacci matrix.

$$A_n = \begin{bmatrix} F_{F_n+1} & F_{F_n} \\ F_{F_n} & F_{F_n-1} \end{bmatrix}$$

Definition (Fibonacci Matrix Sequence)

Let A_0, A_1 be square matrices of same order. For $n \geq 2$,

$$A_n = A_{n-1}A_{n-2}.$$

Example: $A_0 = \mathbf{I}, A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} =: Q$, known as the Fibonacci matrix.

$$A_n = \begin{bmatrix} F_{F_n+1} & F_{F_n} \\ F_{F_n} & F_{F_n-1} \end{bmatrix}$$
$$Q^m = \begin{bmatrix} F_{m+1} & F_m \\ F_m & F_{m-1} \end{bmatrix} \implies A_n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{F_n} = A_1^{F_n}$$

Definition (Fibonacci Matrix Sequence)

Let A_0, A_1 be square matrices of same order. For $n \ge 2$,

$$A_n = A_{n-1}A_{n-2}.$$

Example:

$$A_0 = \mathbf{I}, A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} =: Q$$
, known as the Fibonacci matrix.

More generally, for $A_0 = \mathbf{I}$ and arbitrary A_1 , we have that

$$A_n = A_1^{F_n}.$$

Matrix Recurrence: Generalization

Definition (*j*-nacci Matrix Sequence)

Let $A_0, A_1, \ldots, A_{j-1}$ be square matrices of the same order. For $n \ge j$,

$$A_n = \prod_{i=1}^j A_{n-i}.$$

Matrix Recurrence: Generalization

Definition (*j*-nacci Matrix Sequence)

Let $A_0, A_1, \ldots, A_{j-1}$ be square matrices of the same order. For $n \ge j$,

$$A_n = \prod_{i=1}^j A_{n-i}.$$

• Can we get a better grasp of the A_n 's beyond the initial conditions?

Multiplicity

Stability

nclusion References

Multiplicity of Initial Matrices Theorem

Theorem (Multiplicity)

Let j > 1 be an integer and $A_0, A_1, \ldots, A_{j-1}$ be square matrices of the same order. Consider the *j*-nacci matrix sequence defined by these initial conditions and the recurrence relation

$$A_n = \prod_{i=1}^j A_{n-i}.$$

Then for all $n \ge j$, A_n is a product of $A_0, A_1, \ldots, A_{j-1}$'s where each A_k , with $0 \le k \le j-1$, has multiplicity

$$#A_{k,n} := \sum_{i=0}^{k} F_{n-i-1}^{(j)}.$$

Introduction $_{00}$	Population Modeling	Multiplicity 00000000	Stability 0000000	$\mathop{\mathrm{Conclusion}}_{\mathrm{O}}$	

Proof of the Multiplicity Theorem

Proof:

Analogous to the 2 × 2 Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, we can construct the following $j \times j$ *j*-nacci matrix:

$$Q^{(j)} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

Introduction 00	Population Modeling	Multiplicity 000€0000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Proof of the Multiplicity Theorem

Proof:

Analogous to the 2 × 2 Fibonacci matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, we can construct the following $j \times j$ *j*-nacci matrix:

$$Q^{(j)} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

This matrix encodes the recurrence relation for the j-nacci sequence such that

$$\begin{bmatrix} F_{n+1}^{(j)} \\ F_{n}^{(j)} \\ \vdots \\ F_{n-j+2}^{(j)} \end{bmatrix} = Q^{(j)} \begin{bmatrix} F_{n}^{(j)} \\ F_{n-1}^{(j)} \\ \vdots \\ F_{n-j+1}^{(j)} \end{bmatrix}.$$

SMALL 2024

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$_{\circ}^{\rm Conclusion}$	

 $#A_{k,n}$ denotes the multiplicity of A_k in A_n (where $0 \le k \le j-1$).

$$A_n = \prod_{i=1}^j A_{n-i}$$
$$\implies \#A_{k,n} = \sum_{i=1}^j \#A_{k,n-i}$$

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

 $#A_{k,n}$ denotes the multiplicity of A_k in A_n (where $0 \le k \le j-1$).

$$A_n = \prod_{i=1}^{j} A_{n-i}$$
$$\implies \#A_{k,n} = \sum_{i=1}^{j} \#A_{k,n-i}$$

This is just the j-nacci recurrence relation which means we can write

$$\begin{bmatrix} \#A_{k,n+1} \\ \#A_{k,n} \\ \vdots \\ \#A_{k,n-j+2} \end{bmatrix} = Q^{(j)} \begin{bmatrix} \#A_{k,n} \\ \#A_{k,n-1} \\ \vdots \\ \#A_{k,n-j+1} \end{bmatrix}$$

Introduction 00	Population Modeling	Multiplicity 00000€00	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Starting from initial conditions, we can apply the $Q^{(j)}$ matrix n times to recover the nth vector iteration. Specifically,

$$\begin{bmatrix} \#A_{k,n+j-1} \\ \#A_{k,n+j-2} \\ \vdots \\ \#A_{k,n} \end{bmatrix} = \left(Q^{(j)} \right)^n \begin{bmatrix} \#A_{k,j-1} \\ \#A_{k,j-2} \\ \vdots \\ \#A_{k,0} \end{bmatrix}$$

Introduction Population Modeling Multiplicity Ocococo Conclusion References Ocococo

Proof of the Multiplicity Theorem – cont.

Starting from initial conditions, we can apply the $Q^{(j)}$ matrix *n* times to recover the *n*th vector iteration. Specifically,

$$\begin{bmatrix} \#A_{k,n+j-1} \\ \#A_{k,n+j-2} \\ \vdots \\ \#A_{k,n} \end{bmatrix} = \left(Q^{(j)} \right)^n \begin{bmatrix} \#A_{k,j-1} \\ \#A_{k,j-2} \\ \vdots \\ \#A_{k,0} \end{bmatrix}$$

Different A_k 's have different initial conditions since $\#A_{k,l} = \begin{cases} 1 & \text{if } k = l \\ 0 & \text{otherwise.} \end{cases}$

$$A_{j-1}: \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} \qquad A_1: \begin{bmatrix} 0\\\vdots\\1\\0 \end{bmatrix} \qquad A_0: \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix} \implies A_k: \begin{bmatrix} \vdots\\1\\\vdots \end{bmatrix}$$

Introduction Population Modeling Multiplicity Conclusion References 0000000 References 0

Proof of the Multiplicity Theorem – cont.

Starting from initial conditions, we can apply the $Q^{(j)}$ matrix n times to recover the nth vector iteration. Specifically,

$$\begin{bmatrix} \#A_{k,n+j-1} \\ \#A_{k,n+j-2} \\ \vdots \\ \#A_{k,n} \end{bmatrix} = \begin{bmatrix} q_{j-1,j-1} & \cdots & q_{j-1,k} & \cdots & q_{j-1,0} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ q_{0,j-1} & \cdots & q_{0,k} & \cdots & q_{0,0} \end{bmatrix} \begin{bmatrix} \vdots \\ 1 \\ \vdots \end{bmatrix}.$$

Different A_k 's have different initial conditions since $\#A_{k,l} = \begin{cases} 1 & \text{if } k = l \\ 0 & \text{otherwise.} \end{cases}$

$$A_{j-1}:\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix} \qquad A_1:\begin{bmatrix}0\\\vdots\\1\\0\end{bmatrix} \qquad A_0:\begin{bmatrix}0\\\vdots\\0\\1\end{bmatrix} \implies A_k:\begin{bmatrix}\vdots\\1\\\vdots\end{bmatrix}$$

Theorem (*nth* Power of the $Q^{(j)}$ Matrix, [1, page 159])

$$(Q^{(j)})^{n} = \begin{bmatrix} F_{n+j-1}^{(j)} & \sum_{i=0}^{j-2} F_{n+j-2-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n+j-2-i}^{(j)} & F_{n+j-2}^{(j)} \\ F_{n+j-2}^{(j)} & \sum_{i=0}^{j-2} F_{n+j-3-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n+j-3-i}^{(j)} & F_{n+j-3}^{(j)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ F_{n+1}^{(j)} & \sum_{i=0}^{j-2} F_{n-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n-i}^{(j)} & F_{n}^{(j)} \\ F_{n}^{(j)} & \sum_{i=0}^{j-2} F_{n-1-i}^{(j)} & \cdots & \sum_{i=0}^{1} F_{n-1-i}^{(j)} & F_{n-1}^{(j)} \end{bmatrix}$$

Introduction 00	Population Modeling	Multiplicity 0000000●	Stability 0000000	$\operatorname{Conclusion}_{O}$	

$$\begin{bmatrix} \#A_{k,n+j-1} \\ \#A_{k,n+j-2} \\ \vdots \\ \#A_{k,n} \end{bmatrix} = \left(Q^{(j)} \right)^n \begin{bmatrix} \#A_{k,j-1} \\ \#A_{k,j-2} \\ \vdots \\ \#A_{k,0} \end{bmatrix}$$

Introduction 00	Population Modeling	Multiplicity 0000000●	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Introduction 00	Population Modeling 0000000	Multiplicity 0000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

$$\begin{bmatrix} \#A_{k,n+j-1} \\ \#A_{k,n+j-2} \\ \vdots \\ \#A_{k,n} \end{bmatrix} = \left(Q^{(j)} \right)^n \begin{bmatrix} \#A_{k,j-1} \\ \#A_{k,j-2} \\ \vdots \\ \#A_{k,0} \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} \#A_{k,n+j-1} \\ \#A_{k,n+j-2} \\ \vdots \end{bmatrix} = \begin{bmatrix} q_{j-1,j-1} & \cdots & q_{j-1,k} & \cdots & q_{j-1} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \end{bmatrix}$$

SMALL 2024

Stability of Matrix Recurrences

г п

Introduction 00	Population Modeling	Multiplicity 00000000	Stability ●000000	$_{ m o}^{ m Conclusion}$	

Stability Prerequisites

Definition (*j*-nacci Constant)

The j-nacci constant, denoted $\varphi_j,$ is defined as the unique positive real number satisfying

$$x^{j} - \sum_{i=0}^{j-1} x^{i} = 0.$$

Introduction 00	Population Modeling	Multiplicity 00000000	Stability ●000000	Conclusion o	

Stability Prerequisites

Definition (*j*-nacci Constant)

The *j*-nacci constant, denoted φ_j , is defined as the unique positive real number satisfying

$$x^{j} - \sum_{i=0}^{j-1} x^{i} = 0.$$

Proposition (Asymptotic Form of the *j*-nacci Sequence)

Let j > 1 be an integer. Then

$$F_n^{(j)} \sim c_j \varphi_j^n,$$

where c_j is a positive constant.

• This result follows from one proved by E.P. Miles, Jr. in [2], namely that all roots in $\mathbb{C}\setminus\mathbb{R}_{>0}$ of the *j*-nacci polynomial lie inside the unit circle.

SMALL 2024

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0●00000	$_{\circ}^{\rm Conclusion}$	

The Stability Theorem

Theorem (Stability)

Let j > 1 be an integer and $A_0, A_1, \ldots, A_{j-1}$ be square matrices of the same order. Define the *j*-nacci matrix sequence $\{A_n\}$ using these initial conditions and the following recurrence relation (where the product can be taken in **any** order)

$$A_n = \prod_{0 \le i \le j-1} A_{n-j+i}.$$

 $Suppose \ that$

$$\prod_{k=0}^{j-1} ||A_k||^{1-\varphi_j^{-k-1}} < 1,$$

where $|| \cdot ||$ is any submultiplicative matrix norm. Then $\{A_n\}$ converges to the zero matrix.

SMALL 2024

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{\mathcal{O}}$	

Proof of the Stability Theorem

Proof:

For any $n \geq j$,

$$||A_n|| \leq \prod_{k=0}^{j-1} ||A_k||^{\sum_{i=0}^k F_{n-i-1}^{(j)}}$$

Introduction 00	Population Modeling 0000000	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Proof of the Stability Theorem

Proof:

For any $n \geq j$,

$$\begin{aligned} ||A_n|| &\leq \prod_{k=0}^{j-1} ||A_k||^{\sum_{i=0}^k F_{n-i-1}^{(j)}} \\ &= \Theta\left(\prod_{k=0}^{j-1} ||A_k||^{\sum_{i=0}^k c_j \varphi_j^{n-i-1}}\right) \end{aligned}$$

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Proof of the Stability Theorem

Proof:

For any $n \geq j$,

Extending the Stability Theorem to Sums of Products

Corollary (Stability for Sums of Products)

Let K be a finite set of integers each greater than 1. Let $A_0, A_1, \ldots, A_{\max(K)-1}$ be square matrices of the same order. Define the sequence of matrices $\{A_n\}$ using these initial conditions and the following recurrence relation (where each product can be taken in **any** order)

$$A_n = \sum_{j \in K} a_j \prod_{0 \le i \le j-1} A_{n-\max(K)+i}.$$

Suppose that for all $j \in K$,

$$\prod_{k=0}^{j-1} ||A_k||^{1-\varphi_j^{-k-1}} < 1,$$

where $|| \cdot ||$ is any submultiplicative matrix norm. Then $\{A_n\}$ converges to the zero matrix.

SMALL 2024

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Example:

Let
$$M_0 = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$
, $M_1 = \begin{bmatrix} (2\sqrt{2})^{-1} & (2\sqrt{2})^{-1}\\ 0 & 0 \end{bmatrix}$ and for $n \ge 2$, define
 $M_n = M_{n-1}M_{n-2}.$

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000€00	$\operatorname{Conclusion}_{O}$	

Example:

Let
$$M_0 = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$
, $M_1 = \begin{bmatrix} (2\sqrt{2})^{-1} & (2\sqrt{2})^{-1}\\ 0 & 0 \end{bmatrix}$ and for $n \ge 2$, define
 $M_n = M_{n-1}M_{n-2}.$

We have that $||M_0||_{\text{op}} = 3$ and $||M_1||_{\text{op}} = 1/2$. Thus

$$||M_0||_{\text{op}}^{1-\varphi^{-1}}||M_1||_{\text{op}}^{1-\varphi^{-2}} \approx 0.9913 < 1.$$

Introduction 00	Population Modeling	Multiplicity 0000000	Stability 0000€00	$\operatorname{Conclusion}_{O}$	

Example:

Let
$$M_0 = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$
, $M_1 = \begin{bmatrix} (2\sqrt{2})^{-1} & (2\sqrt{2})^{-1}\\ 0 & 0 \end{bmatrix}$ and for $n \ge 2$, define
 $M_n = M_{n-1}M_{n-2}.$

We have that $||M_0||_{op} = 3$ and $||M_1||_{op} = 1/2$. Thus

$$||M_0||_{\text{op}}^{1-\varphi^{-1}}||M_1||_{\text{op}}^{1-\varphi^{-2}} \approx 0.9913 < 1.$$

Using the Stability Theorem, we know that M_n converges to the zero matrix.

Introduction 00	Population Modeling	Multiplicity 00000000	Stability 0000000	$\operatorname{Conclusion}_{O}$	

Example:

Let
$$M_0 = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}$$
, $M_1 = \begin{bmatrix} (2\sqrt{2})^{-1} & (2\sqrt{2})^{-1}\\ 0 & 0 \end{bmatrix}$ and for $n \ge 2$, define
 $M_n = M_{n-1}M_{n-2}.$

We have that $||M_0||_{\text{op}} = 3$ and $||M_1||_{\text{op}} = 1/2$.

Conjecture For any $n \ge 1$, $||M_n||_{\text{op}} = \sqrt{2} \frac{3^{F_{n-1}}}{(2\sqrt{2})^{F_n}}.$

• Considering how this formula contains the values of the norms and entries of M_0 and M_1 , we naturally ask if this is generalizable.

SMALL 2024

Population Modeling 0000000 Multiplicity 00000000 Stability 00000€0 usion References

The Stability Theorem: Further Generalization

Definition (The (S, j)-nacci Matrix Sequences)

Let $A_0, A_1, \ldots, A_{j-1}$ be square matrices of the same order. Let $S \subseteq \{0, 1, \ldots, j-1\}$. For $n \ge j$,

$$A_{n+j} = \prod_{k \in S} A_{n+k}.$$

Definition (S-nacci constant)

For a finite subset $S \subseteq \mathbb{N}$, the S-nacci constant, denoted φ_S , is defined as the positive real satisfying

$$\sum_{\ell \in S} \frac{1}{\varphi_S^{\ell+1}} = 1.$$

Note that for $S = \{0, 1, 2, \dots, j - 1\}$, this definition coincides with φ_j .

Stability Conjecture for the (S, j)-nacci matrix sequences

Conjecture (Stability for the (S, j)-nacci sequences)

Let $A_0, A_1, \ldots, A_{j-1}$ be square matrices of the same order. For the matrix sequence $\{A_n\}$ defined by these initial conditions and the following recurrence relation (where the product can be taken in **any** order)

$$A_{n+j} = \prod_{k \in S} A_{n+k},$$

with $S \subseteq \{0, 1, \dots, j-1\}$ such that $S + 1 \not\subseteq m\mathbb{Z}$ for any integer m > 1. Suppose

$$\prod_{k=0}^{j-1} ||A_k||^{\sum_{i\in S}^k \varphi_S^{-i-1}} < 1.$$

Then $\{A_n\}$ converges to the zero matrix.

SMALL 2024

Stability of Matrix Recurrences

July 12th, 2024

Further Directions for Investigation

- Investigate further types of matrix products (e.g. Kronecker product, Hadamard product)
- Consider *p*-adic versions
- Investigate recurrences defined by combining matrix multiplication and addition, for example of the form

$$M_n = (M_{n-1} + M_{n-2})^d$$

July 12th, 2024

References and Thanks

We would like to thank the **National Science Foundation** for their grant numbered *DMS-2241623* and **Williams College**, both of whom made this research possible. Moreover, we thank **Professor Steven J. Miller** for his guidance.

- G. Y. Lee et al. "The Binet Formula and Representations of k-Generalized Fibonacci Numbers". In: *Fibonacci Quarterly* 39.2 (2001), pp. 158–164.
- E.P. Miles Jr. "Generalized Fibonacci numbers and associated matrices". In: American Mathematical Monthly 67 (1960), pp. 745–752.