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Introduction J




| study n-level density of zeros of families of L-functions

n-level density: F = UFy a family of L-functions ordered
by conductors, gy an even Schwartz function: D, #(g) =

.1 log Qs log Qs
N'Inoom Z Z 01 (7%1#) On ( o %n;f)

As N — oo, n-level density converges to

/9 )ongr) (X )dX = /9 )ong(m)(U)d U

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.




Results / Applications

@ Results:
o Agreement: Many families, small support.
o Extending support: Related to arithmetic.

@ Applications:
© Class number: Bounds on growth rate.
© Average rank: Vanishing at central point.
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Techniques

@ Explicit Formula: Convert sums over zeros to sums
over Satake parameter moments.

@ Averaging: Dirichlet, Petersson, Kuznetsoy, ....

@ Combinatorics: Showing agreement b/w NT and RMT.
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Problem 1: Lower Order Terms
°

Explicit Formula

@ . cuspidal automorphic representation on GL,.
@ Q. > 0: analytic conductor of L(s,7) = > A.(n)/ns.

@ By GRH the non-trivial zeros are % + iz

n

o Satake params {ai(P)}L1; A=(P”) = > iy oxi(P)”.
o L(s,m) =3, =0 =TT, Iy (L — ami(p)p~*) .

logQx\ _ .\ ~ (vlogp\ A(p”)logp
Zg(%w 27 )_g(o) 2z:g(logQw) p“/2log Qx
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Problem 1: Lower Order Terms
.

1-Level Density

Assuming conductors constant in family F, have to study

X(PY) = asa(p)’+--- +Off,n(_p)y
Sy(F) - —22“('09'0) log p LZA()
! B > g logR /) \/plogR | |7 P
. (,logp\ logp [1 2
So(F) = —2%29 (ZlogR> oTog R _mzAf(p )]

Corresponding classical compact group is determined by

0 Unitary

1 .
mZ,\f(pz) =Cr = 1 Symplectic
feF —1 Orthogonal.




Problem 1: Lower Order Terms
°

Open Problem: Lower order terms

Very similar to Central Limit Theorem.

@ Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

@ First moment zero save for families of elliptic curves.

@ Higher moments control convergence and can
depend on arithmetic of family.

Open Problem:

Develop a theory of lower order terms to split the
universality and see the arithmetic.
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Problem 2: Repulsion at the Central Point
°

Behavior of zeros near central point

For one L-function: good theory high up critical line.
For a family of L-functions: good theory as conductors

tend to infinity.

Goal is to understand behavior at central point for finite
conductors.




Problem 2: Repulsion at the Central Point
°

Questions (Elliptic Curve Families)

Excess rank: Expected vanishing at central point.

Repulsion: First zero above central point.

Open Problem

Model the observed behavior here (done) and extend to
other families (in progress).




Problem 2: Repulsion at the Central Point
°

Modeling lowest zero of Lg, (S, xq) with 0 < d < 400,000
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Lowest zero for Lg,, (S, xq) (bar chart),'lowest eigenvalue
of SO(2N) with N (solid), standard Ng (dashed).




Problem 2: Repulsion at the Central Point
°

Modeling lowest zero of Lg, (S, xq) with 0 < d < 400,000
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Lowest zero for Lg,, (S, xa) (bar chart); lowest eigenvalue
of SO(2N): Ngt = 2 (solid) with discretisation, and
Negi = 2.32 (dashed) without discretisation.
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Problem 3: Combinatorics
°

Background

Different techniques to compute Number Theory and
Random Matrix Theory.

Challenge is showing the two quantities are the same.




Problem 3: Combinatorics
°

n-Level Density: Determinant Expansions from RMT

o U(N), Uc(N): det (Ko(x,-,xk))

1<j,k<n

@ USp(N): det< 1(Xj, Xk

1<j,k<n

)
@ SO(even): det <K1 Xj, Xk )

1<j,k<n
® SO(odd): det (K_1(Xj, Xk))1<j <n +
S, 0(x,) det <K71(Xj ; Xk))

where

1<j k#v<n

sin (w(x — y)) sin (w(x + y))
Ax—y) T Ay

KE(X>Y) =




Problem 3: Combinatorics
°

Alternative to Determinant Expansion

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

bvN [ A<2log(bx\/ﬁ/47rm)> dx

_ ()
2tm J, -1 (x)n logR logR

with &, (x) = &(x)".

Main Idea

Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of ¢1(X1) - - - &n(Xn) We
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from Iwaniec-Luo-Sarnak.




Problem 3: Combinatorics
°

Problems

Open Problem:

Further develop alternatives to the Katz-Sarnak
determinant expansions.

Open Problem:

Directly prove agreement for quadratic Dirichlet families
(compare with Entin, Roddity-Gershon and Rudnick).
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