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Motivation

Let’s send two messages using two different approaches:

"Hi" "Hi"
| |
0100100001101001 0100100001101001
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No way to restore the original [Aﬁ)a/fla féa f;)\a f4/7\f57/f67 f\% I8

Signal I( f97f107f117f127f137f147f15 ]
l
Received:

[/!7/]517 ]iZa f3/7\.7 .L\f67f\77 f87
f97f107f117f127-7f147 f15 ]

We receive only part of a signal /frequencies - the rest is missing.

Questions we want to answer:

e [s it possible to reconstruct the full message?

e What are sufficient conditions for reconstruction?

e What if we know the signal /frequency is "structured’?

Background

e We will call an arbitrary function f : Z?V — C a signal.

e We will call an arbitrary function’s Fourier transform f : Z%, — C a
frequency.

Definition: For a function f : Z% — C, the normalized DFT is:
(k) == N~ % " f(n)x(—kn),
neZl;
where x(z) = e 2"*%/N_Then, the inverse transform formula follows:

f(n) = N~ f(k)x(kn).

keZd

Classical Uncertainty Principle

Let f : Z% — C be a nonzero function with support supp(f) C Z%.
Let f : ZS, — C denote the discrete Fourier transform of f, with

support Supp(]/‘\) C Z?V. Then the following inequality holds:

supp(f)| - | supp(f)| > N

Improved uncertainty principle and unique
recovery condition

We are interested in working with the sets that have low additive

energy defined by:

Ao(A) = H(xl,xg, T3, Ty) € A i 4= 19+ m}}.

Using this, J. losevich, A. Mayeli et al. in 2025 proved the following

uncertainty principle using Cauchy-Schwartz and Holder’s inequalities:

Additive Uncertainty Principle

Let f : Z?V — C be a nonzero signal with support in £, and let f

denote its Fourier transform with support in >..

N < [3]- AP (B)

At SMALL 2025, we investigated an application of Gower’s norms to

signal recovery and derived a significantly improved uncertainty bound.

Theorem(SMALL 2025)

Intuition:

Additive energy measures structure, so lower energy means more
randomness. Hence, a less structured support of f yields a stronger
uncertainty principle.

This yields substantially better signal recovery conditions com-
pared to previous bounds.

Theorem(SMALL 2025)

Suppose frequencies in S C Z% are unobserved. Suppose Ay(T) < |T|* where
2 < a <3 VT CZ%:|T|<?2|E|, and also

E["Ao(S) — |EFIS|(|S] — 1)
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Then f can be recovered exactly and uniquely:.

Future Directions

e Inspired by a fact that A(E) = |E|* we seek to find uncertainty
principle that invokes a term

App1(E) — Ap(E)(. . )

To account number of non degenerate k£ + 1 dimensional
parallelepipeds.

e Consider other additive energy frames, such as number of tuples
a+b+c+d=e—+ f+ g+ h, which naturally arises from Fourier

Transform of
> f@)

d
mEZN

e [t is known that there are L and L9 minimisation algorithms for
signal recovery. Is it possible to find U norm minimisation
algorithm?
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Gower's Uj, norm is defined by
k
IAIGNE D= N T T o+ w4 wghy).
z,hy,.... €24 w;j€{0,1}
In our project, we actively used U, norm, which simplifies to:

I£l8, = N7 3" | f@)F @+ h) S+ ha) f(a+ by + ho)|

x,hl,hQEZf]l\[
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