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Outline

@ Review of Central Limit Theorem results.
@ Applications to Benford’s Law.

@ Applications to Elliptic Curves.
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General Statement

Central Limit Theorem

Let X4, ..., Xy be nice iiddrv with mean  and variance o?.
Then
X1+ -+ XN . YN—E[YN]
YN = —————, Iim —————~ — N(0,1).
N N N—oo StDev(Yy) (0.1)
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@ Speed of convergence controlled by higher moments
(especially third).
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For many data sets, probability of observing a first digit of d
base B is logg (%) base 10 about 30% are 1s.
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Benford’s Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of d
base B is logg (%) base 10 about 30% are 1s.

@ Not all data sets satisfy Benford’s Law.
o Long street [1,L]: L =199 versus L = 999.
o Oscillates between 1/9 and 5/9 with first digit 1.
o Many streets of different sizes: close to Benford.
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Examples

recurrence relations

special functions (such as n!)

iterates of power, exponential, rational maps
products of random variables

L-functions, characteristic polynomials
iterates of the 3x + 1 map

differences of order statistics

hydrology and financial data

many hierarchical Bayesian models
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Applications

@ analyzing round-off errors
@ determining the optimal way to store humbers

@ detecting tax and image fraud, and data integrity
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Mantissa: x = M1g(x) - 10%, k integer.




Benford’s Law (Overview)
.

Mantissas

Mantissa: x = M1g(x) - 10%, k integer.

M1o(X) = Myp(X) if and only if x and X have the same leading
digits.




Benford’s Law (Overview)
.

Mantissas

Mantissa: x = M1g(x) - 10%, k integer.

M1o(X) = Myp(X) if and only if x and X have the same leading
digits.

Key observation: log;o(x) = log;o(x) mod 1 if and only if x and
X have the same leading digits. Thus often study y = log, X.
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Equidistribution and Benford’s Law

Equidistribution

{yn}2, is equidistributed modulo 1 if probability
ynmod 1 € [a,b] tendsto b — a:

#{n <N :ynlilnodle[a,b]} b

—a.
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Equidistribution and Benford’s Law

Equidistribution
{yn}2, is equidistributed modulo 1 if probability
ynmod 1 € [a,b] tendsto b — a:

#{n <N :ynlilnodle[a,b]} b

—a.

Theorem: Kronecker, Weyl

8 ¢ Q, ngis equidistributed mod 1.
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Example of Equidistribution:  n./7 mod 1
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ny/m mod 1 for n < 10
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Example of Equidistribution:  n./7 mod 1
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Example of Equidistribution:  n./7 mod 1
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ny/7 mod 1 for n < 1000
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Example of Equidistribution:  n./7 mod 1
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02 04 06 08 1

ny/7 mod 1 for n < 10,000
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y; } is equidistributed mod 1,
where y; = logg X;.
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y; } is equidistributed mod 1,
where y; = logg X;.
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Logarithms and Benford’s Law

Fundamental Equivalence

Data set {x; } is Benford base B if {y; } is equidistributed mod 1,
where y; = logg X;.

0 log2/log 10 1
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Benford’s Law and the
3X + 1 Problem
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@ x odd, T(x) = 251, 2K||3x + 1.
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3x + 1 Problem

@ Kakutani (conspiracy), Erd6s (not ready).
@ x odd, T(x) = 251, 2K||3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.

Q@7 —>111—>117 —>5,13 =535 —41—5 1,




Benford and 3x + 1
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3x + 1 Problem

@ Kakutani (conspiracy), Erd6s (not ready).

@ x odd, T(x) = 251, 2K||3x + 1.

@ Conjecture: for some n = n(x), T"(x) = 1.

Q@7 —>111—>117 —>5,13 =535 —41—5 1,
2-path (1,1), 5-path (1,1,2,3,4).
m-path: (Kg,...,Km).
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Structure Theorem: Sinai, Kontorovich-Sinai

Theorem (Sinai, Kontorovich-Sinai)
ki-values are i.i.d.r.v. (geometric, 1/2):

log, [X—%

(3)™% (sm —2m >

P| —=2 <L <al=P(—L_——<a
Vv2m B B
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Structure Theorem: Sinai, Kontorovich-Sinai

Theorem (Sinai, Kontorovich-Sinai)
ki-values are i.i.d.r.v. (geometric, 1/2):

og: || | Sn-2m
(log, B)v2m ~ (log, B)v2m ~
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Structure Theorem: Sinai, Kontorovich-Sinai

Theorem (Sinai, Kontorovich-Sinai)

ki-values are i.i.d.r.v. (geometric, 1/2):

l0gs | 45— 5,2
0% [ XOL hrE

P| ——=——=<a| = —s
v2m o vam
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3x + 1 and Benford

Theorem (Kontorovich and M—, 2005)
As m — o0, Xm/(3/4)™Xo is Benford.

Theorem (Lagarias-Soundararajan 2006)

X > 2N for all but at most ¢(B)N~1/36X initial seeds the
distribution of the first N iterates of the 3x + 1 map are within
2N ~1/36 of the Benford probabilities.
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Sketch of the proof

@ Failed Proof: lattices, bad errors.
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Sketch of the proof

@ Failed Proof: lattices, bad errors.
@ CLT: (Sm —2m)/v2m — N(0,1).

@ Quantified Equidistribution: 1, = {{M,... (¢ +1)M — 1},
M < ml/2
logg 2 of irrationality type x < oo:

#{k €1, : klogg2mod 1 € [a,b]} =M(b —a)+ O(M"),

r=14+e¢—-1/k <1.

A
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Irrationality Type

Irrationality type

« has irrationality type « if x is the supremum of all v with

a—E‘:o.

p

@ Algebraic irrationals: type 1 (Roth’s Thm).

@ Theory of Linear Forms: logg 2 of finite type.

A7
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Linear Forms

Theorem (Baker)

ai,...,an algebraic numbers height A; > 4, 31, ..., By € Q with
height at most B > 4,

AN =p1logay + -+ Bnlog an.

If A # 0 then |A| > B=C2109% 'with d = [Q(w, £) : Q)
C = (16nd)?", Q = []; log Aj, ' = Q/log An.

Gives log; 2 of finite type, with x < 1.2 - 10%02;

llog102 — p/a| = |glog 2 — plog 10| /q log 10.

A
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3x + 1 Data: random 10,000 digit number,  2K||3x + 1

80,514 iterations ((4/3)" = ag predicts 80,319);
x2 = 13.5 (5% 15.5).

Digit Number Observed Benford
24251 0.301 0.301
2 14156 0.176 0.176
3 10227 0.127 0.125
4 7931 0.099 0.097
5 6359 0.079 0.079
6
7
8
9

=

5372 0.067 0.067
4476 0.056 0.058
4092 0.051 0.051
3650 0.045 0.046
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Elliptic Curves
[ ]

Mordell-Weil Group

Elliptic curve y? = x3 + ax + b with rational solutions
P = (x1,y1) and Q = (x2,Y2) and connecting liney = mx + b.

/ v
Q P
P
E PaQ E
2P \
Addition of distinct points P and Q Adding a point P to itself

E(Q) =~ E(Q)tors @ A

A




Elliptic Curves
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Riemann Zeta Function

50 -1
C(s):Z%: 11 (1—%) ., Re(s) > 1.

n=1 p prime

Functional Equation:

{s) = r(3)mics) = €@ -s).

Riemann Hypothesis (RH):

- 1 : 1 .
All non-trivial zeros have Re(s) = 5 can write zeros as > +i.

A7




Elliptic Curves
[ ]

General L-functions

L(s,f) = iaf(n) = ] te(s.)*, Re(s)> 1.

Functional Equation:
A(s,f) = Ao(s,f)L(s,f) = A1 —s,f).

Generalized Riemann Hypothesis (GRH):

. 1 , 1 .
All non-trivial zeros have Re(s) = 5 can write zeros as 5 T

AR




Elliptic Curves
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Elliptic curve L-function

E :y? = x3 + ax + b, associate L-function

R | !

n=1 p prime

where

ag(p) = p — #{(x,y) € (Z/pZ)? : y* = x* + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of
L(s,E)ats=1/2.

AQ




Elliptic Curves
[ ]

1-Level Density

L-function L(s, f): by RH non-trivial zeros 1 + i.
N;: analytic conductor.
©(x): compactly supported even Schwartz function.

logN
Difly) = th( gﬂf’m)

i
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1-Level Density

L-function L(s, f): by RH non-trivial zeros 1 + i.
N;: analytic conductor.
©(x): compactly supported even Schwartz function.

logN
Difly) = th( gﬂf’m)

i

@ individual zeros contribute in limit
@ most of contribution is from low zeros

Katz-Sarnak Conjecture:

Dir(e) = Jim == 3" Disle) = [ e()pacm(dx

’f ’ feFn

- [ BWisim(u)du
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Explicit Formula (Contour Integration)




Elliptic Curves
[ ]

Explicit Formula (Contour Integration)

/ d d -
2((:)) = —5clog((s) = Eloglgl(lps) '

logp - p~° logp
Zl—ip*s = ZF + GOOd(S).
p




Elliptic Curves
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Explicit Formula (Contour Integration)

S = o) = —gog][@-p)
SRR = SRR+ conuts

Contour Integration:

[5e oo/ () 2




Elliptic Curves
[ ]

Explicit Formula (Contour Integration)

(s d d e —
c((s)) = s 08¢l = @"’glpl(lp )"
logp - p™° _ ~logp
gp 1—7[)_5 = Ep ps + Good(s).

Contour Integration:

/ <(s) $(s)ds vs Zlogp/gb(s)p‘sds.
p

¢(s)
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Explicit Formula (Contour Integration)

¢(s) _ d . -1
OB —d—logg( —Iog|| (1-p~°

B logp - p=5 _ <~ logp

= ZW—EZP + Good(s).

p p

Contour Integration (see Fourier Transform arising):

C/(S) —olo —itlo
/— &s) p(s)ds vs szlogp/ds)e 9pPg-itiogpyg,

Interplay b/w zeros and coefficients




Elliptic Curves
L]

1-Level Expansion

DLr(6) = |f|zz¢<logNE J))

EeF |

_ ZZ logp 1 logp
\F!E =5 iogNe p” | iogNe

T
QD
m

Q —~
©
~




Elliptic Curves
[ ]

One-parameter family:
€:y2=x>+A(T)x +B(T), A(T),B(T) e Z[T],
taket € Z.

Let

A r(P) = > ai(p), r=1lor2.
t(p)

For many families

(1):ArLx(p) = —rp + O(1)
(2) : A2.7(p) p? + O(p*?)

DQ




Elliptic Curves
L]

Main Term

Theorem: M-"04
For small support, one-param family of rank r over Q(T):

Jm e 3 e (PR ) = [ s+ re(0)

EteFn |
where
SO if half odd
G = { SO(even) if all even
SO(odd)  if all odd

Confirm Katz-Sarnak for main term

GO




Elliptic Curves
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Modeling lowest zero (data & calculations from Duc Khiem Huy nh)

08

0.6

04 4
0.2 1
o i

0 05 1 15 2

Lowest zero Lg,, (S, xd4), 0 < d < 400,000 (bar chart), lowest
eigenvalue SO(2N) w’ Ngit (solid), standard Ng (dashed).
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Modeling lowest zero (data & calculations from Duc Khiem Huy nh)

0 05

Lowest zero Lg,, (S, xd), 0 < d < 400,000 (bar chart), lowest
eigenvalue SO(2N) w’ Np = 12 (solid) w’ discretisation and w’
standard Ng = 12.26 (dashed) w/o discretisation.
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Modeling lowest zero (data & calculations from Duc Khiem Huy nh)

08

0.6

04

0.2 R

0

0 05

Lowest zero Lg,, (S, xd), 0 < d < 400,000 (bar chart), lowest
eigenvalue SO(2N) w' Ngs = 2 (solid) w’ discretisation and w’
Ngt = 2.32 (dashed) w/o discretisation.
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@ Analysis of lower order terms crucial for many applications.
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Conclusions

@ Analysis of lower order terms crucial for many applications.

@ Pure math can have unexpected applications.

YOUR TRAVEL EXPENSES

ARE RETECTED BECAUSE

ALL OF YOUR MEAL COSTS
ARE ROUND NUMBERS.

www.dilbert.com  scottadams@scl.com

EITHER YOU
ARE A LTIAR,
OR WJORSE.

2408 ©2008Scott Adams, Inc./Dist, by UFS, inc.

1 DECIDE WHAT TO
ORDER BASED ON WHAT
TOTALS TO A ROUND
NUMBER AFTER A 15%
TIP

\

THAT'S
WORGE.

!y\‘ij
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