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Introduction
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I study n-level density of zeros of families of L-functions

n-level density: F = ∪FN a family of L-functions ordered
by conductors, gk an even Schwartz function: Dn,F(g) =

lim
N→∞

1
|FN |

∑

f∈FN

∑

j1,...,jn
ji 6=±jk

g1

(
log Qf

2π
γj1;f

)
· · ·gn

(
log Qf

2π
γjn;f

)

As N → ∞, n-level density converges to
∫

g(−→x )ρn,G(F)(
−→x )d−→x =

∫
ĝ(−→u )ρ̂n,G(F)(

−→u )d−→u .

Conjecture (Katz-Sarnak)
(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Results / Applications

Results:
⋄ Agreement: Many families, small support.
⋄ Extending support: Related to arithmetic.

Applications:
⋄ Class number: Bounds on growth rate.
⋄ Average rank: Vanishing at central point.
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Techniques

Explicit Formula: Convert sums over zeros to sums
over Satake parameter moments.

Averaging: Dirichlet, Petersson, Kuznetsov, ....

Combinatorics: Showing agreement b/w NT and RMT.
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Problem 1:
Lower Order Terms
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Explicit Formula

π: cuspidal automorphic representation on GLn.

Qπ > 0: analytic conductor of L(s, π) =
∑

λπ(n)/ns.

By GRH the non-trivial zeros are 1
2 + iγπ,j.

Satake params {απ,i(p)}n
i=1; λπ(pν) =

∑n
i=1 απ,i(p)ν .

L(s, π) =
∑

n
λπ(n)

ns =
∏

p

∏n
i=1 (1 − απ,i(p)p−s)

−1.

∑

j

g
(
γπ,j

log Qπ

2π

)
= ĝ(0)− 2

∑

p,ν

ĝ
(
ν log p
log Qπ

)
λπ(pν) log p
pν/2 log Qπ
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1-Level Density

Assuming conductors constant in family F , have to study

λf (pν) = αf ,1(p)ν + · · ·+ αf ,n(p)ν

S1(F) = −2
∑

p

ĝ
(

log p
log R

)
log p√
p log R

[
1
|F|

∑

f∈F

λf (p)

]

S2(F) = −2
∑

p

ĝ
(

2
log p
log R

)
log p

p log R

[
1
|F|

∑

f∈F

λf (p2)

]

Corresponding classical compact group is determined by

1
|F|

∑

f∈F

λf (p2) = cF =





0 Unitary

1 Symplectic

−1 Orthogonal.
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Open Problem: Lower order terms

Very similar to Central Limit Theorem.

Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

First moment zero save for families of elliptic curves.

Higher moments control convergence and can
depend on arithmetic of family.

Open Problem:
Develop a theory of lower order terms to split the
universality and see the arithmetic.
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Problem 2:
Repulsion at the Central Point
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Behavior of zeros near central point

For one L-function: good theory high up critical line.

For a family of L-functions: good theory as conductors
tend to infinity.

Goal is to understand behavior at central point for finite
conductors.
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Questions (Elliptic Curve Families)

Excess rank: Expected vanishing at central point.

Repulsion: First zero above central point.

Open Problem
Model the observed behavior here (done) and extend to
other families (in progress).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000
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Lowest zero for LE11(s, χd) (bar chart), lowest eigenvalue
of SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000
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Lowest zero for LE11(s, χd) (bar chart); lowest eigenvalue
of SO(2N): Neff = 2 (solid) with discretisation, and

Neff = 2.32 (dashed) without discretisation.
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Problem 3:
Combinatorics
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Background

Different techniques to compute Number Theory and
Random Matrix Theory.

Challenge is showing the two quantities are the same.
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n-Level Density: Determinant Expansions from RMT

U(N), Uk(N): det
(

K0(xj , xk)
)

1≤j ,k≤n

USp(N): det
(

K−1(xj , xk)
)

1≤j ,k≤n

SO(even): det
(

K1(xj , xk)
)

1≤j ,k≤n

SO(odd): det (K−1(xj , xk))1≤j ,k≤n +∑n
ν=1 δ(xν) det

(
K−1(xj , xk)

)
1≤j ,k 6=ν≤n

where

Kǫ(x , y) =
sin
(
π(x − y)

)

π(x − y)
+ ǫ

sin
(
π(x + y)

)

π(x + y)
.

17



Intro Problem 1: Lower Order Terms Problem 2: Repulsion at the Central Point Problem 3: Combinatorics References

Alternative to Determinant Expansion

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

b
√

N
2πm

∫ ∞

0
Jk−1(x)Φ̂n

(
2 log(bx

√
N/4πm)

log R

)
dx

log R

with Φn(x) = φ(x)n.

Main Idea
Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of φ1(x1) · · ·φn(xn) we
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from Iwaniec-Luo-Sarnak.
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Problems

Open Problem:
Further develop alternatives to the Katz-Sarnak
determinant expansions.

Open Problem:
Directly prove agreement for quadratic Dirichlet families
(compare with Entin, Roddity-Gershon and Rudnick).
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