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Using in the Classroom

This talk is a modification of the keynote address at the 2013
Spring Conference of ATMIM and research talks I’ve given over
the past few years.

If you are interested in using any of these topics (or anything
from my math riddles page, which is available online at
http://mathriddles.williams.edu/) in your class,
please email me at sjm1@williams.edu, and I am happy to talk
with you about implementation.
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Some Issues for the Future / Goals of the Talk

World is rapidly changing – powerful computing cheaply
and readily available.

What skills are we teaching? What skills should we be
teaching?

One of hardest skills: how to think / attack a new problem,
how to see connections, what data to gather.
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Opportunities Everywhere!

Ask Questions! Often simple questions lead to good math.

Gather data: observe, program and simulate.

Use games to get to mathematics.

Discuss implementation: Please interrupt!

Joint work with Cameron (age 7) and Kayla (age 5) Miller
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The M&M Game
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Motivating Question

Cam (4 years): If you’re born on the same day, do
you die on the same day?
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M&M Game Rules

Cam (4 years): If you’re born on the same day, do
you die on the same day?

(1) Everyone starts off with k M&Ms (we did 5).
(2) All toss fair coins, eat an M&M if and only if head.
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Be active – ask questions!

What are natural questions to ask?
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Be active – ask questions!

What are natural questions to ask?

Question 1: How likely is a tie (as a function of k)?

Question 2: How long until one dies?

Question 3: Generalize the game: More people? Biased coin?

Important to ask questions – curiousity is good and to be
encouraged! Value to the journey and not knowing the answer.

Let’s gather some data!
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Probability of a tie in the M&M game (2 players)
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ProbHtieL

Prob(tie) ≈ 33% (1 M&M), 19% (2 M&Ms), 14% (3 M&Ms), 10%
(4 M&Ms).
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Probability of a tie in the M&M game (2 players)
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But we’re celebrating 110 years of service, so....
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Probability of a tie in the M&M game (2 players)
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... where will the next 110 bring us?
Never too early to lay foundations for future classes.
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Welcome to Statistics and Inference!

⋄ Goal: Gather data, see pattern, extrapolate.

⋄ Methods: Simulation, analysis of special cases.

⋄ Presentation: It matters how we show data, and which data
we show.
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Viewing M&M Plots
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Hard to predict what comes next.
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Viewing M&M Plots: Log-Log Plot
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Not just sadistic teachers: logarithms useful!
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Viewing M&M Plots: Log-Log Plot
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Best fit line:
log (Prob(tie)) = −1.42022 − 0.545568 log (#M&Ms) or
Prob(k) ≈ 0.2412/k .5456.

16



Intro M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity Lessons/Refs

Viewing M&M Plots: Log-Log Plot

0 1 2 3 4 5
Log@M&MsD

-3.5
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-2.0

-1.5

-1.0

LogHProbHtieLL

Best fit line:
log (Prob(tie)) = −1.42022 − 0.545568 log (#M&Ms) or
Prob(k) ≈ 0.2412/k .5456.

Predicts probability of a tie when k = 220 is 0.01274, but
answer is 0.0137. What gives?
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Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let’s go from k = 50 to 110.
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Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let’s go from k = 50 to 110.

1 2 3 4
Log@M&MsD

-3.9

-3.8

-3.7

-3.6

LogHProbHtieLL

Best fit line:
log (Prob(tie)) = −1.58261 − 0.50553 log (#M&Ms) or
Prob(k) ≈ 0.205437/k .50553 (had 0.241662/k .5456).
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Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let’s go from k = 50 to 110.

1 2 3 4
Log@M&MsD

-3.9

-3.8

-3.7

-3.6

LogHProbHtieLL

Best fit line:
log (Prob(tie)) = −1.58261 − 0.50553 log (#M&Ms) or
Prob(k) ≈ 0.205437/k .50553 (had 0.241662/k .5456).

Get 0.01344 for k = 220 (answer 0.01347); much better!
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From Shooting Hoops
to the Geometric Series Formula
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Simpler Game: Hoops

Game of hoops: first basket wins, alternate shooting.
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Simpler Game: Hoops: Mathematical Formulation

Bird and Magic (I’m old!) alternate shooting; first basket wins.

Bird always gets basket with probability p.

Magic always gets basket with probability q.

Let x be the probability Bird wins – what is x?
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

Bird wins on 1st shot: p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

Bird wins on 1st shot: p.
Bird wins on 2nd shot: (1 − p)(1 − q) · p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

Bird wins on 1st shot: p.
Bird wins on 2nd shot: (1 − p)(1 − q) · p.
Bird wins on 3rd shot: (1 − p)(1 − q) · (1 − p)(1 − q) · p.
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Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

Bird wins on 1st shot: p.
Bird wins on 2nd shot: (1 − p)(1 − q) · p.
Bird wins on 3rd shot: (1 − p)(1 − q) · (1 − p)(1 − q) · p.
Bird wins on nth shot:
(1 − p)(1 − q) · (1 − p)(1 − q) · · · (1 − p)(1 − q) · p.

28



Intro M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity Lessons/Refs

Solving the Hoop Game

Classic solution involves the geometric series.

Break into cases:

Bird wins on 1st shot: p.
Bird wins on 2nd shot: (1 − p)(1 − q) · p.
Bird wins on 3rd shot: (1 − p)(1 − q) · (1 − p)(1 − q) · p.
Bird wins on nth shot:
(1 − p)(1 − q) · (1 − p)(1 − q) · · · (1 − p)(1 − q) · p.

Let r = (1 − p)(1 − q). Then

x = Prob(Bird wins)

= p + rp + r2p + r3p + · · ·
= p

(

1 + r + r2 + r3 + · · ·
)

,

the geometric series.
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.

Have

x = Prob(Bird wins) = p +
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.

Have

x = Prob(Bird wins) = p + (1 − p)(1 − q)
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.

Have

x = Prob(Bird wins) = p + (1 − p)(1 − q)x
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.

Have

x = Prob(Bird wins) = p + (1 − p)(1 − q)x = p + rx .
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.

Have

x = Prob(Bird wins) = p + (1 − p)(1 − q)x = p + rx .

Thus
(1 − r)x = p or x =

p
1 − r

.
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Solving the Hoop Game: The Power of Perspective

Showed

x = Prob(Bird wins) = p(1 + r + r2 + r3 + · · · );
will solve without the geometric series formula.

Have

x = Prob(Bird wins) = p + (1 − p)(1 − q)x = p + rx .

Thus
(1 − r)x = p or x =

p
1 − r

.

As x = p(1 + r + r2 + r3 + · · · ), find

1 + r + r2 + r3 + · · · =
1

1 − r
.
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Lessons from Hoop Problem

⋄ Power of Perspective: Memoryless process.

⋄ Can circumvent algebra with deeper understanding! (Hard)

⋄ Depth of a problem not always what expect.

⋄ Importance of knowing more than the minimum: connections.

⋄ Math is fun!
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The M&M Game
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Solving the M&M Game

Overpower with algebra: Assume k M&Ms, two people, fair
coins:

Prob(tie) =

∞
∑

n=k

(

n − 1
k − 1

)(

1
2

)n−1 1
2

·
(

n − 1
k − 1

)(

1
2

)n−1 1
2
,

where
(

n
r

)

=
n!

r !(n − r)!

is a binomial coefficient.
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Solving the M&M Game

Overpower with algebra: Assume k M&Ms, two people, fair
coins:

Prob(tie) =

∞
∑

n=k

(

n − 1
k − 1

)(

1
2

)n−1 1
2

·
(

n − 1
k − 1

)(

1
2

)n−1 1
2
,

where
(

n
r

)

=
n!

r !(n − r)!

is a binomial coefficient.

“Simplifies” to 4−k
2F1(k , k ,1,1/4), a special value of a

hypergeometric function! (Look up / write report.)

Obviously way beyond the classroom – is there a better way?
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Solving the M&M Game (cont)

Where did formula come from? Each turn one of four equally
likely events happens:

Both eat an M&M.
Cam eats an M&M but Kayla does not.
Kayla eats an M&M but Cam does not.
Neither eat.

Probability of each event is 1/4 or 25%.
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Solving the M&M Game (cont)

Where did formula come from? Each turn one of four equally
likely events happens:

Both eat an M&M.
Cam eats an M&M but Kayla does not.
Kayla eats an M&M but Cam does not.
Neither eat.

Probability of each event is 1/4 or 25%.
Each person has exactly k − 1 heads in first n − 1 tosses, then
ends with a head.

Prob(tie) =

∞
∑

n=k

(

n − 1
k − 1

)(

1
2

)n−1 1
2

·
(

n − 1
k − 1

)(

1
2

)n−1 1
2
.
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Solving the M&M Game (cont)

Use the lesson from the Hoops Game: Memoryless process!
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Solving the M&M Game (cont)

Use the lesson from the Hoops Game: Memoryless process!

If neither eat, as if toss didn’t happen. Now game is finite.
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Solving the M&M Game (cont)

Use the lesson from the Hoops Game: Memoryless process!

If neither eat, as if toss didn’t happen. Now game is finite.

Much better perspective: each “turn” one of three equally likely
events happens:

Both eat an M&M.
Cam eats an M&M but Kayla does not.
Kayla eats an M&M but Cam does not.

Probability of each event is 1/3 or about 33%
k−1
∑

n=0

(

2k − n − 2
n

)(

1
3

)n (2k − 2n − 2
k − n − 1

)(

1
3

)k−n−1 (1
3

)k−n−1(1
1

)

1
3
.
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Solving the M&M Game (cont)

Interpretation: Let Cam have c M&Ms and Kayla have k ; write
as (c, k).

Then each of the following happens 1/3 of the time after a ‘turn’:

(c, k) −→ (c − 1, k − 1).
(c, k) −→ (c − 1, k).
(c, k) −→ (c, k − 1).
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Solving the M&M Game (cont): Assume k = 4

Figure: The M&M game when k = 4. Count the paths! Answer 1/3
of probability hit (1,1).
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Solving the M&M Game (cont): Assume k = 4

Figure: The M&M game when k = 4, going down one level.
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Solving the M&M Game (cont): Assume k = 4

Figure: The M&M game when k = 4, removing probability from the
second level.
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Solving the M&M Game (cont): Assume k = 4

Figure: Removing probability from two outer on third level.
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Solving the M&M Game (cont): Assume k = 4

Figure: Removing probability from the (3,2) and (2,3) vertices.
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Solving the M&M Game (cont): Assume k = 4

Figure: Removing probability from the (2,2) vertex.
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Solving the M&M Game (cont): Assume k = 4

Figure: Removing probability from the (4,1) and (1,4) vertices.
53



Intro M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity Lessons/Refs

Solving the M&M Game (cont): Assume k = 4

Figure: Removing probability from the (3,1) and (1,3) vertices.
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Solving the M&M Game (cont): Assume k = 4

Figure: Removing probability from (2,1) and (1,2) vertices. Answer
is 1/3 of (1,1) vertex, or 245/2187 (about 11%).
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Interpreting Proof: Connections to the Fibonacci Numbers!

Fibonaccis: Fn+2 = Fn+1 + Fn with F0 = 0,F1 = 1.

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .
http://www.youtube.com/watch?v=kkGeOWYOFoA.

Binet’s Formula (can prove via ‘generating functions’):

Fn =
1√
5

(

1 +
√

5
2

)n

− 1√
5

(

1 −
√

5
2

)n

.
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Interpreting Proof: Connections to the Fibonacci Numbers!

Fibonaccis: Fn+2 = Fn+1 + Fn with F0 = 0,F1 = 1.

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .
http://www.youtube.com/watch?v=kkGeOWYOFoA.

Binet’s Formula (can prove via ‘generating functions’):

Fn =
1√
5

(

1 +
√

5
2

)n

− 1√
5

(

1 −
√

5
2

)n

.

M&Ms: For c, k ≥ 1: xc,0 = x0,k = 0; x0,0 = 1, and if c, k ≥ 1:

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.

Reproduces the tree but a lot ‘cleaner’.
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Interpreting Proof: Finding the Recurrence

What if we didn’t see the ‘simple’ recurrence?

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.
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Interpreting Proof: Finding the Recurrence

What if we didn’t see the ‘simple’ recurrence?

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.

The following recurrence is ‘natural’:

xc,k =
1
4

xc,k +
1
4

xc−1,k−1 +
1
4

xc−1,k +
1
4

xc,k−1.
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Interpreting Proof: Finding the Recurrence

What if we didn’t see the ‘simple’ recurrence?

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.

The following recurrence is ‘natural’:

xc,k =
1
4

xc,k +
1
4

xc−1,k−1 +
1
4

xc−1,k +
1
4

xc,k−1.

Obtain ‘simple’ recurrence by algebra: subtract 1
4xc,k :

3
4

xc,k =
1
4

xc−1,k−1 +
1
4

xc−1,k +
1
4

xc,k−1

therefore xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.
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Solving the Recurrence

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.
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Solving the Recurrence

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.

x0,0 = 1.
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Solving the Recurrence

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.

x0,0 = 1.

x1,0 = x0,1 = 0.

x1,1 = 1
3x0,0 +

1
3x0,1 +

1
3x1,0 = 1

3 ≈ 33.3%.
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Solving the Recurrence

xc,k =
1
3

xc−1,k−1 +
1
3

xc−1,k +
1
3

xc,k−1.

x0,0 = 1.

x1,0 = x0,1 = 0.

x1,1 = 1
3x0,0 +

1
3x0,1 +

1
3x1,0 = 1

3 ≈ 33.3%.

x2,0 = x0,2 = 0.

x2,1 = 1
3x1,0 +

1
3x1,1 +

1
3x2,0 = 1

9 = x1,2.

x2,2 = 1
3x1,1 +

1
3x1,2 +

1
3x2,1 = 1

9 + 1
27 + 1

27 = 5
27 ≈ 18.5%.
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Try Simpler Cases!!!

Try and find an easier problem and build intuition.
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Try Simpler Cases!!!

Try and find an easier problem and build intuition.

Walking from (0,0) to (k , k) with allowable steps (1,0), (0,1) and
(1,1), hit (k , k) before hit top or right sides.
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Try Simpler Cases!!!

Try and find an easier problem and build intuition.

Walking from (0,0) to (k , k) with allowable steps (1,0), (0,1) and
(1,1), hit (k , k) before hit top or right sides.

Generalization of the Catalan problem. There don’t have (1,1)
and stay on or below the main diagonal.
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Try Simpler Cases!!!

Try and find an easier problem and build intuition.

Walking from (0,0) to (k , k) with allowable steps (1,0), (0,1) and
(1,1), hit (k , k) before hit top or right sides.

Generalization of the Catalan problem. There don’t have (1,1)
and stay on or below the main diagonal.

Interpretation: Catalan numbers are valid placings of ( and ).
68



Intro M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity Lessons/Refs

Aside: Fun Riddle Related to Catalan Numbers

Young Saul, a budding mathematician and printer, is making himself a
fake ID. He needs it to say he’s 21. The problem is he’s not using a
computer, but rather he has some symbols he’s bought from the
store, and that’s it. He has one 1, one 5, one 6, one 7, and an
unlimited supply of + - * / (the operations addition, subtraction,
multiplication and division). Using each number exactly once (but you
can use any number of +, any number of -, ...) how, oh how, can he
get 21 from 1,5, 6,7? Note: you can’t do things like 15+6 = 21. You
have to use the four operations as ’binary’ operations: ( (1+5)*6 ) + 7.
Problem submitted by ohadbp@infolink.net.il, phrasing by yours truly.

Solution involves valid sentences: ((w + x) + y) + z, w + ((x + y) + z), . . . .

For more riddles see my riddles page:
http://mathriddles.williams.edu/.
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Examining Probabilities of a Tie

When k = 1, Prob(tie) = 1/3.

When k = 2, Prob(tie) = 5/27.

When k = 3, Prob(tie) = 11/81.

When k = 4, Prob(tie) = 245/2187.

When k = 5, Prob(tie) = 1921/19683.

When k = 6, Prob(tie) = 575/6561.

When k = 7, Prob(tie) = 42635/531441.

When k = 8, Prob(tie) = 355975/4782969.

When k = 9, Prob(tie) = 1000505/14348907.
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Examining Ties: Multiply by 32k−1 to clear denominators.

When k = 1, get 1.

When k = 2, get 5.

When k = 3, get 33.

When k = 4, get 245.

When k = 5, get 1921.

When k = 6, get 15525.

When k = 7, get 127905.

When k = 8, get 1067925.

When k = 9, get 9004545.
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OEIS

Get sequence of integers: 1, 5, 33, 245, 1921, 15525, ....
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OEIS

Get sequence of integers: 1, 5, 33, 245, 1921, 15525, ....

OEIS: http://oeis.org/.
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OEIS

Get sequence of integers: 1, 5, 33, 245, 1921, 15525, ....

OEIS: http://oeis.org/.

Our sequence: http://oeis.org/A084771.

The web exists! Use it to build conjectures, suggest proofs....
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OEIS (continued)
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Introduction to
Zeckendorf Decompositions
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Goals Of This Section

Seek the ‘right’ perspective.

Techniques: generating fns, partial fractions.

Utility of asking questions.

You can join in – lots of other problems to study.

Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet,
Rachel Insoft, Shiyu Li, Philip Tosteson.
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Pre-requisites: Probability Review

5 10

0.05

0.10

0.15

0.20

Let X be random variable with density p(x):
⋄ p(x) ≥ 0;

∫∞
−∞ p(x)dx = 1;

⋄ Prob (a ≤ X ≤ b) =
∫ b

a p(x)dx .

Mean: µ =
∫∞
−∞ xp(x)dx .

Variance: σ2 =
∫∞
−∞(x − µ)2p(x)dx .

Gaussian: Density (2πσ2)−1/2 exp(−(x − µ)2/2σ2).
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Pre-requisites: Combinatorics Review

n!: number of ways to order n people, order matters.

n!
k !(n−k)! = nCk =

(n
k

)

: number of ways to choose k from n,
order doesn’t matter.

Stirling’s Formula: n! ≈ nne−n
√

2πn.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 = 1597 + 377 + 34 + 5 + 1 = F16 + F13 + F8 + F4 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 = 1597 + 377 + 34 + 5 + 1 = F16 + F13 + F8 + F4 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

84



Intro M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity Lessons/Refs

Old Results

Central Limit Type Theorem

As n → ∞ distribution of number of summands in Zeckendorf
decomposition for m ∈ [Fn,Fn+1) is Gaussian (normal).

500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

0.030

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n
∑

j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)
∑

j=2

δ
(

x − (ij − ij−1)
)

.

Theorem (Zeckendorf Gap Distribution)

Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.

5 10 15 20 25 30

0.1

0.2

0.3

0.4

5 10 15 20 25

0.5

1.0

1.5

2.0

Figure: Distribution of gaps in [F1000,F1001); F1000 ≈ 10208.
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New Results: Longest Gap

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ
.

Immediate Corollary: If f (n) grows slower or faster than
log n/ logφ, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Gaussian Behavior
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1
√

5
φn+1 = φ

√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2π

√

(n − k)

k(n − 2k)

√
5

φ

)(

φ
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2π

√

(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√

n − k

k(n − 2k)

φ
√

5

=
1

√
2πn

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

φ

=
1

√
2πn

√

1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

φ

=
1

√
2πn

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since

σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√

1 − C

C(1 − 2C)

√
5

φ
=

1
√

2πn

√

(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√

5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(

φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(φ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))

(

log(n − µ) + log
(

1 −
xσ

n − µ

))

− (µ + xσ)

(

log(µ) + log
(

1 +
xσ

µ

))

− (n − 2(µ + xσ))

(

log(n − 2µ) + log
(

1 −
xσ

n − 2µ

))

= −n log(φ)

+ (n − (µ + xσ))

(

log
(

n

µ
− 1
)

+ log
(

1 −
xσ

n − µ

))

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ))

(

log
(

n

µ
− 2
)

+ log
(

1 −
xσ

n − 2µ

))

.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
(

n

µ
− 1

)

− (n − 2k) log
(

n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= −n log(φ) + (n − k) log (φ + 1) − (n − 2k) log (φ) + (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= n(− log(φ) + log
(

φ
2
)

− log (φ)) + k(log(φ2
) + 2 log(φ)) + (n − (µ + xσ)) log

(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

= (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

.
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(

−
xσ

n − µ
−

1

2

(

xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(

xσ

µ
−

1

2

(

xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(

−2
xσ

n − 2µ
−

1

2

(

2
xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))



−
xσ

n (φ+1)
(φ+2)

−
1

2





xσ

n (φ+1)
(φ+2)





2

+ . . .





− (µ + xσ)





xσ
n

φ+2

−
1

2





xσ
n

φ+2





2

+ . . .





− (n − 2(µ + xσ))



−
2xσ

n φ
φ+2

−
1

2





2xσ

n φ
φ+2





2

+ . . .





=
xσ

n
n

(

−

(

1 −
1

φ + 2

)

(φ + 2)

(φ + 1)
− 1 + 2

(

1 −
2

φ + 2

)

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n
(

−2
φ + 2

φ + 1
+

φ + 2

φ + 1
+ 2(φ + 2) − (φ + 2) + 4

φ + 2

φ

)

+O
(

n (xσ/n)3
)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(

−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n(φ + 2)

(

−
1

φ + 1
+ 1 +

4

φ

)

+O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4

φ(φ + 1)
+ 1

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4 + 2φ + 1

φ(φ + 1)

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2
x2

σ
2
(

5(φ + 2)

φn

)

+ O
(

n (xσ/n)3
)

.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2
=

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(

n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

�
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written
uniquely as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove
any summand).
Lekkerkerker
Central Limit Type Theorem
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Generalizing Lekkerkerker

Generalized Lekkerkerker’s Theorem
The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hn,Hn+1) tends
to Cn + d as n → ∞, where C > 0 and d are computable
constants determined by the ci ’s.

C = −y ′(1)
y(1)

=

∑L−1
m=0(sm + sm+1 − 1)(sm+1 − sm)ym(1)

2
∑L−1

m=0(m + 1)(sm+1 − sm)ym(1)
.

s0 = 0, sm = c1 + c2 + · · ·+ cm.

y(x) is the root of 1 −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1.

y(1) is the root of 1 − c1y − c2y2 − · · · − cLyL.
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Central Limit Type Theorem

Central Limit Type Theorem
As n → ∞, the distribution of the number of summands,
i.e., a1 + a2 + · · ·+ am in the generalized Zeckendorf
decomposition

∑m
i=1 aiHi for integers in [Hn,Hn+1) is

Gaussian.

1000 1050 1100 1150 1200

0.005

0.010

0.015

0.020
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.
Legal decomposition is decimal expansion:

∑m
i=1 aiHi :

ai ∈ {0, 1, . . . , 9} (1 ≤ i < m), am ∈ {1, . . . , 9}.
For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.
Ai : the corresponding random variable of ai .
The Ai ’s are independent.
For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.
Central Limit Theorem: A2 +A3 + · · ·+An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the
±Fn’s, such that every two terms of the same (opposite)
sign differ in index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.
Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10.
E [K ] − E [L] = ϕ/2 ≈ .809.

Central Limit Type Theorem
As n → ∞, K and L converges to a bivariate Gaussian.

corr(K , L) = −(21 − 2ϕ)/(29 + 2ϕ) ≈ −.551,
ϕ =

√
5+1
2 .

K + L and K − L are independent.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
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Generating Function (Example: Binet’s Formula)

Binet’s Formula

F 1 = F 2 = 1; F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

.

Recurrence relation: F n+1 = F n + F n−1 (1)
Generating function: g(x) =

∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)
⇒ g(x) = x/(1 − x − x2).

119



Intro M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity Lessons/Refs

Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2
=

1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.
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Partial Fraction Expansion (Example: Binet’s Formula)

Generating function: g(x) =
∑

n>0 F nxn = x
1−x−x2 .

Partial fraction expansion:

⇒ g(x) =
x

1 − x − x2
=

1√
5

(

1+
√

5
2 x

1 − 1+
√

5
2 x

−
−1+

√
5

2 x

1 − −1+
√

5
2 x

)

.

Coefficient of xn (power series expansion):

F n = 1√
5

[(

1+
√

5
2

)n
−
(

−1+
√

5
2

)n]

- Binet’s Formula!

(using geometric series: 1
1−r = 1 + r + r2 + r3 + · · · ).
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Differentiating Identities and Method of Moments

Differentiating identities
Example: Given a random variable X such that

Pr(X = 1) = 1
2 , Pr(X = 2) = 1

4 , Pr(X = 3) = 1
8 , ....

then what’s the mean of X (i.e., E [X ])?

Solution: Let f (x) = 1
2x + 1

4x2 + 1
8x3 + · · · = 1

1−x/2 − 1.

f ′(x) = 1 · 1
2 + 2 · 1

4x + 3 · 1
8x2 + · · · .

f ′(1) = 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + · · · = E [X ].

Method of moments: Random variables X1, X2, . . . .
If ℓth moments E [X ℓ

n ] converges those of standard
normal then Xn converges to a Gaussian.

Standard normal distribution :
2mth moment: (2m − 1)!! = (2m − 1)(2m − 3) · · ·1,
(2m − 1)th moment: 0.
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .
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New Approach: Case of Fibonacci Numbers

pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

Recurrence relation:
N ∈ [Fn+1,Fn+2): N = Fn+1 + Ft + · · · , t ≤ n − 1.

pn+1,k+1 = pn−1,k + pn−2,k + · · ·
pn,k+1 = pn−2,k + pn−3,k + · · ·

⇒ pn+1,k+1 = pn,k+1 + pn−1,k .

Generating function:
∑

n,k>0 pn,kxkyn = y
1−y−xy2 .

Partial fraction expansion:
y

1 − y − xy2
= − y

y1(x)− y2(x)

(

1
y − y1(x)

− 1
y − y2(x)

)

where y1(x) and y2(x) are the roots of 1 − y − xy2 = 0.

Coefficient of yn: g(x) =
∑

k>0 pn,kxk .
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New Approach: Case of Fibonacci Numbers (Continued)
Kn: the corresponding random variable associated with k .
g(x) =

∑

k>0 pn,kxk .

Differentiating identities:
g(1) =

∑

k>0 pn,k = Fn+1 − Fn,

g′(x) =
∑

k>0 kpn,kxk−1, g′(1) = g(1)E [Kn],

(xg′(x))′ =
∑

k>0 k2pn,kxk−1,

(xg′(x))′ |x=1 = g(1)E [K 2
n ],

(

x (xg′(x))′
)′ |x=1 = g(1)E [K 3

n ], ...

Similar results hold for the centralized Kn:
K ′

n = Kn − E [Kn].
Method of moments (for normalized K ′

n):

E [(K ′
n)

2m]/(SD(K ′
n))

2m → (2m − 1)!!,

E [(K ′
n)

2m−1]/(SD(K ′
n))

2m−1 → 0. ⇒ Kn → Gaussian.
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New Approach: General Case

Let pn,k = # {N ∈ [Hn,Hn+1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

Recurrence relation:
Fibonacci: pn+1,k+1 = pn,k+1 + pn,k .

General: pn+1,k =
∑L−1

m=0

∑sm+1−1
j=sm

pn−m,k−j .

where s0 = 0, sm = c1 + c2 + · · ·+ cm.

Generating function:
Fibonacci: y

1−y−xy2 .

General:
∑

n≤L pn,kxkyn −
∑L−1

m=0

∑sm+1−1
j=sm

x jym+1
∑

n<L−m pn,kxkyn

1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1
.
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New Approach: General Case (Continued)

Partial fraction expansion:

Fibonacci: − y
y1(x)−y2(x)

(

1
y−y1(x)

− 1
y−y2(x)

)

.

General:

− 1
∑sL−1

j=sL−1
x j

L
∑

i=1

B(x , y)
(y − yi(x))

∏

j 6=i (yj(x)− yi(x))
.

B(x , y) =
∑

n≤L

pn,kxkyn −
L−1
∑

m=0

sm+1−1
∑

j=sm

x jym+1
∑

n<L−m

pn,kxkyn,

yi(x): root of 1 −∑L−1
m=0

∑sm+1−1
j=sm

x jym+1 = 0.

Coefficient of yn: g(x) =
∑

n,k>0 pn,kxk .

Differentiating identities

Method of moments: implies Kn → Gaussian.
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Takeaways
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Lessons

⋄ Always ask questions.

⋄ Many ways to solve a problem.

⋄ Experience is useful and a great guide.

⋄ Need to look at the data the right way.

⋄ Often don’t know where the math will take you.

⋄ Value of continuing education: more math is better.

⋄ Connections: My favorite quote: If all you have
is a hammer, pretty soon every problem
looks like a nail.
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