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Recurrence Relations Primer

A well-known example:

Definition (Fibonacci Numbers)

Fn = Fn−1 + Fn−2, with F0 = 0, F1 = 1.

...with different initial conditions:

Definition (Lucas Numbers)

Ln = Ln−1 + Ln−2, with L0 = 2, L1 = 1.

...and different recurrence depth:

Definition (j-nacci Numbers)

F (j)
n =

j−1∑
i=0

F
(j)
n−i−1, with F

(j)
0 , F

(j)
1 , . . . , F

(j)
j−2 = 0, F

(j)
j−1 = 1.
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Motivating Questions

• Can we apply recurrence relations to matrices?

• How should we do so?

• What applications could this have?
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Matrix Recurrences in Population Modeling

Definition (Modeling Migrating Populations Using Leslie Matrices)

Let x1(t) and x2(t) represent the population of a species in two regions, R1

and R2 respectively. The following recurrence relation can be used to model
the time evolution of these populations

x⃗1(t) = [L− k1I] · x⃗1(t− 1) + k2 · x⃗2(t− 1),

x⃗2(t) = [L− k2I] · x⃗2(t− 1) + k1 · x⃗1(t− 1),

where L is a Leslie matrix, defined as:

A =


f1 f2 . . . fn
s1 0 . . . 0
...

. . .
. . . 0

0 . . . sn 0

 .
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Behavior – I

Example (Base Case with k1 = k2 = k)
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Behavior – II

Example (Base Case with k1 = k2 = k)
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Behavior – III

Example (Base Case with k1 = k2 = k)
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Stable Population of a Single-Species Model

Theorem (Bounded Fibonacci)

The recurrence relation

xn = xn−1 + xn−2 − xn−1xn−2/M

has a following closed form solution

xn = M −M
(
1− x1

M

)Fn−1
(
1− x0

M

)Fn−2

.

Moreover, xn can be approximated by the following formula

xn ≈ x0
φn

√
5

(
1− φn−3

√
5M

x0

)
.
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Plot of the Bounded Fibonacci
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Approximation VS Reality
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Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A0, A1 be square matrices of same order. For n ≥ 2,

An = An−1An−2.

Example:

A0 = I, A1 =

[
1 1
1 0

]
=: Q, known as the Fibonacci matrix.
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An = An−1An−2.

Example:

A0 = I, A1 =

[
1 1
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]
=: Q, known as the Fibonacci matrix.

[
1 1
1 0

]
,

[
2 1
1 1

]
,

[
3 2
2 1

]
,

[
8 5
5 3

]
,

[
34 21
21 13

]
, . . .
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Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A0, A1 be square matrices of same order. For n ≥ 2,

An = An−1An−2.

Example:

A0 = I, A1 =

[
1 1
1 0

]
=: Q, known as the Fibonacci matrix.

An =

[
FFn+1 FFn

FFn
FFn−1

]
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Matrix Recurrence: The Simplest Case
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Let A0, A1 be square matrices of same order. For n ≥ 2,

An = An−1An−2.

Example:

A0 = I, A1 =

[
1 1
1 0

]
=: Q, known as the Fibonacci matrix.

An =

[
FFn+1 FFn

FFn FFn−1

]

Qm =

[
Fm+1 Fm

Fm Fm−1

]
=⇒ An =

[
1 1
1 0

]Fn

= AFn
1
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Matrix Recurrence: The Simplest Case

Definition (Fibonacci Matrix Sequence)

Let A0, A1 be square matrices of same order. For n ≥ 2,

An = An−1An−2.

Example:

A0 = I, A1 =

[
1 1
1 0

]
=: Q, known as the Fibonacci matrix.

More generally, for A0 = I and arbitrary A1, we have that

An = AFn
1 .
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Matrix Recurrence: Generalization

Definition (j-nacci Matrix Sequence)

Let A0, A1, . . . , Aj−1 be square matrices of the same order. For n ≥ j,

An =

j∏
i=1

An−i.

• Can we get a better grasp of the An’s beyond the initial conditions?
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Multiplicity of Initial Matrices Theorem

Theorem (Multiplicity)

Let j > 1 be an integer and A0, A1, . . . , Aj−1 be square matrices of the same
order. Consider the j-nacci matrix sequence defined by these initial conditions
and the recurrence relation

An =

j∏
i=1

An−i.

Then for all n ≥ j, An is a product of A0, A1, . . . , Aj−1’s where each Ak, with
0 ≤ k ≤ j − 1, has multiplicity

#Ak,n :=

k∑
i=0

F
(j)
n−i−1.
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Proof of the Multiplicity Theorem

Proof:

Analogous to the 2× 2 Fibonacci matrix

[
1 1
1 0

]
, we can construct the

following j × j j-nacci matrix:

Q(j) =


1 1 · · · 1 1
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

This matrix encodes the recurrence relation for the j-nacci sequence such that
F

(j)
n+1

F
(j)
n

...

F
(j)
n−j+2

 = Q(j)


F

(j)
n

F
(j)
n−1
...

F
(j)
n−j+1

 .
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Proof of the Multiplicity Theorem – cont.

#Ak,n denotes the multiplicity of Ak in An (where 0 ≤ k ≤ j − 1).

An =

j∏
i=1

An−i

=⇒ #Ak,n =

j∑
i=1

#Ak,n−i

This is just the j-nacci recurrence relation which means we can write
#Ak,n+1

#Ak,n

...
#Ak,n−j+2

 = Q(j)


#Ak,n

#Ak,n−1

...
#Ak,n−j+1

 .
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Proof of the Multiplicity Theorem – cont.

Starting from initial conditions, we can apply the Q(j) matrix n times to
recover the nth vector iteration. Specifically,

#Ak,n+j−1

#Ak,n+j−2

...
#Ak,n

 =
(
Q(j)

)n

#Ak,j−1

#Ak,j−2

...
#Ak,0

 .

Different Ak’s have different initial conditions since #Ak,l =

{
1 if k = l
0 otherwise.

Aj−1 :


1
0
...
0

 A1 :


0
...
1
0

 A0 :


0
...
0
1

 =⇒ Ak :


...
1
...


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1
...

 .
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Proof of the Multiplicity Theorem – cont.

Theorem (nth Power of the Q(j) Matrix, [1, page 159])

(
Q(j)

)n
=



F
(j)
n+j−1

∑j−2
i=0 F

(j)
n+j−2−i · · ·

∑1
i=0 F

(j)
n+j−2−i F

(j)
n+j−2

F
(j)
n+j−2

∑j−2
i=0 F

(j)
n+j−3−i · · ·

∑1
i=0 F

(j)
n+j−3−i F

(j)
n+j−3

...
...

. . .
...

...

F
(j)
n+1

∑j−2
i=0 F

(j)
n−i · · ·

∑1
i=0 F

(j)
n−i F

(j)
n

F
(j)
n

∑j−2
i=0 F

(j)
n−1−i · · ·

∑1
i=0 F

(j)
n−1−i F

(j)
n−1


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Proof of the Multiplicity Theorem – cont.


#Ak,n+j−1

#Ak,n+j−2

...
#Ak,n

 =
(
Q(j)

)n

#Ak,j−1

#Ak,j−2

...
#Ak,0



w�
#Ak,n+j−1

#Ak,n+j−2

...
#Ak,n

 =

qj−1,j−1 · · · qj−1,k · · · qj−1,0

...
. . .

...
. . .

...

F
(j)
n · · ·

∑k
i=0 F

(j)
n−i−1 · · · F

(j)
n−1



...
1
...


w�

#Ak,n =

k∑
i=0

F
(j)
n−i−1.
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Proof of the Multiplicity Theorem – cont.
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Stability Prerequisites

Definition (j-nacci Constant)

The j-nacci constant, denoted φj , is defined as the unique positive real
number satisfying

xj −
j−1∑
i=0

xi = 0.

Proposition (Asymptotic Form of the j-nacci Sequence)

Let j > 1 be an integer. Then

F (j)
n ∼ cjφ

n
j ,

where cj is a positive constant.

• This result follows from one proved by E.P. Miles, Jr. in [2], namely that
all roots in C\R≥0 of the j-nacci polynomial lie inside the unit circle.
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The Stability Theorem

Theorem (Stability)

Let j > 1 be an integer and A0, A1, . . . , Aj−1 be square matrices of the same
order. Define the j-nacci matrix sequence {An} using these initial conditions
and the following recurrence relation (where the product can be taken in any
order)

An =
∏

0≤i≤j−1

An−j+i.

Suppose that

j−1∏
k=0

||Ak||1−φ−k−1
j < 1,

where || · || is any submultiplicative matrix norm. Then {An} converges to the
zero matrix.
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Proof of the Stability Theorem

Proof:

For any n ≥ j,

||An|| ≤
j−1∏
k=0

||Ak||
∑k

i=0 F
(j)
n−i−1
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Proof of the Stability Theorem

Proof:

For any n ≥ j,

||An|| ≤
j−1∏
k=0

||Ak||
∑k

i=0 F
(j)
n−i−1

= Θ

(
j−1∏
k=0

||Ak||
∑k

i=0 cjφ
n−i−1
j

)
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Proof of the Stability Theorem

Proof:

For any n ≥ j,

||An|| ≤
j−1∏
k=0

||Ak||
∑k

i=0 F
(j)
n−i−1

= Θ

(
j−1∏
k=0

||Ak||
∑k

i=0 cjφ
n−i−1
j

)

= Θ


(

j−1∏
k=0

||Ak||1−φ−k−1
j

) cjφ
n
j

φj−1


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Extending the Stability Theorem to Sums of Products

Corollary (Stability for Sums of Products)

Let K be a finite set of integers each greater than 1. Let
A0, A1, . . . , Amax(K)−1 be square matrices of the same order. Define the
sequence of matrices {An} using these initial conditions and the following
recurrence relation (where each product can be taken in any order)

An =
∑
j∈K

aj
∏

0≤i≤j−1

An−max(K)+i.

Suppose that for all j ∈ K,

j−1∏
k=0

||Ak||1−φ−k−1
j < 1,

where || · || is any submultiplicative matrix norm. Then {An} converges to the
zero matrix.
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Example of the Stability Theorem

Example:

Let M0 =

[
1 2
2 1

]
, M1 =

[
(2
√
2)−1 (2

√
2)−1

0 0

]
and for n ≥ 2, define

Mn = Mn−1Mn−2.
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Example of the Stability Theorem

Example:

Let M0 =

[
1 2
2 1

]
, M1 =

[
(2
√
2)−1 (2

√
2)−1

0 0

]
and for n ≥ 2, define

Mn = Mn−1Mn−2.

We have that ||M0||op = 3 and ||M1||op = 1/2. Thus

||M0||1−φ−1

op ||M1||1−φ−2

op ≈ 0.9913 < 1.
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Example of the Stability Theorem

Example:

Let M0 =

[
1 2
2 1

]
, M1 =

[
(2
√
2)−1 (2

√
2)−1

0 0

]
and for n ≥ 2, define

Mn = Mn−1Mn−2.

We have that ||M0||op = 3 and ||M1||op = 1/2. Thus

||M0||1−φ−1

op ||M1||1−φ−2

op ≈ 0.9913 < 1.

Using the Stability Theorem, we know that Mn converges to the zero matrix.
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Example of the Stability Theorem

Example:

Let M0 =

[
1 2
2 1

]
, M1 =

[
(2
√
2)−1 (2

√
2)−1

0 0

]
and for n ≥ 2, define

Mn = Mn−1Mn−2.

We have that ||M0||op = 3 and ||M1||op = 1/2.

Conjecture

For any n ≥ 1,

||Mn||op =
√
2

3Fn−1

(2
√
2)Fn

.

• Considering how this formula contains the values of the norms and
entries of M0 and M1, we naturally ask if this is generalizable.
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The Stability Theorem: Further Generalization

Definition (The (S, j)-nacci Matrix Sequences)

Let A0, A1, . . . , Aj−1 be square matrices of the same order. Let
S ⊆ {0, 1, . . . , j − 1}. For n ≥ j,

An+j =
∏
k∈S

An+k.

Definition (S-nacci constant)

For a finite subset S ⊆ N, the S-nacci constant, denoted φS , is defined as the
positive real satisfying ∑

ℓ∈S

1

φℓ+1
S

= 1.

Note that for S = {0, 1, 2, . . . , j − 1}, this definition coincides with φj .
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Stability Conjecture for the (S, j)-nacci matrix sequences

Conjecture (Stability for the (S, j)-nacci sequences)

Let A0, A1, . . . , Aj−1 be square matrices of the same order. For the matrix
sequence {An} defined by these initial conditions and the following recurrence
relation (where the product can be taken in any order)

An+j =
∏
k∈S

An+k,

with S ⊆ {0, 1, . . . , j − 1} such that S + 1 ̸⊆ mZ for any integer m > 1.
Suppose

j−1∏
k=0

||Ak||
∑k

i∈S φ−i−1
S < 1.

Then {An} converges to the zero matrix.
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Further Directions for Investigation

• Investigate further types of matrix products (e.g. Kronecker product,
Hadamard product)

• Consider p-adic versions

• Investigate recurrences defined by combining matrix multiplication and
addition, for example of the form

Mn = (Mn−1 +Mn−2)
d
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