
Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Solutions to a Pair of Diophantine Equations

R. Gulecha1 S. Guo2 N. Johnson3 Y. Shin4

Mentors: H. V. Chu5, S. J. Miller6

1rishabhg@tamu.edu 2sophiasg@umich.edu

3nathan.erikson.9701@gmail.com 4yejushin0324@gmail.com

5hchu@wlu.edu 6sjm1@williams.edu

Joint Mathematics Meeting: January 7, 2026
https://web.williams.edu/Mathematics/sjmiller/public_html/

math/talks/talks.html

We gratefully acknowledge support from the
National Science Foundation DMS2341670

Solutions to a Pair of Diophantine Equations

mailto:rishabhg@tamu.edu
mailto:sophiasg@umich.edu
mailto: nathan.erikson.9701@gmail.com
mailto: yejushin0324@gmail.com
mailto:hungchu@tamu.edu
mailto:sjm1@williams.edu
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html
https://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html


Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

https://geometrynyc.wixsite.com/polymathreu

Solutions to a Pair of Diophantine Equations

https://geometrynyc.wixsite.com/polymathreu


Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Outline

Introduction and results from Polymath Jr. 24

What we did in Polymath Jr. 25

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Introduction

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

A pair of equations

For relatively prime a, b ∈ N, consider

ax + by =
(a− 1)(b − 1)

2
and

1 + ax + by =
(a− 1)(b − 1)

2
.

Theorem (Beiter (1964), extended by Chu (2020))

Exactly one of the equations has a nonnegative integral solution
(x , y). The solution is unique.
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Fibonacci numbers

F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2, for n ≥ 3

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .

gcd(Fn,Fn+1) = 1

a x + b y =
(a− 1)(b − 1)

2

1 + a x + b y =
(a− 1)(b − 1)

2

Solutions to a Pair of Diophantine Equations
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Fibonacci numbers

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . .

gcd(Fn,Fn+1) = 1

Fn x + Fn+1 y =
(Fn − 1)(Fn+1 − 1)

2

1 + Fn x + Fn+1 y =
(Fn − 1)(Fn+1 − 1)

2

(x , y) = ?
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Chu’s six cases (2020)

F6k ·
F6k−1 − 1

2
+ F6k+1 ·

F6k−1 − 1

2
=

(F6k − 1)(F6k+1 − 1)

2

F6k+1 ·
F6k+1 − 1

2
+ F6k+2 ·

F6k−1 − 1

2
=

(F6k+1 − 1)(F6k+2 − 1)

2

F6k+2 ·
F6k+1 − 1

2
+ F6k+3 ·

F6k+1 − 1

2
=

(F6k+2 − 1)(F6k+3 − 1)

2

1 + F6k+3 ·
F6k+2 − 1

2
+ F6k+4 ·

F6k+2 − 1

2
=

(F6k+3 − 1)(F6k+4 − 1)

2

1 + F6k+4 ·
F6k+4 − 1

2
+ F6k+5 ·

F6k+2 − 1

2
=

(F6k+4 − 1)(F6k+5 − 1)

2

1 + F6k+5 ·
F6k+4 − 1

2
+ F6k+6 ·

F6k+4 − 1

2
=

(F6k+5 − 1)(F6k+6 − 1)

2

Solutions to a Pair of Diophantine Equations
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Fibonacci Squared (Polymath Jr. 2024)

If n ≡ 0, 2, 3, 5 mod 6,

F 2
n ·

(
F 2
n − F 2

n−1 + 1

2

)
+ F 2

n+1 ·
F 2
n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

If n ≡ 1 mod 6,

1 + F 2
n · F 2

n − 3

2
+ F 2

n+1 ·
F 2
n − F 2

n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

If n ≡ 4 mod 6,

1 + F 2
n · F 2

n + 1

2
+ F 2

n+1 ·
F 2
n − F 2

n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Fibonacci Squared (Polymath Jr. 2024)

If n ≡ 0, 2, 3, 5 mod 6,

F 2
n ·

(
F 2
n − F 2

n−1 + 1

2

)
+ F 2

n+1 ·
F 2
n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

If n ≡ 1 mod 6,

1 + F 2
n · F 2

n − 3

2
+ F 2

n+1 ·
F 2
n − F 2

n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

If n ≡ 4 mod 6,

1 + F 2
n · F 2

n + 1

2
+ F 2

n+1 ·
F 2
n − F 2

n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Fibonacci Squared (Polymath Jr. 2024)

If n ≡ 0, 2, 3, 5 mod 6,

F 2
n ·

(
F 2
n − F 2

n−1 + 1

2

)
+ F 2

n+1 ·
F 2
n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

If n ≡ 1 mod 6,

1 + F 2
n · F 2

n − 3

2
+ F 2

n+1 ·
F 2
n − F 2

n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

If n ≡ 4 mod 6,

1 + F 2
n · F 2

n + 1

2
+ F 2

n+1 ·
F 2
n − F 2

n−1 − 1

2
=

(F 2
n − 1)(F 2

n+1 − 1)

2
.

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Fibonacci Cubed (Polymath Jr. 2024)

For n ≥ 2,

F 3
2n−1 ·

2n−1∑
i=1

(−1)i−1F 3
i + F 3

2n ·
2n−2∑
i=2

F 3
i =

(F 3
2n−1 − 1)(F 3

2n − 1)

2
;

1 + F 3
2n ·

(
2n∑
i=1

(−1)iF 3
i − 1

)
+ F 3

2n+1 ·
2n−1∑
i=2

F 3
i =

(F 3
2n − 1)(F 3

2n+1 − 1)

2
.
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Problem 1

For (i , j) ∈ N2, find the nonnegative integral solution (x , y) to

F i
n · x + F j

n+1 · y =
(F i

n − 1)(F j
n+1 − 1)

2
or

1 + F i
n · x + F j

n+1 · y =
(F i

n − 1)(F j
n+1 − 1)

2
.

Solutions to a Pair of Diophantine Equations
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Fibonacci-like sequences

Let (u, v) ∈ N2 with gcd(u, v) = 1.

Define (t
(u,v)
n )∞n=1 : t

(u,v)
1 = u, t

(u,v)
2 = v , t

(u,v)
n = t

(u,v)
n−1 + t

(u,v)
n−2 .

t
(u,v)
n = Fn−2u + Fn−1v

gcd(t
(u,v)
n , t

(u,v)
n+1 ) = 1

t
(u,v)
n x + t

(u,v)
n+1 y =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2

t
(u,v)
n x + t

(u,v)
n+1 y + 1 =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2

Nonnegative integral (x , y) = ? Depend on n modulo 6.

Solutions to a Pair of Diophantine Equations
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The solution (x , y)

Why 6 cases?

Cassini’s identity (2): Fn+1Fn−1 − F 2
n = (−1)n

Fibonacci pairs (3): (F6n,F6n+3), (F6n+1,F6n+4), (F6n+2,F6n+5)

In each case, the solution (x , y) depends further on (u, v).

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

The solution (x , y)

Why 6 cases?

Cassini’s identity (2): Fn+1Fn−1 − F 2
n = (−1)n

Fibonacci pairs (3): (F6n,F6n+3), (F6n+1,F6n+4), (F6n+2,F6n+5)

In each case, the solution (x , y) depends further on (u, v).

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

The solution (x , y)

Why 6 cases?

Cassini’s identity (2): Fn+1Fn−1 − F 2
n = (−1)n

Fibonacci pairs (3): (F6n,F6n+3), (F6n+1,F6n+4), (F6n+2,F6n+5)

In each case, the solution (x , y) depends further on (u, v).

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

The solution (x , y)

Why 6 cases?

Cassini’s identity (2): Fn+1Fn−1 − F 2
n = (−1)n

Fibonacci pairs (3): (F6n,F6n+3), (F6n+1,F6n+4), (F6n+2,F6n+5)

In each case, the solution (x , y) depends further on (u, v).

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Sample case: n ≡ 4 mod 6

Polymath Jr. 25 Diophantine Group

Given (u, v , n, r) ∈ Z4 with even n, it holds that

1 +
1

2

(
(u − r)Fn−1 +

(u − r)v + 1

u
Fn − 1

)
t(u,v)n +

1

2

(
rFn−2 +

vr − 1

u
Fn−1 − 1

)
t
(u,v)
n+1 =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2

and

1

2

(
(u − r)Fn−1 +

(u − r)v − 1

u
Fn − 1

)
t(u,v)n +

1

2

(
rFn−2 +

vr + 1

u
Fn−1 − 1

)
t
(u,v)
n+1 =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2
.

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Sample case: n ≡ 4 mod 6

Polymath Jr. 25 Diophantine Group

Given (u, v , n, r) ∈ Z4 with even n, it holds that

1 +
1

2

(
(u − r)Fn−1 +

(u − r)v + 1

u
Fn − 1

)
t(u,v)n +

1

2

(
rFn−2 +

vr − 1

u
Fn−1 − 1

)
t
(u,v)
n+1 =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2

and

1

2

(
(u − r)Fn−1 +

(u − r)v − 1

u
Fn − 1

)
t(u,v)n +

1

2

(
rFn−2 +

vr + 1

u
Fn−1 − 1

)
t
(u,v)
n+1 =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2
.

Solutions to a Pair of Diophantine Equations



Introduction and Polymath Jr. 24
What we did in Polymath Jr. 25

Sample case: n ≡ 4 mod 6

For even n,

1 +
1

2

(
(u − r)Fn−1 +

(u − r)v + 1

u
Fn − 1

)
t(u,v)n +

1

2

(
rFn−2 +

vr − 1

u
Fn−1 − 1

)
t
(u,v)
n+1 =

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2
.

Proof:

t
(u,v)
n = Fn−2u + Fn−1v

Fn−1Fn+1 − F 2
n = 1 (for even n)

Solutions to a Pair of Diophantine Equations
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Sample case: n ≡ 4 mod 6

1 +
1

2

(
(u − r)Fn−1 +

(u − r)v + 1

u
Fn − 1

)
t(u,v)n +

1

2

(
rFn−2 +

vr − 1

u
Fn−1 − 1

)
t
(u,v)
n+1

=
1

2
+

1

2

(
(u − r)Fn−1 +

(u − r)v + 1

u
Fn

)
(Fn−2u + Fn−1v)+

1

2

(
rFn−2 +

vr − 1

u
Fn−1

)
(Fn−1u + Fnv)−

1

2
(t(u,v)n + t

(u,v)
n+1 − 1)

=
1

2

(
1 + Fn−2Fn − F 2

n−1

)
+

1

2
(uFn−2 + vFn−1)︸ ︷︷ ︸

t
(u,v)
n

(uFn−1 + vFn)︸ ︷︷ ︸
t
(u,v)
n+1

−1

2
(t(u,v)n + t

(u,v)
n+1 − 1)

=
1

2
(t(u,v)n − 1)(t

(u,v)
n+1 − 1)

Solutions to a Pair of Diophantine Equations
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(u,v)
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Sample case: n ≡ 4 mod 6

Polymath Jr. 25 Diophantine Group
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(u − r)Fn−1 +
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u
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t
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rFn−2 +

v r − 1

u
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(u,v)
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(u−r)v+1
u
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vr−1
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Need r such that the boxed are nonnegative integers
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Choose r when n ≡ 4 mod 6

Lemma

Given (u, v) ∈ N2 with gcd(u, v) = 1 and odd u,

∃! odd r ∈ [1, u] with vr ≡ ±1 mod u.

Lemma

Given (u, v) ∈ N2 with gcd(u, v) = 1 and even u,

∃! odd r ∈ [1, u] with vr ≡ ±1 mod 2u.

Denote r by O(u, v).

Solutions to a Pair of Diophantine Equations
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Choose r when n ≡ 4 mod 6

Lemma

Given (u, v) ∈ N2 with gcd(u, v) = 1 and odd u,

∃! odd r ∈ [1, u] with vr ≡ ±1 mod u.

Assume u ≥ 3.

gcd(u, v) = 1 =⇒ {1 · v , 2 · v , . . . , u · v} is a complete modulo
system of u.

∃x1, x2 ∈ [1, u − 1] s.t. vx1 ≡ 1 mod u and vx2 ≡ −1 mod u.

=⇒ u | v(x1 + x2) =⇒ u|(x1 + x2) =⇒ x1 + x2 = u.

Solutions to a Pair of Diophantine Equations
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Solutions when n ≡ 4 mod 6

If u is odd and vO(u, v) ≡ 1 mod u or u is even and vO(u, v) ≡ 1 mod 2u,

1 + t(u,v)n · 1

2

(
(u −O(u, v))Fn−1 +

(u −O(u, v))v + 1

u
Fn − 1

)
+

t
(u,v)
n+1 · 1

2

(
O(u, v)Fn−2 +

vO(u, v)− 1

u
Fn−1 − 1

)
=

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2
.

If u is odd, u ≥ 3, and vO(u, v) ≡ −1 mod u or u is even and vO(u, v) ≡ −1
mod 2u,

t(u,v)n · 1

2

(
(u −O(u, v))Fn−1 +

(u −O(u, v))v − 1

u
Fn − 1

)
+

t
(u,v)
n+1 · 1

2

(
O(u, v)Fn−2 +

vO(u, v) + 1

u
Fn−1 − 1

)
=

(t
(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2
.
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2
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u
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t
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vO(u, v) + 1

u
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n − 1)(t

(u,v)
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2
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Nonnegative, integral solutions for n ≡ 4 mod 6

u is odd and vO(u, v) ≡ 1 mod u:

1 + t(u,v)n · 1
2

(u −O(u, v))Fn−1︸︷︷︸
even

+
(u −O(u, v))v + 1

u︸ ︷︷ ︸
odd

Fn︸︷︷︸
odd

−1

+

t
(u,v)
n+1 · 1

2

O(u, v)︸ ︷︷ ︸
odd

Fn−2︸︷︷︸
odd

+
vO(u, v)− 1

u
Fn−1︸︷︷︸
even

−1

 =
(t

(u,v)
n − 1)(t

(u,v)
n+1 − 1)

2
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Application: u = v = 1 (Fibonacci) and n = 6k + 4

u = v = 1 =⇒ O(u, v) = 1

1 + F6k+4 ·
1

2

(
(u −O(u, v))F6k+3 +

(u −O(u, v))v + 1

u
F6k+4 − 1

)
︸ ︷︷ ︸

F6k+4−1

+

F6k+5 ·
1

2

(
O(u, v)F6k+2 +

vO(u, v)− 1

u
F6k+3 − 1

)
︸ ︷︷ ︸

F6k+2−1

=
(F6k+4 − 1)(F6k+5 − 1)

2

This matches Chu’s (2020) ✓ :

1 + F6k+4 ·
F6k+4 − 1

2
+ F6k+5 ·

F6k+2 − 1

2
=

(F6k+4 − 1)(F6k+5 − 1)

2
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Problem 2

Find the formula for the solutions (x , y) to

a · x + b · y =
(a− 1)(b − 1)

2
or

1 + a · x + b · y =
(a− 1)(b − 1)

2
,

where a and b are taken from other recursively defined sequences.
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Future investigation

Problem 1: For (i , j) ∈ N2, find the nonnegative integral solution (x , y) when
(a, b) = (F i

n,F
j
n+1).

Problem 2: Find the formula for the solutions (x , y) when a and b are taken
from more general recursively defined sequences.
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